![]() |
1 | Abadie, J. et al. (LIGO Scientific Collaboration), “A gravitational wave observatory operating
beyond the quantum shot-noise limit”, Nature Phys., 7, 962-965, (2011). [![]() |
![]() |
2 | Abbott, B. et al. (LIGO Scientific Collaboration), “Observation of a kilogram-scale oscillator
near its quantum ground state”, New J. Phys., 11, 073032, (2009). [![]() |
![]() |
3 | Abramovici, A. et al., “LIGO: The Laser Interferometer Gravitational-Wave Observatory”,
Science, 256, 325–333, (1992). [![]() |
![]() |
4 | Acernese, F. et al., “Virgo upgrade investigations”, J. Phys.: Conf. Ser., 32, 223, (2006). [![]() |
![]() |
5 | Adhikari, R., Evans, M., Fricke, T., Frolov, V., Kawabe, K., Smith, N. and Waldman, S.J., DC
readout Normalization for Enhanced LIGO, LIGO-TT0900023, (LIGO, Pasadena, CA, 2009).
URL (accessed 7 July 2011): ![]() |
![]() |
6 | “Advanced LIGO”, project homepage, Massachusetts Institute of Technology. URL (accessed
1 July 2011): ![]() |
![]() |
7 | “AEI 10m Prototype Home Page”, project homepage, Leibniz Universität Hannover. URL
(accessed 18 June 2011): ![]() |
![]() |
8 | Ando, M. et al. (TAMA Collaboration), “Stable Operation of a 300-m Laser Interferometer
with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy”, Phys.
Rev. Lett., 86, 3950–3954, (2001). [![]() ![]() |
![]() |
9 | Arcizet, O., Briant, T., Heidmann, A. and Pinard, M., “Beating quantum limits in an
optomechanical sensor by cavity detuning”, Phys. Rev. A, 73, 033819, (2006). [![]() ![]() |
![]() |
10 | Aspelmeyer, M., Gröblacher, S., Hammerer, K. and Kiesel, N.,
“Quantum optomechanics–throwing a glance [Invited]”, J. Opt. Soc. Am. B, 27, A189–A197,
(2010). [![]() |
![]() |
11 | Beyersdorf, P.T, Fejer, M.M. and Byer, R.L., “Polarization Sagnac interferometer with
postmodulation for gravitational-wave detection”, Opt. Lett., 24, 1112–1114, (1999). [![]() |
![]() |
12 | Blair, D.G., ed., The Detection of Gravitational Waves, (Cambridge University Press,
Cambridge; New York, 1991). [![]() |
![]() |
13 | Blandford, R.D. and Thorne, K.S., “Applications of Classical Physics”, lecture notes, California
Institute of Technology, (2008). URL (accessed 15 June 2011): ![]() |
![]() |
14 | Blow, K.J., Loudon, R., Phoenix, S.J.D. and Shepherd, T.J., “Continuum fields in quantum
optics”, Phys. Rev. A, 42, 4102–4114, (1990). [![]() |
![]() |
15 | Born, M. and Wolf, E., Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light, (Cambridge University Press, Cambridge; New York,
2002), 7th exp. edition. [![]() |
![]() |
16 | Braginsky, V.B., “Classical and quantum restrictions on the detection of weak disturbances of a
macroscopic oscillator”, Sov. Phys. JETP, 26, 831–834, (1968). [![]() ![]() |
![]() |
17 | Braginsky, V.B., Gorodetsky, M.L. and Khalili, F.Y., “Optical bars in gravitational wave
antenna”, Phys. Lett. A, 232, 340–348, (1997). [![]() |
![]() |
18 | Braginsky, V.B., Gorodetsky, M.L. and Khalili, F.Y., “Quantum limits and symphotonic
states in free-mass gravitational-wave antennae”, Phys. Lett. A, 246, 485–497, (1998). [![]() ![]() |
![]() |
19 | Braginsky, V.B., Gorodetsky, M.L., Khalili, F.Y., Matsko, A.B., Thorne, K.S. and Vyatchanin,
S.P., “The noise in gravitational-wave detectors and other classical-force measurements is not
influenced by test-mass quantization”, Phys. Rev. D, 67, 082001, (2003). [![]() |
![]() |
20 | Braginsky, V.B., Gorodetsky, M.L., Khalili, F.Y. and Thorne, K.S., “Dual-resonator speed
meter for a free test mass”, Phys. Rev. D, 61, 044002, (2000). [![]() ![]() |
![]() |
21 | Braginsky, V.B. and Khalili, F.Y., “Gravitational wave antenna with QND speed meter”, Phys.
Lett. A, 147, 251–256, (1990). [![]() |
![]() |
22 | Braginsky, V.B. and Khalili, F.Y., Quantum Measurement, (Cambridge University Press,
Cambridge; New York, 1992). [![]() |
![]() |
23 | Braginsky, V.B. and Khalili, F.Y., “Low-noise rigidity in quantum measurements”, Phys. Lett.
A, 257, 241–246, (1999). [![]() |
![]() |
24 | Braginsky, V.B., Khalili, F.Y. and Volikov, S.P., “The analysis of table-top quantum measurement with macroscopic masses”, Phys. Lett. A, 287, 31–38, (2001). |
![]() |
25 | Braginsky, V.B. and Manukin, A.B., “On pondermotive effects of electromagnetic radiation”,
Sov. Phys. JETP, 25, 653, (1967). [![]() |
![]() |
26 | Braginsky, V.B. and Minakova, I.I., “Influence of the small displacement measurements on the
dynamical properties of mechanical oscillating systems”, Moscow Univ. Phys. Bull., 1964(1),
83–85, (1964). Online version (accessed 24 January 2012): ![]() |
![]() |
27 | Braginsky, V.B. and Vorontsov, Y.I., “Quantum-mechanical limitations in macroscopic
experiments and modern experimental technique”, Sov. Phys. Usp., 17, 644–650, (1975). [![]() |
![]() |
28 | Braginsky, V.B., Vorontsov, Y.I. and Khalili, F.Y., “Quantum singularities of a ponderomotive
meter of electromagnetic energy”, Sov. Phys. JETP, 46, 705–706, (1977). Online version
(accessed 15 June 2011): ![]() |
![]() |
29 | Braginsky, V.B., Vorontsov, Y.I. and Khalili, F.Y., “Optimal quantum measurements in
detectors of gravitation radiation”, JETP Lett., 27, 276–280, (1978). [![]() ![]() |
![]() |
30 | Braginsky, V.B., Vorontsov, Y.I. and Thorne, K.S., “Quantum Nondemolition Measurements”,
Science, 209(4456), 547–557, (1980). [![]() ![]() |
![]() |
31 | Braunstein, S.L. and van Loock, P., “Quantum information with continuous variables”, Rev.
Mod. Phys., 77, 513–577, (2005). [![]() ![]() |
![]() |
32 | Buonanno, A. and Chen, Y., “Quantum noise in second generation, signal-recycled laser
interferometric gravitational-wave detectors”, Phys. Rev. D, 64, 042006, (2001). [![]() ![]() |
![]() |
33 | Buonanno, A. and Chen, Y., “Signal recycled laser-interferometer gravitational-wave detectors
as optical springs”, Phys. Rev. D, 65, 042001, (2002). [![]() ![]() |
![]() |
34 | Buonanno, A. and Chen, Y., “Scaling law in signal recycled laser-interferometer
gravitational-wave detectors”, Phys. Rev. D, 67, 062002, (2003). [![]() ![]() |
![]() |
35 | Buonanno, A. and Chen, Y., “Improving the sensitivity to gravitational-wave sources by
modifying the input-output optics of advanced interferometers”, Phys. Rev. D, 69, 102004,
(2004). [![]() ![]() |
![]() |
36 | Buonanno, A., Chen, Y. and Mavalvala, N., “Quantum noise in laser-interferometer
gravitational-wave detectors with a heterodyne readout scheme”, Phys. Rev. D, 67, 122005,
(2003). [![]() ![]() |
![]() |
37 | Callen, H.B. and Welton, T.A., “Irreversibility and Generalized Noise”, Phys. Rev., 83, 34–40,
(1951). [![]() |
![]() |
38 | Caves, C.M., “Quantum-mechanical noise in an interferometer”, Phys. Rev. D, 23, 1693–1708,
(1981). [![]() |
![]() |
39 | Caves, C.M. and Schumaker, B.L., “New formalism for two-photon quantum optics. I.
Quadrature phases and squeezed states”, Phys. Rev. A, 31, 3068–3092, (1985). [![]() |
![]() |
40 | Caves, C.M. and Schumaker, B.L., “New formalism for two-photon quantum optics. II.
Mathematical foundation and compact notation”, Phys. Rev. A, 31, 3093–3111, (1985). [![]() |
![]() |
41 | Caves, C.M., Thorne, K.S., Drever, R.W.P., Sandberg, V.D. and Zimmermann, M., “On the
measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of
principle”, Rev. Mod. Phys., 52, 341–392, (1980). [![]() |
![]() |
42 | Chen,
Y., “Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave
detector”, Phys. Rev. D, 67, 122004, (2003). [![]() ![]() |
![]() |
43 | Chen, Y., Topics of LIGO Physics: Quantum Noise in Advanced Interferometers and
Template Banks for Compact-Binary Inspirals, Ph.D. thesis, (California Institute of Technology,
Pasadena, CA, 2003). URL (accessed 4 July 2011): ![]() |
![]() |
44 | Chen, Y., Danilishin, S.L., Khalili, F.Y. and Müller-Ebhardt, H., “QND measurements
for future gravitational-wave detectors”, Gen. Relativ. Gravit., 43, 671–694, (2011). [![]() ![]() |
![]() |
45 | Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F. and Schoelkopf, R.J., “Introduction
to quantum noise, measurement, and amplification”, Rev. Mod. Phys., 82, 1155–1208, (2010).
[![]() ![]() |
![]() |
46 | Clerk, A.A., Marquardt, F. and Jacobs, K., “Back-action evasion and squeezing of a mechanical
resonator using a cavity detector”, New J. Phys., 10, 095010, (2008). [![]() ![]() |
![]() |
47 | Corbitt, T., Chen, Y., Khalili, F.Y., Ottaway, D., Vyatchanin, S.P., Whitcomb, S. and
Mavalvala, N., “Squeezed-state source using radiation-pressure-induced rigidity”, Phys. Rev.
A, 73, 023801, (2006). [![]() ![]() |
![]() |
48 | Corbitt, T. et al., “An All-Optical Trap for a Gram-Scale Mirror”, Phys. Rev. Lett., 98, 150802,
(2007). [![]() ![]() |
![]() |
49 | Crooks, D.R.M. et al., “Excess mechanical loss associated with dielectric mirror coatings
on test masses in interferometric gravitational wave detectors”, Class. Quantum Grav., 19,
883–896, (2002). [![]() |
![]() |
50 | Danilishin, S.L., “Sensitivity limitations in optical speed meter topology of gravitational-wave
antennas”, Phys. Rev. D, 69, 102003, (2004). [![]() ![]() |
![]() |
51 | Danilishin, S.L. and Khalili, F.Y., “Stroboscopic variation measurement”, Phys. Lett. A, 300,
547–558, (2002). [![]() ![]() |
![]() |
52 | Danilishin, S.L. and Khalili, F.Y., “Practical design of the optical lever intracavity topology of
gravitational-wave detectors”, Phys. Rev. D, 73, 022002, (2006). [![]() ![]() |
![]() |
53 | Danilishin, S.L., Khalili, F.Y. and Vyatchanin, S.P., “The discrete sampling variation
measurement”, Phys. Lett. A, 278, 123–128, (2000). [![]() ![]() |
![]() |
54 | Danilishin, S.L. et al., “Creation of a quantum oscillator by classical control”, arXiv, e-print,
(2008). [![]() |
![]() |
55 | Degallaix, J. et al., “Commissioning of the tuned DC readout at GEO 600”, J. Phys.: Conf.
Ser., 228, 012013, (2010). [![]() |
![]() |
56 | Einstein, A., Podolsky, B. and Rosen, N., “Can Quantum-Mechanical Description of Physical
Reality Be Considered Complete?”, Phys. Rev., 47, 777–780, (1935). [![]() |
![]() |
57 | Evans, M., Ballmer, S., Fejer, M., Fritschel, P., Harry, G. and Ogin, G., “Thermo-optic noise
in coated mirrors for high-precision optical measurements”, Phys. Rev. D, 78, 102003, (2008).
[![]() |
![]() |
58 | Flanagan, É.É. and Hughes, S.A., “Measuring gravitational waves from binary black hole
coalescences. I. Signal to noise for inspiral, merger, and ringdown”, Phys. Rev. D, 57,
4535–4565, (1998). [![]() ![]() ![]() |
![]() |
59 | Freise, A. and Strain, K., “Interferometer Techniques for Gravitational-Wave Detection”, Living
Rev. Relativity, 13, lrr-2010-1, (2010). URL (accessed 4 July 2011): http://www.livingreviews.org/lrr-2010-1. |
![]() |
60 | Freise, A. et al., “Demonstration of detuned dual recycling at the Garching 30 m laser
interferometer”, Phys. Lett. A, 277, 135–142, (2000). [![]() |
![]() |
61 | Fricke, T.T. et al., “DC readout experiment in Enhanced LIGO”, Class. Quantum Grav., 29,
065005, (2011). [![]() ![]() |
![]() |
62 | Friedrich, D. et al., “Laser interferometry with translucent and absorbing mechanical
oscillators”, New J. Phys., 13, 093017, (2011). [![]() ![]() |
![]() |
63 | Fritschel, P., “DC Readout for Advanced LIGO”, LSC meeting, Hannover, 21 August 2003,
conference paper, (2003). URL (accessed 15 June 2011): ![]() |
![]() |
64 | Fritschel, P., “Second generation instruments for the Laser Interferometer Gravitational Wave
Observatory (LIGO)”, in Cruise, M. and Saulson, P., eds., Gravitational-Wave Detection,
Waikoloa, HI, USA, 23 August 2002, Proc. SPIE, 4856, pp. 282–291, (SPIE, Bellingham, WA,
2003). [![]() ![]() |
![]() |
65 | Gea-Banacloche, J. and Leuchs, G., “Squeezed States for Interferometric Gravitational-wave
Detectors”, J. Mod. Opt., 34, 793–811, (1987). [![]() |
![]() |
66 | “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for
Gravitational Physics (Albert Einstein Institute). URL (accessed 7 July 2011): ![]() |
![]() |
67 | Gol’tsman, G.N. et al., “Picosecond superconducting single-photon optical detector”, Appl.
Phys. Lett., 79, 705–707, (2001). [![]() |
![]() |
68 | Harb, C.C., Ralph, T.C., Huntington, E.H., McClelland, D.E., Bachor, H.-A. and Freitag, I.,
“Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source”, J. Opt. Soc.
Am. B, 14, 2936–2945, (1997). [![]() |
![]() |
69 | Harms, J., The Detection of Gravitational Waves: Data Analysis and Interferometry, Ph.D.
thesis, (Leibniz Universität, Hannover, 2006). Online version (accessed 24 January 2012): ![]() |
![]() |
70 | Harms, J., Chen, Y., Chelkowski, S., Franzen, A., Vahlbruch, H., Danzmann, K. and Schnabel,
R., “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors”, Phys. Rev.
D, 68, 042001, (2003). [![]() ![]() |
![]() |
71 | Harry, G., Bodiya, T.P. and DeSalvo, R., eds., Optical Coatings and Thermal Noise in Precision
Measurement, (Cambridge University Press, Cambridge; New York, 2012). [![]() |
![]() |
72 | Harry, G.M. et al., “Thermal noise in interferometric gravitational wave detectors due to
dielectric optical coatings”, Class. Quantum Grav., 19, 897–917, (2002). [![]() ![]() |
![]() |
73 | Harry, G.M. et al., “Titania-doped tantala/silica coatings for gravitational-wave detection”,
Class. Quantum Grav., 24, 405–416, (2007). [![]() ![]() |
![]() |
74 | Heinzel, G., Advanced optical techniques for laser-interferometric gravitational-wave detectors,
Ph.D. thesis, (Universität Hannover, Hannover, 1999). Online version (accessed 21 January
2012): ![]() |
![]() |
75 | Heinzel, G. et al., “Experimental Demonstration of a Suspended Dual Recycling Interferometer
for Gravitational Wave Detection”, Phys. Rev. Lett., 81, 5493–5496, (1998). [![]() |
![]() |
76 | Heurs, M., Meier, T., Quetschke, V.M., Willke, B., Freitag, I. and Danzmann, K., “Intensity
and frequency noise reduction of a Nd:YAG NPRO via pump light stabilisation”, Appl. Phys.
B, 85, 79–84, (2006). [![]() |
![]() |
77 | Hild, S., Beyond the First Generation: Extending the Science Range of the Gravitational
Wave Detector GEO600, Ph.D. thesis, (Leibniz Universität, Hannover, 2007). Online version
(accessed 24 January 2012): ![]() |
![]() |
78 | Hild, S., Chelkowski, S., Freise, A., Franc, J., Morgado, N., Flaminio, R. and DeSalvo, R., “A
xylophone configuration for a third-generation gravitational wave detector”, Class. Quantum
Grav., 27, 015003, (2010). [![]() ![]() |
![]() |
79 | Hild, S. et al., “DC-readout of a signal-recycled gravitational wave detector”, Class. Quantum
Grav., 26, 055012, (2009). [![]() ![]() |
![]() |
80 | Hild, S. et al., “Sensitivity studies for third-generation gravitational wave observatories”, Class.
Quantum Grav., 28, 094013, (2011). [![]() ![]() |
![]() |
81 | Jaekel, M.T. and Reynaud, S., “Quantum Limits in Interferometric Measurements”, Europhys.
Lett., 13, 301–306, (1990). [![]() ![]() |
![]() |
82 | Khalili, F.Y., “Sensitivity limit in continous measurement of a quantum test object position”, Dokl. Akad. Nauk. SSSR, 294, 602–604, (1987). |
![]() |
83 | Khalili, F.Y., “Frequency-dependent rigidity in large-scale interferometric gravitational-wave
detectors”, Phys. Lett. A, 288, 251–256, (2001). [![]() ![]() |
![]() |
84 | Khalili, F.Y., “The ‘optical lever’ intracavity readout scheme for gravitational-wave antennae”,
Phys. Lett. A, 298, 308–314, (2002). [![]() ![]() |
![]() |
85 | Khalili, F.Y., “Quantum speedmeter and laser interferometric gravitational-wave antennae”,
arXiv, e-print, (2002). [![]() |
![]() |
86 | Khalili, F.Y., “Low pumping energy mode of the ‘optical bars’/‘optical lever’ topologies of
gravitational-wave antennae”, Phys. Lett. A, 317, 169–180, (2003). [![]() ![]() |
![]() |
87 | Khalili, F.Y., “Optimal configurations of filter cavity in future gravitational-wave detectors”,
Phys. Rev. D, 81, 122002, (2010). [![]() ![]() |
![]() |
88 | Khalili, F.Y., Danilishin, S.L., Miao, H., Müller-Ebhardt, H., Yang, H. and Chen, Y.,
“Preparing a Mechanical Oscillator in Non-Gaussian Quantum States”, Phys. Rev. Lett., 105,
070403, (2010). [![]() ![]() |
![]() |
89 | Khalili, F.Y., Danilishin, S.L., Müller-Ebhardt, H., Miao, H., Chen, Y. and Zhao, C., “Negative
optical inertia for enhancing the sensitivity of future gravitational-wave detectors”, Phys. Rev.
D, 83, 062003, (2011). [![]() ![]() |
![]() |
90 | Kimble, H.J., Levin, Y., Matsko, A.B., Thorne, K.S. and Vyatchanin, S.P., “Conversion of
conventional gravitational-wave interferometers into QND interferometers by modifying their
input and/or output optics”, Phys. Rev. D, 65, 022002, (2002). [![]() ![]() |
![]() |
91 | Kippenberg, T.J. and Vahala, K.J., “Cavity Optomechanics: Back-Action at the Mesoscale”,
Science, 321, 1172–1176, (2008). [![]() |
![]() |
92 | Klyshko, D.N., “Coherent Photon Decay in a Nonlinear Medium”, JETP Lett., 6, 23–25, (1967).
Online version (accessed 4 July 2011): ![]() |
![]() |
93 | Kondrashov, I.S., Simakov, D.A., Khalili, F.Y. and Danilishin, S.L., “Optimizing the regimes
of the Advanced LIGO gravitational wave detector for multiple source types”, Phys. Rev. D,
78, 062004, (2008). [![]() ![]() |
![]() |
94 | Kubo, R., “A general expression for the conductivity tensor”, Can. J. Phys., 34, 1274–1277,
(1956). [![]() |
![]() |
95 | Landau, L.D., Lifshitz, E.M. and Pitaevskii, L.P., Statistical Physics, Part 1, Course of
Theoretical Physics, 5, (Pergamon Press, Oxford; New York, 1980). [![]() |
![]() |
96 | “LCGT Home Page”, project homepage, The University of Tokyo. URL (accessed 18 June
2011): ![]() |
![]() |
97 | Levin, Y., “Internal thermal noise in the LIGO test masses: A direct approach”, Phys. Rev. D,
57, 659–663, (1998). [![]() ![]() |
![]() |
98 | “LIGO - Laser Interferometer Gravitational Wave Observatory”, project homepage, California
Institute of Technology. URL (accessed 25 April 2012): ![]() |
![]() |
99 | Mandel, L. and Wolf, E., Optical coherence and quantum optics, (Cambridge University Press,
Cambridge; New York, 1995). [![]() |
![]() |
100 | Martin, I.W. et al., “Comparison of the temperature dependence of the mechanical dissipation
in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav., 26, 155012, (2009).
[![]() |
![]() |
101 | McClelland, D.E., Mavalvala, N., Chen, Y. and Schnabel, R., “Advanced interferometry,
quantum optics and optomechanics in gravitational wave detectors”, Laser Photonics Rev., 5,
677–696, (2011). [![]() |
![]() |
102 | McKenzie, K., Grosse, N., Bowen, W.P., Whitcomb, S.E., Gray, M.B., McClelland, D.E. and
Lam, P.K., “Squeezing in the Audio Gravitational-Wave Detection Band”, Phys. Rev. Lett.,
93, 161105, (2004). [![]() ![]() |
![]() |
103 | Meers, B.J., “Recycling in laser-interferometric gravitational-wave detectors”, Phys. Rev. D,
38, 2317–2326, (1988). [![]() |
![]() |
104 | Meers, B.J. and Strain, K.A., “Modulation, signal, and quantum noise in interferometers”,
Phys. Rev. A, 44, 4693–4703, (1991). [![]() |
![]() |
105 | Miao, H., Danilishin, S. and Chen, Y., “Universal quantum entanglement between an oscillator
and continuous fields”, Phys. Rev. A, 81, 052307, (2010). [![]() ![]() |
![]() |
106 | Miao, H., Danilishin, S.L., Corbitt, T. and Chen, Y., “Standard Quantum Limit for Probing
Mechanical Energy Quantization”, Phys. Rev. Lett., 103, 100402, (2009). [![]() ![]() |
![]() |
107 | Miao, H., Danilishin, S., Müller-Ebhardt, H. and Chen, Y., “Achieving ground state and
enhancing optomechanical entanglement by recovering information”, New J. Phys., 12, 083032,
(2010). [![]() ![]() |
![]() |
108 | Miao, H., Danilishin, S., Müller-Ebhardt, H., Rehbein, H., Somiya, K. and Chen, Y., “Probing
macroscopic quantum states with a sub-Heisenberg accuracy”, Phys. Rev. A, 81, 012114,
(2010). [![]() ![]() |
![]() |
109 | Michelson, A.A. and Morley, E.W., “On the Relative Motion of the Earth and the Luminiferous Ether”, Am. J. Sci., 34, 333–345, (1887). |
![]() |
110 | Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, 1973). |
![]() |
111 | Miyakawa, O. et al., “Measurement of optical response of a detuned resonant sideband
extraction gravitational wave detector”, Phys. Rev. D, 74, 022001, (2006). [![]() ![]() |
![]() |
112 | Mizuno, J., Comparison of optical configurations for laser-interferometer gravitational-wave detectors, Ph.D. thesis, (Max-Planck-Institut für Quantenoptik, Garching, 1995). |
![]() |
113 | Müller-Ebhardt, H., On Quantum Effects in the Dynamics of Macroscopic Test Masses, Ph.D.
thesis, (Leibniz Universität, Hannover, 2009). URL (accessed 24 January 2012): ![]() |
![]() |
114 | Müller-Ebhardt, H., Rehbein, H., Li, C., Mino, Y., Somiya, K., Schnabel, R.,
Danzmann, K. and Chen, Y., “Quantum-state preparation and macroscopic entanglement in
gravitational-wave detectors”, Phys. Rev. A, 80, 043802, (2009). [![]() |
![]() |
115 | Müller-Ebhardt, H., Rehbein, H., Schnabel, R., Danzmann, K. and Chen, Y., “Entanglement
of Macroscopic Test Masses and the Standard Quantum Limit in Laser Interferometry”, Phys.
Rev. Lett., 100, 013601, (2008). [![]() |
![]() |
116 | Niebauer, T.M., Schilling, R., Danzmann, K., Rüdiger, A. and Winkler, W., “Nonstationary
shot noise and its effect on the sensitivity of interferometers”, Phys. Rev. A, 43, 5022–5029,
(1991). [![]() |
![]() |
117 | Numata, K., Kemery, A. and Camp, J., “Thermal-Noise Limit in the Frequency Stabilization
of Lasers with Rigid Cavities”, Phys. Rev. Lett., 93, 250602, (2004). [![]() |
![]() |
118 | Pace, A.F., Collett, M.J. and Walls, D.F., “Quantum limits in interferometric detection of
gravitational radiation”, Phys. Rev. A, 47, 3173–3189, (1993). [![]() |
![]() |
119 | Paschotta, R., “Noise of mode-locked lasers (Part I): numerical model”, Appl. Phys. B, 79,
153–162, (2004). [![]() |
![]() |
120 | Paschotta, R., “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations”,
Appl. Phys. B, 79, 163–173, (2004). [![]() |
![]() |
121 | Paschotta, R., Schlatter, A., Zeller, S.C., Telle, H.R. and Keller, U., “Optical phase noise and
carrier-envelope offset noise of mode-locked lasers”, Appl. Phys. B, 82, 265–273, (2006). [![]() |
![]() |
122 | Penn, S.D. et al., “Mechanical loss in tantala/silica dielectric mirror coatings”, Class. Quantum
Grav., 20, 2917–2928, (2003). [![]() |
![]() |
123 | Pitkin, M., Reid, S., Rowan, S. and Hough, J., “Gravitational Wave Detection by Interferometry
(Ground and Space)”, Living Rev. Relativity, 14, lrr-2011-5, (2011). URL (accessed 24 January
2012): http://www.livingreviews.org/lrr-2011-5. |
![]() |
124 | Postnov, K.A. and Yungelson, L.R., “The Evolution of Compact Binary Star Systems”, Living
Rev. Relativity, 9, lrr-2006-6, (2006). URL (accessed 4 July 2011): http://www.livingreviews.org/lrr-2006-6. |
![]() |
125 | Punturo, M. et al., “The Einstein Telescope: a third-generation gravitational wave
observatory”, Class. Quantum Grav., 27, 194002, (2010). [![]() |
![]() |
126 | Purdue, P., “Analysis of a quantum nondemolition speed-meter interferometer”, Phys. Rev. D,
66, 022001, (2002). [![]() |
![]() |
127 | Purdue, P. and Chen, Y., “Practical speed meter designs for quantum nondemolition
gravitational-wave interferometers”, Phys. Rev. D, 66, 122004, (2002). [![]() |
![]() |
128 | Rakhmanov, M., Dynamics of laser interferometric gravitational wave detectors, Ph.D. thesis,
(California Institute of Technology, Pasadena, CA, 2000). URL (accessed 4 July 2011): ![]() |
![]() |
129 | Rehbein, H., Müller-Ebhardt, H., Somiya, K., Danilishin, S.L., Schnabel, R., Danzmann, K.
and Chen, Y., “Double optical spring enhancement for gravitational-wave detectors”, Phys.
Rev. D, 78, 062003, (2008). [![]() ![]() |
![]() |
130 | Rehbein, H., Müller-Ebhardt, H., Somiya, K., Li, C., Schnabel, R., Danzmann, K. and Chen,
Y., “Local readout enhancement for detuned signal-recycling interferometers”, Phys. Rev. D,
76, 062002, (2007). [![]() |
![]() |
131 | Sathyaprakash, B.S. and Schutz, B.F., “Physics, Astrophysics and Cosmology with
Gravitational Waves”, Living Rev. Relativity, 12, lrr-2009-2, (2009). [![]() http://www.livingreviews.org/lrr-2009-2. |
![]() |
132 | Schleich, W.P., Quantum Optics in Phase Space, (Wiley-VCH, Berlin, 2001). [![]() |
![]() |
133 | Schnabel, R., Mavalvala, N., McClelland, D.E. and Lam, P.K., “Quantum metrology for
gravitational wave astronomy”, Nature Commun., 1, 121, (2010). [![]() |
![]() |
134 | Schnupp, L., “Talk at European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento, Italy”, conference paper, (1988). |
![]() |
135 | Schrödinger, E., “Die gegenwärtige Situation in der Quantenmechanik”, Die
Naturwissenschaften, 23, 807–812, (1935). [![]() |
![]() |
136 | Scully, M.O. and Zubairy, M.S., Quantum Optics, (Cambridge University Press, Cambridge;
New York, 1997). [![]() |
![]() |
137 | Smith, J.R. et al. (LIGO Scientific Collaboration), “The path to the enhanced and advanced
LIGO gravitational-wave detectors”, Class. Quantum Grav., 26, 114013, (2009). [![]() ![]() |
![]() |
138 | Somiya, K., Chen, Y., Kawamura, S. and Mio, N., “Frequency noise and intensity noise of
next-generation gravitational-wave detectors with RF/DC readout schemes”, Phys. Rev. D,
73, 122005, (2006). [![]() ![]() |
![]() |
139 | Stokes, G.G., “On the perfect blackness of the central spot in Newton’s rings, and on the verification of Fresnel’s formulae for the intensities of reflected and refracted rays”, Cambridge Dublin Math. J., IV, 1–14, (1849). |
![]() |
140 | Sun, K.-X., Fejer, M.M., Gustafson, E. and Byer, R.L., “Sagnac Interferometer for
Gravitational-Wave Detection”, Phys. Rev. Lett., 76, 3053–3056, (1996). [![]() |
![]() |
141 | Takeno, Y., Yukawa, M., Yonezawa, H. and Furusawa, A., “Observation of -9 dB quadrature
squeezing with improvement of phasestability in homodyne measurement”, Opt. Express, 15,
4321–4327, (2007). [![]() |
![]() |
142 | “TAMA: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage,
National Astronomical Observatory of Japan. URL (accessed 18 June 2011): ![]() |
![]() |
143 | Thorne, K.S., The Scientific Case for Advanced LIGO Interferometers, P000024-A-R, (LIGO,
Pasadena, CA, 2001). URL (accessed 18 June 2011): ![]() |
![]() |
144 | Thorne, K.S., Drever, R.W.P., Caves, C.M., Zimmermann, M. and Sandberg, V.D., “Quantum
Nondemolition Measurements of Harmonic Oscillators”, Phys. Rev. Lett., 40, 667–671, (1978).
[![]() |
![]() |
145 | Traeger, S., Beyersdorf, P., Goddard, L., Gustafson, E., Fejer, M.M. and Byer, R.L.,
“Polarisation Sagnac interferomer with a reflective grating beam splitter”, Opt. Lett., 25,
722–724, (2000). [![]() |
![]() |
146 | Tsang, M. and Caves, C.M., “Coherent Quantum-Noise Cancellation for Optomechanical
Sensors”, Phys. Rev. Lett., 105, 123601, (2010). [![]() ![]() |
![]() |
147 | Unruh, W.G., “Quantum nondemolition and gravity-wave detection”, Phys. Rev. D, 19,
2888–2896, (1979). [![]() |
![]() |
148 | Unruh, W.G., “Quantum Noise in the Interferometer Detector”, in Meystre, P. and Scully, M.O., eds., Quantum Optics, Experimental Gravitation, and Measurement Theory, Proceedings of the NATO Advanced Study Institute on Quantum Optics and Experimental General Relativity, August 1981, Bad Windsheim, Germany, NATO ASI Series B, 94, pp. 647–660, (Plenum Press, New York, 1983). |
![]() |
149 | Vahlbruch, H., Chelkowski, S., Hage, B., Franzen, A., Danzmann, K. and Schnabel,
R., “Demonstration of a Squeezed-Light-Enhanced Power- and Signal-Recycled Michelson
Interferometer”, Phys. Rev. Lett., 95, 211102, (2005). [![]() |
![]() |
150 | Vahlbruch, H., Chelkowski, S., Hage, B., Franzen, A., Danzmann, K. and Schnabel, R.,
“Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band”, Phys.
Rev. Lett., 97, 011101, (2006). [![]() ![]() |
![]() |
151 | Vahlbruch, H., Khalaidovski, A., Lastzka, N., Gräf, C., Danzmann, K. and Schnabel, R.,
“The GEO 600 squeezed light source”, Class. Quantum Grav., 27, 084027, (2010). [![]() ![]() |
![]() |
152 | Vahlbruch, H. et al., “Observation of Squeezed Light with 10-dB Quantum-Noise Reduction”,
Phys. Rev. Lett., 100, 033602, (2008). [![]() ![]() |
![]() |
153 | Vinante, A. et al., “Feedback Cooling of the Normal Modes of a Massive Electromechanical
System to Submillikelvin Temperature”, Phys. Rev. Lett., 101, 033601, (2008). [![]() |
![]() |
154 | Vinet, J.-Y., “On Special Optical Modes and Thermal Issues in Advanced Gravitational Wave
Interferometric Detectors”, Living Rev. Relativity, 12, lrr-2009-5, (2009). URL (accessed 4 July
2011): http://www.livingreviews.org/lrr-2009-5. |
![]() |
155 | Vinet, J.-Y., Meers, B., Man, C.N. and Brillet, A., “Optimization of long-baseline optical
interferometers for gravitational-wave detection”, Phys. Rev. D, 38, 433–447, (1988). [![]() |
![]() |
156 | “Virgo”, project homepage, INFN. URL (accessed 18 June 2011): ![]() |
![]() |
157 | von Neumann, J., Mathematical Foundations of Quantum Mechanics, Princeton Landmarks in
Mathematics and Physics, (Princeton University Press, Princeton, 1996). [![]() |
![]() |
158 | Vyatchanin, S.P. and Matsko, A.B., “Quantum variation measurement of force and compensation of nonlinear back action”, Sov. Phys. JETP, 109, 1873–1879, (1996). |
![]() |
159 | Vyatchanin, S.P. and Matsko, A.B., “Quantum variation scheme of measurement of force and compensation of back action in intereferometric meter of position”, Sov. Phys. JETP, 83, 690–697, (1996). |
![]() |
160 | Vyatchanin, S.P. and Zubova, E.A., “On the quantum limit for resolution in force measurement in intereferometric optical displacement transducer”, Opt. Commun., 111, 303–309, (1994). |
![]() |
161 | Vyatchanin, S.P. and Zubova, E.A., “Quantum variation measurement of force”, Phys. Lett.
A, 201, 269–274, (1995). [![]() |
![]() |
162 | Vyatchanin, S.P., Zubova, E.A. and Matsko, A.B., “On the quantum limit for resolution in
force measurement using an optical displacement transducer”, Opt. Commun., 109, 492–498,
(1994). [![]() |
![]() |
163 | Walls, D.F. and Milburn, G.J., Quantum Optics, (Springer, Berlin, 2008), 2nd edition. [![]() |
![]() |
164 | Ward, R.L. et al., “DC readout experiment at the Caltech 40m prototype interferometer”,
Class. Quantum Grav., 25, 114030, (2008). [![]() |
![]() |
165 | Weber, J., General Relativity and Gravitational Waves, Interscience Tracts on Physics and Astronomy, 10, (Interscience Publishers, New York, 1961). |
![]() |
166 | Weber, J., “Gravitational radiation”, Phys. Rev. Lett., 18, 498–501, (1967). [![]() |
![]() |
167 | Willke, B., “Stabilized lasers for advanced gravitational wave detectors”, Laser Photonics Rev.,
4, 780–794, (2010). [![]() |
![]() |
168 | Willke, B. et al., “The GEO 600 gravitational wave detector”, Class. Quantum Grav., 19,
1377–1387, (2002). [![]() |
![]() |
169 | Willke, B. et al., “The GEO-HF project”, Class. Quantum Grav., 23, S207–S214, (2006). [![]() |
![]() |
170 | Yamamoto, K., Friedrich, D., Westphal, T., Goßler, S., Danzmann, K., Somiya, K., Danilishin,
S.L. and Schnabel, R., “Quantum noise of a Michelson-Sagnac interferometer with a translucent
mechanical oscillator”, Phys. Rev. A, 81, 033849, (2010). [![]() |
![]() |
171 | Yariv, A., Optical Electronics, The Oxford Series in Electrical and Computer Engineering,
(Oxford University Press, Oxford, 1990). [![]() |
![]() |
172 | Zel’dovich, B.Y. and Klyshko, D.N., “Statistics of Field in Parametric Luminescence”, JETP
Lett., 9, 40–43, (1969). Online version (accessed 24 January 2012): ![]() |
http://www.livingreviews.org/lrr-2012-5 |
Living Rev. Relativity 15, (2012), 5
![]() This work is licensed under a Creative Commons License. E-mail us: |