Assume that a spherically symmetric boson star in an equilibrium configuration is perturbed only in the
radial direction. The equations governing these small radial perturbations are obtained by linearizing the
system of equations in the standard way; expand the metric and the scalar field functions to first order in
the perturbation and neglect higher order terms in the equations [93, 118]. Considering the collection of
fields for the system , one expands them in terms of the background solution
and perturbation as
The stability of the star depends crucially on the sign of the smallest eigenvalue. Because of time
reversal symmetry, only enters the equations [148], and we label the smallest eigenvalue
. If it is
negative, the eigenmode grows exponentially with time and the star is unstable. On the other hand, for
positive eigenvalues the configuration has no unstable modes and is therefore stable. The critical point at
which the stability transitions from stable to unstable, therefore, occurs when the smallest eigenvalue
vanishes,
.
Equilibrium solutions can be parametrized with a single variable, such as the central value of the
scalar field , and so we can write
and
. Stability theorems
then indicate that transitions between stable and unstable configurations occur only at critical
points of the parameterization (
) [60, 91, 107, 207]. Linear perturbation
analysis provides a more detailed picture such as the growth rates and the eigenmodes of the
perturbations.
Ref. [94] carries out such an analysis for perturbations that conserve mass and charge. They find the
first three perturbative modes and their growth rates, and they identify at which precise values of
these modes become unstable. Starting from small values, they find that ground state BSs are stable up to
the critical point of maximum mass. Further increases in the central value subsequently encounter
additional unstable modes. This same type of analysis applied to excited state BSs showed that the same
stability criterion applies for perturbations that conserve the total particle number [120]. For more general
perturbations that do not conserve particle number, excited states are generally unstable to decaying to the
ground state.
A more involved analysis by [148] uses a Hamiltonian formalism to study BS stability. Considering first
order perturbations that conserve mass and charge (), their results agree with those of [94, 120].
However, they extend their approach to consider more general perturbations, which do not conserve the
total number of particles (i.e.,
). To do so, they must work with the second order quantities.
They found complex eigenvalues for the excited states that indicate that excited state boson
stars are unstable. More detail and discussion on the different stability analysis can be found in
Ref. [122].
Catastrophe theory is part of the study of dynamical systems that began in the 1960s and studies large changes in systems resulting from small changes to certain important parameters (for a physics-oriented review see [204]). Its use in the context of boson stars is to evaluate stability, and to do so one constructs a series of solutions in terms of a limited and appropriate set of parameters. Under certain conditions, such a series generates a curve smooth everywhere except for certain points. Within a given smooth expanse between such singular points, the solutions share the same stability properties. In other words, bifurcations occur at the singular points so that solutions after the singularity gain an additional, unstable mode. Much of the recent work in this area confirms the previous conclusions from linear perturbation analysis [209, 210, 211, 212] and from earlier work with catastrophe theory [140].
Another recent work using catastrophe theory finds that rotating stars share a similar stability picture
as nonrotating solutions [135]. However, only fast spinning stars are subject to an ergoregion
instability [44].
The dynamical evolution of spherically symmetric perturbations of boson stars has also been studied by
solving numerically the Einstein–Klein–Gordon equations (Section 2.3), or its Newtonian limit
(Section 3.2), the Schrödinger–Poisson system. The first such work was Ref. [196] in which the stability of
the ground state was studied by considering finite perturbations, which may change the total mass and the
particle number (i.e., and
). The results corroborated the linear stability analysis in
the sense that they found a stable and an unstable branch with a transition between them
at a critical value,
, of the central scalar field corresponding to the maximal BS mass
.
The perturbed configurations of the stable branch may oscillate and emit scalar radiation maintaining a
characteristic frequency , eventually settling into some other stable state with less mass than the
original. This characteristic frequency can be approximated in the non-relativistic limit as [196]
The perturbed unstable configurations will either collapse to a black hole or migrate to a stable configuration, depending on the nature of the initial perturbation. If the density of the star is increased, it will collapse to a black hole. On the other hand, if it is decreased, the star explodes, expanding quickly as it approaches the stable branch. Along with the expansion, energy in the form of scalar field is radiated away, leaving a very perturbed stable star, less massive than the original unstable one.
This analysis was extended to boson stars with self-interaction and to excited BSs in Ref. [15], showing
that both branches of the excited states were intrinsically unstable under generic perturbations that do not
preserve and
. The low density excited stars, with masses close to the ground state configurations,
will evolve to ground state boson stars when perturbed. The more massive configurations form a black hole
if the binding energy
is negative, through a cascade of intermediate states. The kinetic
energy of the stars increases as the configuration gets closer to
, so that for positive binding
energies there is an excess of kinetic energy that tends to disperse the bosons to infinity. These results are
summarized in Figure 10
, which shows the time scale of the excited star to decay to one of these
states.
More recently, the stability of the ground state was revisited with 3D simulations using a Cartesian grid [102]. The Einstein equations were written in terms of the BSSN formulation [200, 23], which is one of the most commonly used formulations in numerical relativity. Intrinsic numerical error from discretization served to perturb the ground state for both stable and unstable stars. It was found that unstable stars with negative binding energy would collapse and form a black hole, while ones with positive binding energy would suffer an excess of kinetic energy and disperse to infinity.
That these unstable stars would disperse, instead of simply expanding into some less compact
stable solution, disagrees with the previous results of Ref. [196], and was subsequently further
analyzed in [104] in spherical symmetry with an explicit perturbation (i.e., a Gaussian shell of
particles, which increases the mass of the star around 0.1%). The spherically symmetric results
corroborated the previous 3D calculations, suggesting that the slightly perturbed configurations
of the unstable branch have three possible endstates: (i) collapse to BH, (ii) migration to a
less dense stable solution, or (iii) dispersal to infinity, dependent on the sign of the binding
energy.
Closely related is the work of Lai and Choptuik [142] studying BS critical behavior (discussed in
Section 6.1). They tune perturbations of boson stars so that dynamically the solution approaches some
particular unstable solution for some finite time. They then study evolutions that ultimately do not collapse
to BH, so-called sub-critical solutions, and find that they do not disperse to infinity, instead
oscillating about some less compact, stable star. They show results with increasingly distant outer
boundary that suggest that this behavior is not a finite-boundary-related effect (reproduced in
Figure 11
). They use a different form of perturbation than Ref. [104], and, being only slightly
subcritical, may be working in a regime with non-positive binding energy. However, it is interesting
to consider that if indeed there are three distinct end-states, then one might expect critical
behavior in the transition among the different pairings. Non-spherical perturbations of boson stars
have been studied numerically in [14] with a 3D code to analyze the emitted gravitational
waves.
Much less is known about rotating BSs, which are more difficult to construct and to evolve because they
are, at most, axisymmetric, not spherically symmetric. However, as mentioned in Section 3.5, they appear
to have both stable and unstable branches [135] and are subject to an ergoregion instability at high
rotation rates [44]. To our knowledge, no one has evolved rotating BS initial data. However, as discussed in
the next section, simulations of BS binaries [167, 173
] have found rotating boson stars as a result of
merger.
The issue of formation of boson stars has been addressed in [198] by performing numerical evolutions
of the EKG system with different initial Gaussian distributions describing unbound states (i.e., the kinetic
energy is larger than the potential energy). Quite independent of the initial condition, the scalar field
collapses and settles down to a bound state by ejecting some of the scalar energy during each bounce. The
ejected scalar field carries away excess ever-decreasing amounts of kinetic energy, as the system
becomes bounded. After a few free-fall times of the initial configuration, the scalar field has
settled into a perturbed boson star on the stable branch. This process is the already mentioned
gravitational cooling, and allows for the formation of compact soliton stars (boson stars for complex
scalar fields and oscillatons for real scalar fields). Although these evolutions assumed spherical
symmetry, which does not include important processes such as fragmentation or the formation of
pancakes, they demonstrate the feasibility of the formation mechanism; clouds of scalar field
will collapse under their own self-gravity while shedding excess kinetic energy. The results also
confirm the importance of the mass term in the potential. By removing the massive term in the
simulations, the field collapses, rebounds and completely disperses to infinity, and no compact
object forms. The evolution of the scalar field with and without the massive term is displayed in
Figure 12.
http://www.livingreviews.org/lrr-2012-6 |
Living Rev. Relativity 15, (2012), 6
![]() This work is licensed under a Creative Commons License. E-mail us: |