![]() |
1 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Predictions for the
rates of compact binary coalescences observable by ground-based gravitational-wave detectors”,
Class. Quantum Grav., 27, 173001, (2010). [![]() ![]() ![]() |
![]() |
2 | Abbott, B.P. et al. (LIGO Scientific Collaboration), “Search for gravitational waves from low
mass binary coalescences in the first year of LIGO’s S5 data”, Phys. Rev. D, 79, 122001, (2009).
[![]() ![]() ![]() |
![]() |
3 | Akmal, A., Pandharipande, V.R. and Ravenhall, D.G., “The equation of state of nucleon
matter and neutron star structure”, Phys. Rev. C, 58, 1804–1828, (1998). [![]() ![]() ![]() |
![]() |
4 | Alcubierre, M., Introduction to 3+1 Numerical Relativity, International Series of Monographs on Physics, 140, (Oxford University Press, Oxford; New York, 2008). |
![]() |
5 | Alford, M., Braby, M., Paris, M.W. and Reddy, S., “Hybrid stars that masquerade as neutron
stars”, Astrophys. J., 629, 969–978, (2005). [![]() ![]() ![]() |
![]() |
6 | Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D.,
Palenzuela, C. and Tohline, J.E., “Magnetized Neutron Star Mergers and Gravitational Wave
Signals”, Phys. Rev. Lett., 100, 191101, (2008). [![]() ![]() ![]() |
![]() |
7 | Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D.,
Palenzuela, C. and Tohline, J.E., “Simulating binary neutron stars: Dynamics and gravitational
waves”, Phys. Rev. D, 77, 024006, (2008). [![]() ![]() ![]() |
![]() |
8 | Anderson, M., Hirschmann, E., Liebling, S.L. and Neilsen, D., “Relativistic MHD with
adaptive mesh refinement”, Class. Quantum Grav., 23, 6503–6524, (2006). [![]() ![]() ![]() |
![]() |
9 | Arnowitt, R., Deser, S. and Misner, C.W., “The dynamics of general relativity”, in Witten,
L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York;
London, 1962). [![]() ![]() ![]() |
![]() |
10 | Ayal, S., Piran, T., Oechslin, R., Davies, M.B. and Rosswog, S., “Post-Newtonian
Smoothed Particle Hydrodynamics”, Astrophys. J., 550, 846–859, (2001). [![]() ![]() ![]() |
![]() |
11 | Babak, S., Balasubramanian, R., Churches, D., Cokelaer, T. and Sathyaprakash, B.S., “A
template bank to search for gravitational waves from inspiralling compact binaries: I. Physical
models”, Class. Quantum Grav., 23, 5477–5504, (2006). [![]() ![]() ![]() |
![]() |
12 | Babiuc, M.C., Kreiss, H.-O. and Winicour, J., “Constraint-preserving Sommerfeld conditions
for the harmonic Einstein equations”, Phys. Rev. D, 75, 044002, (2007). [![]() ![]() ![]() |
![]() |
13 | Baierlein, R.F., Sharp, D.H. and Wheeler, J.A., “Three-Dimensional Geometry as Carrier of
Information about Time”, Phys. Rev., 126, 1864–1865, (1962). [![]() ![]() |
![]() |
14 | Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A. and Rezzolla, L., “Analytic modelling of
tidal effects in the relativistic inspiral of binary neutron stars”, Phys. Rev. Lett., 105, 261101,
(2010). [![]() ![]() ![]() |
![]() |
15 | Baiotti, L., Damour, T., Giacomazzo, B., Nagar, A. and Rezzolla, L., “Accurate numerical
simulations of inspiralling binary neutron stars and their comparison with effective-one-body
analytical models”, Phys. Rev. D, 84, 024017, (2011). [![]() ![]() ![]() |
![]() |
16 | Baiotti, L., De Pietri, R., Manca, G.M. and Rezzolla, L., “Accurate simulations of the
dynamical bar-mode instability in full general relativity”, Phys. Rev. D, 75, 044023, (2007).
[![]() ![]() ![]() |
![]() |
17 | Baiotti, L., Giacomazzo, B. and Rezzolla, L., “Accurate evolutions of inspiralling neutron-star
binaries: prompt and delayed collapse to black hole”, Phys. Rev. D, 78, 084033, (2008). [![]() ![]() ![]() |
![]() |
18 | Baiotti, L., Giacomazzo, B. and Rezzolla, L., “Accurate evolutions of inspiralling neutron-star
binaries: assessment of the truncation error”, Class. Quantum Grav., 26, 114005, (2009). [![]() ![]() ![]() |
![]() |
19 | Baiotti, L., Hawke, I., Montero, P.J. and Rezzolla, L., “A new three-dimensional
general-relativistic hydrodynamics code”, Mem. Soc. Astron. Ital. Suppl., 1, 210–219, (2003).
[![]() ![]() |
![]() |
20 | Baiotti, L., Shibata, M. and Yamamoto, T., “Binary neutron-star mergers with Whisky
and SACRA: First quantitative comparison of results from independent general-relativistic
hydrodynamics codes”, Phys. Rev. D, 82, 064015, (2010). [![]() ![]() ![]() |
![]() |
21 | Baker, J., Campanelli, M. and Lousto, C.O., “The Lazarus project: A pragmatic approach
to binary black hole evolutions”, Phys. Rev. D, 65, 044001, (2002). [![]() ![]() ![]() |
![]() |
22 | Baker, J.G., Centrella, J., Choi, D.-I., Koppitz, M. and van Meter, J., “Gravitational wave
extraction from an inspiraling configuration of merging black holes”, Phys. Rev. Lett., 96,
111102, (2006). [![]() ![]() ![]() |
![]() |
23 | Balberg, S. and Gal, A., “An effective equation of state for dense matter with strangeness”,
Nucl. Phys. A, 625, 435–472, (1997). [![]() ![]() ![]() |
![]() |
24 | Balsara, D.S. and Kim, J., “A Comparison between Divergence-Cleaning and Staggered-Mesh
Formulations for Numerical Magnetohydrodynamics”, Astrophys. J., 602, 1079–1090, (2004).
[![]() ![]() ![]() |
![]() |
25 | Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L. and Teukolsky, S.A., “Binary
neutron stars in general relativity: Quasiequilibrium models”, Phys. Rev. Lett., 79, 1182–1185,
(1997). [![]() ![]() ![]() |
![]() |
26 | Baumgarte, T.W., Cook, G.B., Scheel, M.A., Shapiro, S.L. and Teukolsky, S.A., “General
relativistic models of binary neutron stars in quasiequilibrium”, Phys. Rev. D, 57, 7299–7311,
(1998). [![]() ![]() ![]() |
![]() |
27 | Baumgarte, T.W. and Shapiro, S.L., “On the numerical integration of Einstein’s field
equations”, Phys. Rev. D, 59, 024007, (1999). [![]() ![]() ![]() |
![]() |
28 | Baumgarte, T.W. and Shapiro, S.L., “Numerical relativity and compact binaries”, Phys. Rep.,
376, 41–131, (2003). [![]() ![]() ![]() |
![]() |
29 | Baumgarte, T.W. and Shapiro, S.L., “A formalism for the construction of binary neutron stars
with arbitrary circulation”, Phys. Rev. D, 80, 064009, (2009). [![]() ![]() ![]() |
![]() |
30 | Baumgarte, T.W. and Shapiro, S.L., Numerical Relativity: Solving Einstein’s Equations on the
Computer, (Cambridge University Press, Cambridge; New York, 2010). [![]() ![]() |
![]() |
31 | Baumgarte, T.W., Shapiro, S.L. and Shibata, M., “On the maximum mass of differentially
rotating neutron stars”, Astrophys. J. Lett., 528, L29–L32, (2000). [![]() ![]() ![]() |
![]() |
32 | Bauswein, A. and Janka, H.-T., “Measuring neutron-star properties via gravitational waves
from binary mergers”, Phys. Rev. Lett., 108(1), 011101, (2012). [![]() ![]() ![]() |
![]() |
33 | Bauswein, A., Janka, H.-T. and Oechslin, R., “Testing Approximations of Thermal Effects
in Neutron Star Merger Simulations”, Phys. Rev. D, 82, 084043, (2010). [![]() ![]() ![]() |
![]() |
34 | Bauswein, A., Janka, H.-T., Oechslin, R., Pagliara, G., Sagert, I., Schaffner-Bielich, J., Hohle,
M.M. and Neuhäuser, R., “Mass Ejection by Strange Star Mergers and Observational
Implications”, Phys. Rev. Lett., 103, 011101, (2009). [![]() ![]() ![]() |
![]() |
35 | Bauswein, A., Oechslin, R. and Janka, H.-T., “Discriminating Strange Star Mergers from
Neutron Star Mergers by Gravitational-Wave Measurements”, Phys. Rev. D, 81, 024012,
(2010). [![]() ![]() ![]() |
![]() |
36 | Bejger, M., Gondek-Rosinska, D., Gourgoulhon, E., Haensel, P., Taniguchi, K. and Zdunik,
J.L., “Impact of the nuclear equation of state on the last orbits of binary neutron stars”, Astron.
Astrophys., 431, 297–306, (2005). [![]() ![]() ![]() |
![]() |
37 | Belczynski, K., Kalogera, V., Rasio, F.A., Taam, R.E., Zezas, A., Bulik, T., Maccarone, T.J.
and Ivanova, N., “Compact Object Modeling with the StarTrack Population Synthesis Code”,
Astrophys. J. Suppl. Ser., 174, 223–260, (2008). [![]() ![]() ![]() |
![]() |
38 | Belczynski, K., Taam, R.E., Rantsiou, E. and van der Sluys, M., “Black Hole Spin
Evolution: Implications for Short-Hard Gamma Ray Bursts and Gravitational Wave Detection”,
Astrophys. J., 682, 474–486, (2008). [![]() ![]() ![]() |
![]() |
39 | Belczynski, K. and Ziolkowski, J., “On the Apparent Lack of Be X-ray Binaries with Black
Holes”, Astrophys. J., 707, 870–877, (2009). [![]() ![]() ![]() |
![]() |
40 | Berger, E. et al., “The afterglow and elliptical host galaxy of the short γ-ray burst GRB
050724”, Nature, 438, 988–990, (2005). [![]() ![]() ![]() |
![]() |
41 | Bernuzzi, S., Thierfelder, M. and Brügmann, B., “Accuracy of numerical relativity waveforms
from binary neutron star mergers and their comparison with post-Newtonian waveforms”, Phys.
Rev. D, 85, 104030, (2012). [![]() ![]() ![]() |
![]() |
42 | Bethe, H.A., Brown, G.E. and Lee, C.-H., “Evolution and merging of binaries with compact
objects”, Phys. Rep., 442, 5–22, (2007). [![]() ![]() ![]() |
![]() |
43 | Beyer, H.R. and Sarbach, O., “On the well posedness
of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s field equations”, Phys.
Rev. D, 70, 104004, (2004). [![]() ![]() ![]() |
![]() |
44 | Bhattacharya, D. and van den Heuvel, E.P.J., “Formation and evolution of binary and
millisecond radio pulsars”, Phys. Rep., 203, 1–124, (1991). [![]() ![]() |
![]() |
45 | Bildsten, L. and Cutler, C., “Tidal interactions of inspiraling compact binaries”, Astrophys. J.,
400, 175–180, (1992). [![]() ![]() |
![]() |
46 | Binnington, T. and Poisson, E., “Relativistic theory of tidal Love numbers”, Phys. Rev. D, 80,
084018, (2009). [![]() ![]() ![]() |
![]() |
47 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). [![]() http://www.livingreviews.org/lrr-2006-4. |
![]() |
48 | Blanchet, L., Damour, T. and Schäfer, G., “Post-Newtonian hydrodynamics and
post-Newtonian gravitational wave generation for numerical relativity”, Mon. Not. R. Astron.
Soc., 242, 289–305, (1990). [![]() |
![]() |
49 | Bona, C. and Bona-Casas, C., “Constraint-preserving boundary conditions in the 3+1
first-order approach”, Phys. Rev. D, 82, 064008, (2010). [![]() ![]() ![]() |
![]() |
50 | Bonazzola, S., Gourgoulhon, E., Grandclément, P. and Novak, J., “Constrained scheme for
Einstein equations based on Dirac gauge and spherical coordinates”, Phys. Rev. D, 70, 104007,
(2004). [![]() ![]() ![]() |
![]() |
51 | Bonazzola, S., Gourgoulhon, E. and Marck, J.-A., “Numerical models of irrotational binary
neutron stars in general relativity”, Phys. Rev. Lett., 82, 892–895, (1999). [![]() ![]() ![]() |
![]() |
52 | Bowen, J.M. and York Jr, J.W., “Time asymmetric initial data for black holes and black hole
collisions”, Phys. Rev. D, 21, 2047–2056, (1980). [![]() ![]() |
![]() |
53 | Boyle, M., Brown, D.A., Kidder, L.E., Mroué, A.H., Pfeiffer, H.P., Scheel, M.A., Cook,
G.B. and Teukolsky, S.A., “High-accuracy comparison of numerical relativity simulations with
post-Newtonian expansions”, Phys. Rev. D, 76, 124038, (2007). [![]() ![]() ![]() |
![]() |
54 | Brown, G.E., Lee, C.-H. and Rho, M., “Kaon Condensation, Black Holes and Cosmological
Natural Selection”, Phys. Rev. Lett., 101, 091101, (2008). [![]() ![]() ![]() |
![]() |
55 | Brügmann, B., “Numerical relativity in (3+1)-dimensions”, Ann. Phys. (Berlin), 9, 227–246,
(2000). [![]() ![]() |
![]() |
56 | Buonanno, A. and Chen, Y., “Improving the sensitivity to gravitational wave sources by
modifying the input output optics of advanced interferometers”, Phys. Rev. D, 69, 102004,
(2004). [![]() ![]() ![]() |
![]() |
57 | Buonanno, A., Chen, Y., Pan, Y., Tagoshi, H. and Vallisneri, M., “Detecting gravitational waves
from precessing binaries of spinning compact objects. II. Search implementation for low-mass
binaries”, Phys. Rev. D, 72, 084027, (2005). [![]() ![]() ![]() |
![]() |
58 | Buonanno, A. and Damour, T., “Effective one-body approach to general relativistic two-body
dynamics”, Phys. Rev. D, 59, 084006, (1999). [![]() ![]() ![]() |
![]() |
59 | Burgay, M. et al., “An increased estimate of the merger rate of double neutron stars from
observations of a highly relativistic system”, Nature, 426, 531–533, (2003). [![]() ![]() ![]() |
![]() |
60 | Campanelli, M. and Lousto, C.O., “Second order gauge invariant gravitational perturbations of
a Kerr black hole”, Phys. Rev. D, 59, 124022, (1999). [![]() ![]() ![]() |
![]() |
61 | Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y., “Accurate evolutions of
orbiting black-hole binaries without excision”, Phys. Rev. Lett., 96, 111101, (2006). [![]() ![]() ![]() |
![]() |
62 | Campanelli, M., Lousto, C.O. and Zlochower, Y., “The last orbit of binary black holes”, Phys.
Rev. D, 73, 061501, (2006). [![]() ![]() ![]() |
![]() |
63 | Centrella, J., Baker, J.G., Kelly, B.J. and van Meter, J.R., “Black-hole binaries, gravitational
waves, and numerical relativity”, Rev. Mod. Phys., 82, 3069–3119, (2010). [![]() ![]() ![]() |
![]() |
64 | Chandrasekhar, S., An Introduction to the Study of Stellar Structure, (Dover, Mineola, NY,
1967). [![]() |
![]() |
65 | Chandrasekhar, S., Ellipsoidal Figures of Equilibrium, (Dover, New York, 1987). [![]() |
![]() |
66 | Chawla, S., Anderson, M., Besselman, M., Lehner, L., Liebling, S.L., Motl, P.M. and Neilsen,
D., “Mergers of Magnetized Neutron Stars with Spinning Black Holes: Disruption, Accretion
and Fallback”, Phys. Rev. Lett., 105, 111101, (2010). [![]() ![]() ![]() |
![]() |
67 | Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B. and Weisskopf, V.F., “A New Extended
Model of Hadrons”, Phys. Rev. D, 9, 3471–3495, (1974). [![]() ![]() |
![]() |
68 | Clark, J.P.A. and Eardley, D.M., “Evolution of close neutron star binaries”, Astrophys. J., 215,
311–322, (1977). [![]() ![]() |
![]() |
69 | Cook, G.B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 3, lrr-2000-5,
(2000). [![]() ![]() http://www.livingreviews.org/lrr-2000-5. |
![]() |
70 | Cook, G.B., Shapiro, S.L. and Teukolsky, S.A., “Spin-up of a rapidly rotating star by angular
momentum loss: Effects of general relativity”, Astrophys. J., 398, 203–223, (1992). [![]() ![]() |
![]() |
71 | Cook, G.B., Shapiro, S.L. and Teukolsky, S.A., “Rapidly rotating neutron stars in general
relativity: Realistic equations of state”, Astrophys. J., 424, 823–845, (1994). [![]() ![]() |
![]() |
72 | Corvino, G., Rezzolla, L., Bernuzzi, S., De Pietri, R. and Giacomazzo, B., “On the shear
instability in relativistic neutron stars”, Class. Quantum Grav., 27, 114104, (2010). [![]() ![]() ![]() |
![]() |
73 | Cumming, A., Zweibel, E.G. and Bildsten, L., “Magnetic screening in accreting neutron stars”,
Astrophys. J., 557, 958–966, (2001). [![]() ![]() ![]() |
![]() |
74 | Damour, T. and Nagar, A., “Relativistic tidal properties of neutron stars”, Phys. Rev. D, 80,
084035, (2009). [![]() ![]() ![]() |
![]() |
75 | Damour, T. and Nagar, A., “Effective one body description of tidal effects in inspiralling
compact binaries”, Phys. Rev. D, 81, 084016, (2010). [![]() ![]() ![]() |
![]() |
76 | Davies, M.B., Benz, W., Piran, T. and Thielemann, F.K., “Merging neutron stars. I. Initial
results for coalescence of noncorotating systems”, Astrophys. J., 431, 742–753, (1994). [![]() ![]() ![]() |
![]() |
77 | Davies, M.B., Levan, A.J. and King, A.R., “The ultimate outcome of black hole–neutron star
mergers”, Mon. Not. R. Astron. Soc., 356, 54–58, (2005). [![]() ![]() ![]() |
![]() |
78 | Davis, P.J., Kolb, U. and Willems, B., “A comprehensive population synthesis study of
post-common envelope binaries”, Mon. Not. R. Astron. Soc., 403, 179–195, (2010). [![]() ![]() ![]() |
![]() |
79 | de Freitas Pacheco, J.A., Regimbau, T., Vincent, S. and Spallicci, A., “Expected coalescence
rates of NS-NS binaries for laser beam interferometers”, Int. J. Mod. Phys. D, 15, 235–250,
(2006). [![]() ![]() ![]() |
![]() |
80 | De Villiers, J.-P., “Some First Steps Towards a Radiation GRMHD Code: Radiative Effects
on Accretion Rate onto a Kerr Black Hole”, arXiv, e-print, (2008). [![]() ![]() |
![]() |
81 | Demorest, P., Pennucci, T., Ransom, S., Roberts, M. and Hessels, J., “Shapiro delay
measurement of a two solar mass neutron star”, Nature, 467, 1081–1083, (2010). [![]() ![]() ![]() |
![]() |
82 | Dessart, L., Ott, C.D., Burrows, A., Rosswog, S. and Livne, E., “Neutrino signatures and the
neutrino-driven wind in Binary Neutron Star Mergers”, Astrophys. J., 690, 1681–1705, (2009).
[![]() ![]() ![]() |
![]() |
83 | Douchin, F. and Haensel, P., “A unified equation of state of dense matter and neutron star
structure”, Astron. Astrophys., 380, 151–167, (2001). [![]() ![]() ![]() |
![]() |
84 | Duez, M.D., Foucart, F., Kidder, L.E., Ott, C.D. and Teukolsky, S.A., “Equation of state effects
in black hole-neutron star mergers”, Class. Quantum Grav., 27, 114106, (2010). [![]() ![]() ![]() |
![]() |
85 | Duez, M.D., Foucart, F., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A. and Teukolsky, S.A.,
“Evolving black hole-neutron star binaries in general relativity using pseudospectral and finite
difference methods”, Phys. Rev. D, 78, 104015, (2008). [![]() ![]() ![]() |
![]() |
86 | Duez, M.D., Liu, Y.T., Shapiro, S.L., Shibata, M. and Stephens, B.C., “Collapse of magnetized
hypermassive neutron stars in general relativity”, Phys. Rev. Lett., 96, 031101, (2006). [![]() ![]() ![]() |
![]() |
87 | Duez, M.D., Liu, Y.T., Shapiro, S.L. and Stephens, B.C., “Relativistic magnetohydrodynamics
in dynamical spacetimes: Numerical methods and tests”, Phys. Rev. D, 72, 024028, (2005).
[![]() ![]() ![]() |
![]() |
88 | East, W.E., Pretorius, F. and Stephens, B.C., “Eccentric black hole-neutron star mergers:
effects of black hole spin and equation of state”, Phys. Rev. D, 85, 124009, (2011). [![]() ![]() ![]() |
![]() |
89 | East, W.E., Pretorius, F. and Stephens, B.C., “Hydrodynamics in full general relativity with
conservative adaptive mesh refinement”, Phys. Rev. D, 85, 124010, (2011). [![]() ![]() ![]() |
![]() |
90 | “Einstein Toolkit”, project homepage, Louisiana State University. URL (accessed 30 March
2012): ![]() |
![]() |
91 | Etienne, Z.B., Faber, J.A., Liu, Y.T., Shapiro, S.L., Taniguchi, K. and Baumgarte, T.W.,
“Fully General Relativistic Simulations of Black Hole-Neutron Star Mergers”, Phys. Rev. D,
77, 084002, (2008). [![]() ![]() ![]() |
![]() |
92 | Etienne, Z.B., Liu, Y.T., Paschalidis, V. and Shapiro, S.L., “General relativistic simulations
of black-hole-neutron-star mergers: Effects of magnetic fields”, Phys. Rev. D, 85(6), 064029,
(2012). [![]() ![]() ![]() |
![]() |
93 | Etienne, Z.B., Liu, Y.T. and Shapiro, S.L., “Relativistic magnetohydrodynamics in dynamical
spacetimes: A new adaptive mesh refinement implementation”, Phys. Rev. D, 82, 084031,
(2010). [![]() ![]() ![]() |
![]() |
94 | Etienne, Z.B., Liu, Y.T., Shapiro, S.L. and Baumgarte, T.W., “General relativistic simulations
of black-hole-neutron-star mergers: Effects of black-hole spin”, Phys. Rev. D, 79, 044024,
(2009). [![]() ![]() ![]() |
![]() |
95 | Etienne, Z.B., Paschalidis, V., Liu, Y.T. and Shapiro,
S.L., “Relativistic magnetohydrodynamics in dynamical spacetimes: Improved electromagnetic
gauge condition for adaptive mesh refinement grids”, Phys. Rev. D, 85, 024013, (2012). [![]() ![]() ![]() |
![]() |
96 | Faber, J.A., Baumgarte, T.W., Shapiro, S.L., Taniguchi, K. and Rasio, F.A., “The dynamical
evolution of black hole-neutron star binaries in general relativity: simulations of tidal
disruption”, Phys. Rev. D, 73, 024012, (2006). [![]() ![]() ![]() |
![]() |
97 | Faber, J.A., Grandclément, P. and Rasio, F.A., “Mergers of irrotational neutron star binaries
in conformally flat gravity”, Phys. Rev. D, 69, 124036, (2004). [![]() ![]() ![]() |
![]() |
98 | Faber, J.A., Grandclément, P., Rasio, F.A. and Taniguchi, K., “Measuring neutron star
radii with gravitational wave detectors”, Phys. Rev. Lett., 89, 231102, (2002). [![]() ![]() ![]() |
![]() |
99 | Faber, J.A. and Rasio, F.A., “Post-Newtonian SPH calculations of binary neutron star
coalescence: Method and first results”, Phys. Rev. D, 62, 064012, (2000). [![]() ![]() ![]() |
![]() |
100 | Faber, J.A. and Rasio, F.A., “Post-Newtonian SPH calculations of binary neutron star
coalescence. III. Irrotational systems and gravitational wave spectra”, Phys. Rev. D, 65, 084042,
(2002). [![]() ![]() ![]() |
![]() |
101 | Faber, J.A., Rasio, F.A. and Manor, J.B., “Post-Newtonian SPH calculations of binary neutron
star coalescence. II. Binary mass ratio, equation of state, and spin dependence”, Phys. Rev. D,
63, 044012, (2001). [![]() ![]() ![]() |
![]() |
102 | Farhi, E. and Jaffe, R.L., “Strange Matter”, Phys. Rev. D, 30, 2379–2390, (1984). [![]() ![]() |
![]() |
103 | Farris, B.D., Li, T.K., Liu, Y.T. and Shapiro, S.L., “Relativistic
Radiation Magnetohydrodynamics in Dynamical Spacetimes: Numerical Methods and Tests”,
Phys. Rev. D, 78, 024023, (2008). [![]() ![]() ![]() |
![]() |
104 | Flanagan, É.É., “Possible explanation for star-crushing effect in binary neutron star
simulations”, Phys. Rev. Lett., 82, 1354–1357, (1999). [![]() ![]() ![]() |
![]() |
105 | Flanagan, É.É. and Hinderer, T., “Constraining neutron star tidal Love numbers with
gravitational wave detectors”, Phys. Rev. D, 77, 021502, (2008). [![]() ![]() ![]() |
![]() |
106 | Font, J.A., “Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity”,
Living Rev. Relativity, 11, lrr-2008-7, (2008). [![]() http://www.livingreviews.org/lrr-2008-7. |
![]() |
107 | Foucart, F., Duez, M.D., Kidder, L.E., Scheel, M.A., Szilágyi, B. and Teukolsky, S.A., “Black
hole-neutron star mergers for 10Mâ black holes”, Phys. Rev. D, 85, 044015, (2012). [![]() ![]() ![]() |
![]() |
108 | Foucart, F., Duez, M.D., Kidder, L.E. and Teukolsky, S.A., “Black hole-neutron star mergers:
effects of the orientation of the black hole spin”, Phys. Rev. D, 83, 024005, (2011). [![]() ![]() ![]() |
![]() |
109 | Fox, D.B. et al., “The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts”,
Nature, 437, 845–850, (2005). [![]() ![]() ![]() |
![]() |
110 | Frail, D.A., Kulkarni, S.R., Ofek, E.O., Bower, G.C. and Nakar, E., “A Revised View of
the Transient Radio Sky”, Astrophys. J., 747, 70, (2012). [![]() ![]() ![]() |
![]() |
111 | Freiburghaus, C., Rosswog, S. and Thielemann, F.-K., “r-Process in Neutron Star Mergers”,
Astrophys. J. Lett., 525, L121–L124, (1999). [![]() ![]() |
![]() |
112 | Friedrich, H., “On the hyperbolicity of Einstein’s and other gauge field equations”, Commun.
Math. Phys., 100, 525–543, (1985). [![]() ![]() |
![]() |
113 | Friedrich, H. and Nagy, G., “The initial boundary value problem for Einstein’s vacuum field
equations”, Commun. Math. Phys., 201, 619–655, (1999). [![]() ![]() |
![]() |
114 | Galeazzi, F., Yoshida, S. and Eriguchi, Y., “Differentially-rotating neutron star models
with a parametrized rotation profile”, Astron. Astrophys., 541, A156, (2012). [![]() ![]() ![]() |
![]() |
115 | Garfinkle, D., “Harmonic coordinate method for simulating generic singularities”, Phys. Rev.
D, 65, 044029, (2002). [![]() ![]() ![]() |
![]() |
116 | Giacomazzo, B., Rezzolla, L. and Baiotti, L., “Can magnetic fields be detected during the
inspiral of binary neutron stars?”, Mon. Not. R. Astron. Soc., 399, L164–L168, (2009). [![]() ![]() ![]() |
![]() |
117 | Giacomazzo, B., Rezzolla, L. and Baiotti, L., “Accurate evolutions of inspiralling and
magnetized neutron-stars: Equal-mass binaries”, Phys. Rev. D, 83, 044014, (2011). [![]() ![]() ![]() |
![]() |
118 | Gingold, R.A. and Monaghan, J.J., “Smoothed particle hydrodynamics: Theory and application
to non-spherical stars”, Mon. Not. R. Astron. Soc., 181, 375–389, (1977). [![]() |
![]() |
119 | Glendenning, N.K., “Neutron Stars Are Giant Hypernuclei?”, Astrophys. J., 293, 470–493,
(1985). [![]() ![]() |
![]() |
120 | Glendenning, N.K. and Schaffner-Bielich, J., “First order kaon condensate”, Phys. Rev. C, 60,
025803, (1999). [![]() ![]() ![]() |
![]() |
121 | Godunov, S., “A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations”, Mat. Sbornik, 47, 271–306, (1959). |
![]() |
122 | Gold, R., Bernuzzi, S., Thierfelder, M., Brügmann, B. and Pretorius, F., “Eccentric binary
neutron star mergers”, arXiv, e-print, (2011). [![]() ![]() |
![]() |
123 | Goriely, S., Bauswein, A. and Janka, H.-T., “r-Process Nucleosynthesis in Dynamically
Ejected Matter of Neutron Star Mergers”, Astrophys. J. Lett., 738, L32, (2011). [![]() ![]() ![]() |
![]() |
124 | Gourgoulhon, E., Grandclément, P., Marck, J.-A. and Novak, J., “LORENE: Langage Objet
pour la RElativité NumériquE”, project homepage, L’Observatoire de Paris. URL (accessed
30 March 2012): ![]() |
![]() |
125 | Gourgoulhon, E., Grandclément, P., Taniguchi, K., Marck, J.-A. and Bonazzola, S.,
“Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in
general relativity: Method and tests”, Phys. Rev. D, 63, 064029, (2001). [![]() ![]() ![]() |
![]() |
126 | Grandclément, P., Ihm, M., Kalogera, V. and Belczynski, K., “Searching for gravitational
waves from the inspiral of precessing binary systems: Astrophysical expectations and
detection efficiency of ’spiky’ templates”, Phys. Rev. D, 69, 102002, (2004). [![]() ![]() ![]() |
![]() |
127 | Grindlay, J.E., Portegies Zwart, S.F. and McMillan, S.L.W., “Short gamma-ray bursts from
binary neutron star mergers in globular clusters”, Nature Phys., 2, 116–119, (2006). [![]() ![]() ![]() |
![]() |
128 | Guetta, D. and Stella, L., “Short γ-ray bursts and gravitational waves from dynamically formed
merging binaries”, Astron. Astrophys., 498, 329–333, (2008). [![]() ![]() ![]() |
![]() |
129 | Gundlach, C. and Martín-García, J.M., “Well-posedness of formulations of the Einstein
equations with dynamical lapse and shift conditions”, Phys. Rev. D, 74, 024016, (2006). [![]() ![]() ![]() |
![]() |
130 | Gundlach, C., Martín-García, J.M., Calabrese, G. and Hinder, I., “Constraint damping in
the Z4 formulation and harmonic gauge”, Class. Quantum Grav., 22, 3767–3774, (2005). [![]() ![]() ![]() |
![]() |
131 | Hachisu, I., “A versatile method for obtaining structures of rapidly rotating stars”, Astrophys.
J. Suppl. Ser., 61, 479–507, (1986). [![]() ![]() |
![]() |
132 | Hachisu, I., “A versatile method for obtaining structures of rapidly rotating stars. II -
Three-dimensional self-consistent field method”, Astrophys. J. Suppl. Ser., 62, 461–499, (1986).
[![]() ![]() |
![]() |
133 | Hobbs, G., Lorimer, D.R., Lyne, A.G. and Kramer, M., “A statistical study of 233
pulsar proper motions”, Mon. Not. R. Astron. Soc., 360, 974–992, (2005). [![]() ![]() ![]() |
![]() |
134 | Hotokezaka, K., Kyutoku, K., Okawa, H., Shibata, M. and Kiuchi, K., “Binary Neutron Star
Mergers: Dependence on the Nuclear Equation of State”, Phys. Rev. D, 83, 124008, (2011).
[![]() ![]() ![]() |
![]() |
135 | Hulse, R.A. and Taylor, J.H., “Discovery of a pulsar in a binary system”, Astrophys. J., 195,
L51–L53, (1975). [![]() ![]() |
![]() |
136 | Husa, S., Gonzalez, J.A., Hannam, M., Brügmann, B. and Sperhake, U., “Reducing phase
error in long numerical binary black hole evolutions with sixth order finite differencing”, Class.
Quantum Grav., 25, 105006, (2008). [![]() ![]() ![]() |
![]() |
137 | Isenberg, J.A., “Waveless approximation theories of gravity”, Int. J. Mod. Phys. D, 17, 265–273,
(2008). [![]() ![]() ![]() |
![]() |
138 | Janka, H.-T., Eberl, T., Ruffert, M. and Fryer, C.L., “Black hole–neutron star mergers as
central engines of gamma-ray bursts”, Astrophys. J. Lett., 527, L39–L42, (1999). [![]() ![]() ![]() |
![]() |
139 | Janka, H.-T. and Ruffert, M., “Can neutrinos from neutron star mergers power gamma-ray
bursts?”, Astron. Astrophys., 307, L33–L36, (1996). [![]() ![]() |
![]() |
140 | Kalogera, V.,
Belczynski, K., Kim, C., O’Shaughnessy, R. and Willems, B., “Formation of Double Compact
Objects”, Phys. Rep., 442, 75–108, (2007). [![]() ![]() ![]() |
![]() |
141 | Kaplan, J., Ott, C.D., Muhlberger, C., Duez, M.D., Foucart, F. and Scheel, M.A., “Simulations
of Neutron-Star Binaries using the Spectral Einstein Code (SpEC)”, Bull. Am. Phys. Soc., 55,
P14.0005, (2010). [![]() ![]() |
![]() |
142 | Kettner, C., Weber, F., Weigel, M.K. and Glendenning, N.K., “Structure and stability of
strange and charm stars at finite temperatures”, Phys. Rev. D, 51, 1440–1457, (1995). [![]() ![]() |
![]() |
143 | Kim, C., Kalogera, V. and Lorimer, D.R., “The probability distribution of binary pulsar
coalescence rates. I. double neutron star systems in the galactic field”, Astrophys. J., 584,
985–995, (2003). [![]() ![]() ![]() |
![]() |
144 | Kiuchi, K., Sekiguchi, Y., Shibata, M. and Taniguchi, K., “Longterm general relativistic
simulation of binary neutron stars collapsing to a black hole”, Phys. Rev. D, 80, 064037, (2009).
[![]() ![]() ![]() |
![]() |
145 | Kiuchi, K.,
Sekiguchi, Y., Shibata, M. and Taniguchi, K., “Exploring binary-neutron-star-merger scenario
of short-gamma-ray bursts by gravitational-wave observation”, Phys. Rev. Lett., 104, 141101,
(2010). [![]() ![]() ![]() |
![]() |
146 | Kochanek, C.S., “Coalescing binary neutron stars”, Astrophys. J., 398, 234–247, (1992). [![]() ![]() |
![]() |
147 | Komatsu, H., Eriguchi, Y. and Hachisu, I., “Rapidly rotating general relativistic stars – I.
Numerical method and its application to uniformly rotating polytropes”, Mon. Not. R. Astron.
Soc., 237, 355–379, (1989). [![]() |
![]() |
148 | Kounine, A., “Status of the AMS Experiment”, in Glass, H., Jones, L.W. and Pattison, B., eds.,
Proceedings of the XVI International Symposium on Very High Energy Cosmic Ray Interactions
(ISVHECRI 2010), Batavia, IL, 28 June – 2 July 2010, eConf C1006284, (Stanford University,
Stanford, 2010). [![]() ![]() ![]() |
![]() |
149 | Kramer, M. and Stairs, I.H., “The Double Pulsar”, Annu. Rev. Astron. Astrophys., 46, 541–572,
(2008). [![]() ![]() |
![]() |
150 | Kreiss, H.-O., Reula, O., Sarbach, O. and Winicour, J., “Well-posed initial-boundary value
problem for the harmonic Einstein equations using energy estimates”, Class. Quantum Grav.,
24, 5973–5984, (2007). [![]() ![]() ![]() |
![]() |
151 | Kreiss, H.-O. and Winicour, J., “Problems which are well-posed in a generalized sense with
applications to the Einstein equations”, Class. Quantum Grav., 23, S405–S420, (2006). [![]() ![]() ![]() |
![]() |
152 | Kuranov, A.G., Popov, S.B. and Postnov, K.A., “Pulsar spin-velocity alignment from single
and binary neutron star progenitors”, Mon. Not. R. Astron. Soc., 395, 2087–2094, (2009).
[![]() ![]() ![]() |
![]() |
153 | Kyutoku, K., Okawa, H., Shibata, M. and Taniguchi, K., “Gravitational waves from spinning
black hole-neutron star binaries: dependence on black hole spins and on neutron star equations
of state”, Phys. Rev. D, 84(6), 064018, (2011). [![]() ![]() |
![]() |
154 | Kyutoku, K., Shibata, M. and Taniguchi, K., “Gravitational waves from nonspinning black
hole-neutron star binaries: dependence on equations of state”, Phys. Rev. D, 82, 044049, (2010).
[![]() ![]() ![]() |
![]() |
155 | Lai, D., Rasio, F.A. and Shapiro, S.L., “Ellipsoidal figures of equilibrium - Compressible
models”, Astrophys. J. Suppl. Ser., 88, 205–252, (1993). [![]() ![]() |
![]() |
156 | Lai, D., Rasio, F.A. and Shapiro, S.L., “Hydrodynamic instability and coalescence of close
binary systems”, Astrophys. J. Lett., 406, L63–L66, (1993). [![]() ![]() |
![]() |
157 | Lai, D., Rasio, F.A. and Shapiro, S.L., “Equilibrium, stability and orbital evolution of close
binary systems”, Astrophys. J., 423, 344–370, (1994). [![]() ![]() ![]() |
![]() |
158 | Lai, D., Rasio, F.A. and Shapiro, S.L., “Hydrodynamic instability and coalescence of binary
neutron stars”, Astrophys. J., 420, 811–829, (1994). [![]() ![]() ![]() |
![]() |
159 | Lai, D., Rasio, F.A. and Shapiro, S.L., “Hydrodynamics of rotating stars and close binary
interactions: Compressible ellipsoid models”, Astrophys. J., 437, 742–769, (1994). [![]() ![]() ![]() |
![]() |
160 | Lai, D. and Shapiro, S.L., “Gravitational radiation from rapidly rotating nascent neutron stars”,
Astrophys. J., 442, 259–272, (1995). [![]() ![]() ![]() |
![]() |
161 | Lai, D. and Wu, Y., “Resonant tidal excitations of inertial modes in coalescing neutron star
binaries”, Phys. Rev. D, 74, 024007, (2006). [![]() ![]() ![]() |
![]() |
162 | Lattimer, J.M. and Swesty, F.D., “A generalized equation of state for hot, dense matter”, Nucl.
Phys. A, 535, 331–376, (1991). [![]() |
![]() |
163 | Lax, P.D. and Wendroff, B., “Systems of conservation laws”, Commun. Pure Appl. Math., 13,
217–237, (1960). [![]() |
![]() |
164 | Lazzati, D., Ghirlanda, G. and Ghisellini, G., “Soft gamma-ray repeater giant flares in the
BATSE short gamma-ray burst catalogue: constraints from spectroscopy”, Mon. Not. R.
Astron. Soc., 362, L8–L12, (2005). [![]() ![]() ![]() |
![]() |
165 | Lee, W.H. and KluĆșniak, W., “Newtonian hydrodynamics of the coalescence of black holes
with neutron stars. I. Tidally locked binaries with a stiff equation of state”, Astrophys. J., 526,
178–199, (1999). [![]() ![]() ![]() |
![]() |
166 | Lee, W.H. and KluĆșniak, W., “Newtonian hydrodynamics of the coalescence of black holes
with neutron stars. II. Tidally locked binaries with a soft equation of state”, Mon. Not. R.
Astron. Soc., 308, 780–794, (1999). [![]() ![]() ![]() |
![]() |
167 | Lee, W.H., Ramirez-Ruiz, E. and van de Ven, G., “Short gamma-ray bursts from
dynamically-assembled compact binaries in globular clusters: pathways, rates, hydrodynamics
and cosmological setting”, Astrophys. J., 720, 953–975, (2010). [![]() ![]() ![]() |
![]() |
168 | Lehner, L., Liebling, S.L. and Reula, O.A., “AMR, stability and higher accuracy”, Class.
Quantum Grav., 23, S421–S446, (2006). [![]() ![]() ![]() |
![]() |
169 | Liebling, S.L., “HAD: the hyper AMR driver”, personal homepage, Louisiana State University.
URL (accessed 20 March 2012): ![]() |
![]() |
170 | Limousin, F., Gondek-Rosinska, D. and Gourgoulhon, E., “Last orbits of binary strange quark
stars”, Phys. Rev. D, 71, 064012, (2005). [![]() ![]() ![]() |
![]() |
171 | Lindblom, L., Scheel, M.A., Kidder, L.E., Owen, R. and Rinne, O., “A New generalized
harmonic evolution system”, Class. Quantum Grav., 23, S447–S462, (2006). [![]() ![]() ![]() |
![]() |
172 | Liu, Y.T., Shapiro, S.L., Etienne, Z.B. and Taniguchi, K., “General relativistic simulations
of magnetized binary neutron star mergers”, Phys. Rev. D, 78, 024012, (2008). [![]() ![]() ![]() |
![]() |
173 | Livne, E., Burrows, A., Walder, R., Lichtenstadt, I. and Thompson, T.A., “Two-dimensional,
time-dependent, multi-group, multi-angle radiation hydrodynamics test simulation in the
core-collapse supernova context”, Astrophys. J., 609, 277–287, (2004). [![]() ![]() ![]() |
![]() |
174 | Löffler, F., Rezzolla, L. and Ansorg, M., “Numerical evolutions of a black hole-neutron star
system in full general relativity: Head-on collision”, Phys. Rev. D, 74, 104018, (2006). [![]() ![]() ![]() |
![]() |
175 | Löffler, F. et al., “The Einstein Toolkit: a community computational infrastructure
for relativistic astrophysics”, Class. Quantum Grav., 29, 115001, (2012). [![]() ![]() ![]() |
![]() |
176 | Lombardi Jr, J.C., Holtzman, W., Dooley, K.L., Gearity, K., Kalogera, V. and Rasio, F., “Twin
Binaries: Studies of Stability, Mass Transfer, and Coalescence”, Astrophys. J., 737, 49, (2011).
[![]() ![]() ![]() |
![]() |
177 | Lombardi Jr, J.C., Rasio, F.A. and Shapiro, S.L., “PostNewtonian models of binary neutron
stars”, Phys. Rev. D, 56, 3416–3438, (1997). [![]() ![]() ![]() |
![]() |
178 | Lorimer, D.R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8, (2008).
[![]() http://www.livingreviews.org/lrr-2008-8. |
![]() |
179 | Lousto, C.O. and Zlochower, Y., “Foundations of multiple black hole evolutions”, Phys. Rev.
D, 77, 024034, (2008). [![]() ![]() ![]() |
![]() |
180 | Lovelace, R.V.E., Romanova, M.M. and Bisnovatyi-Kogan, G.S., “Screening of the
magnetic field of disk accreting stars”, Astrophys. J., 625, 957–965, (2005). [![]() ![]() ![]() |
![]() |
181 | Lucy, L.B., “A numerical approach to the testing of the fission hypothesis”, Astron. J., 82,
1013–1024, (1977). [![]() ![]() |
![]() |
182 | Madsen, J., “Strangelet propagation and cosmic ray flux”, Phys. Rev. D, 71, 014026, (2005).
[![]() ![]() ![]() |
![]() |
183 | Manca, G.M., Baiotti, L., De Pietri, R. and Rezzolla, L., “Dynamical non-axisymmetric
instabilities in rotating relativistic stars”, Class. Quantum Grav., 24, 171, (2007). [![]() ![]() ![]() |
![]() |
184 | Markakis, C., Read, J.S., Shibata, M., Uryƫ, K., Creighton, J.D.E., Friedman, J.L. and Lackey,
B.D., “Neutron star equation of state via gravitational wave observations”, J. Phys.: Conf.
Ser., 189, 012024, (2009). [![]() ![]() ![]() |
![]() |
185 | Marronetti, P., Mathews, G.J. and Wilson, J.R., “Irrotational binary neutron stars in
quasiequilibrium”, Phys. Rev. D, 60, 087301, (1999). [![]() ![]() ![]() |
![]() |
186 | Martí, J.M., Ibáñez, J.M. and Miralles, J.A., “Numerical relativistic hydrodynamics: Local
characteristic approach”, Phys. Rev. D, 43, 3794–3801, (1991). [![]() ![]() |
![]() |
187 | Mathews, G.J., Marronetti, P. and Wilson, J.R., “Relativistic hydrodynamics in close binary
systems: Analysis of neutron star collapse”, Phys. Rev. D, 58, 043003, (1998). [![]() ![]() ![]() |
![]() |
188 | Mathews, G.J. and Wilson, J.R., “Binary induced neutron star compression, heating, and
collapse”, Astrophys. J., 482, 929–941, (1997). [![]() ![]() ![]() |
![]() |
189 | Mathews, G.J. and Wilson, J.R., “Revised relativistic hydrodynamical model for neutron star
binaries”, Phys. Rev. D, 61, 127304, (2000). [![]() ![]() ![]() |
![]() |
190 | Metzger, B.D. and Berger, E., “What is the Most Promising Electromagnetic Counterpart of
a Neutron Star Binary Merger?”, Astrophys. J., 746, 48, (2012). [![]() ![]() ![]() |
![]() |
191 | Metzger, B.D. et al., “Electromagnetic counterparts of compact object mergers powered by
the radioactive decay of r-process nuclei”, Mon. Not. R. Astron. Soc., 406, 2650–2662, (2010).
[![]() ![]() ![]() |
![]() |
192 | Miller, M.A., Gressman, P. and Suen, W.-M., “Towards a realistic neutron star binary inspiral:
Initial data and multiple orbit evolution in full general relativity”, Phys. Rev. D, 69, 064026,
(2004). [![]() ![]() ![]() |
![]() |
193 | Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco,
1973). [![]() |
![]() |
194 | Monaghan, J.J., “Smoothed particle hydrodynamics”, Annu. Rev. Astron. Astrophys., 30,
543–574, (1992). [![]() ![]() |
![]() |
195 | Moncrief, V., “Gravitational perturbations of spherically symmetric systems. I. The exterior
problem”, Ann. Phys. (N.Y.), 88, 323–342, (1974). [![]() ![]() |
![]() |
196 | Nakamura, T. and Oohara, K., “Gravitational Radiation from Coalescing Binary Neutron Stars.
II – Simulations Including Back Reaction Potential –”, Prog. Theor. Phys., 82, 1066–1083,
(1989). [![]() ![]() |
![]() |
197 | Nakamura, T. and Oohara, K., “Gravitational Radiation from Coalescing Binary Neutron Stars.
IV – Tidal Disruption –”, Prog. Theor. Phys., 86, 73–89, (1991). [![]() ![]() |
![]() |
198 | Nakar, E., Gal-Yam, A. and Fox, D.B., “The Local Rate and the Progenitor Lifetimes of
Short-Hard Gamma-Ray Bursts: Synthesis and Predictions for LIGO”, Astrophys. J., 650,
281–290, (2006). [![]() ![]() ![]() |
![]() |
199 | Nakar, E., Gal-Yam, A., Piran, T. and Fox, D.B., “The Distances of Short-Hard Gamma-Ray
Bursts and the Soft Gamma-Ray Repeater Connection”, Astrophys. J., 640, 849–853, (2006).
[![]() ![]() ![]() |
![]() |
200 | Nakar, E. and Piran, T., “Radio Remnants of Compact Binary Mergers - the Electromagnetic
Signal that will follow the Gravitational Waves”, arXiv, e-print, (2011). [![]() ![]() |
![]() |
201 | New, K.C.B. and Tohline, J.E., “The Relative stability against merger of close, compact
binaries”, Astrophys. J., 490, 311–327, (1997). [![]() ![]() ![]() |
![]() |
202 | Newman, E. and Penrose, R., “An approach to gravitational radiation by a method of spin
coefficients”, J. Math. Phys., 3, 566–578, (1962). [![]() ![]() |
![]() |
203 | Noble, S.C., Gammie, C.F., McKinney, J.C. and Del Zanna, L., “Primitive variable solvers for
conservative general relativistic magnetohydrodynamics”, Astrophys. J., 641, 626–637, (2006).
[![]() ![]() ![]() |
![]() |
204 | Núñez, D. and Sarbach, O.,
“Boundary conditions for the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein’s
field equations”, Phys. Rev. D, 81, 044011, (2010). [![]() ![]() ![]() |
![]() |
205 | O’Connor, E. and Ott, C.D., “Black Hole Formation in Failing Core-Collapse Supernovae”,
Astrophys. J., 730, 70, (2011). [![]() ![]() ![]() |
![]() |
206 | Oechslin, R. and Janka, H.-T., “Short Gamma-Ray Bursts from Binary Neutron Star Mergers”,
in Alimi, J.-M. and Füzfa, A., eds., Albert Einstein Century International Conference, Paris,
France, 18 – 22 July 2005, AIP Conference Proceedings, 861, pp. 708–713, (American Institute
of Physics, Melville, NY, 2006). [![]() ![]() ![]() |
![]() |
207 | Oechslin, R. and Janka, H.-T., “Torus Formation in Neutron Star Mergers and Well-Localized
Short Gamma-Ray Bursts”, Mon. Not. R. Astron. Soc., 368, 1489–1499, (2006). [![]() ![]() ![]() |
![]() |
208 | Oechslin, R. and Janka, H.-T., “Gravitational waves from relativistic neutron star mergers with
nonzero-temperature equations of state”, Phys. Rev. Lett., 99, 121102, (2007). [![]() ![]() ![]() |
![]() |
209 | Oechslin, R., Janka, H.-T. and Marek, A., “Relativistic neutron star merger simulations with
non-zero temperature equations of state. 1. Variation of binary parameters and equation
of state”, Astron. Astrophys., 467, 395–409, (2007). [![]() ![]() ![]() |
![]() |
210 | Oechslin, R., Poghosyan, G.S. and UryĆ«, K., “Quark matter in neutron star mergers”, Nucl.
Phys. A, 718, 706–708, (2003). [![]() ![]() ![]() |
![]() |
211 | Oechslin, R., Rosswog, S. and Thielemann, F.K., “Conformally flat smoothed particle
hydrodynamics: application to neutron star mergers”, Phys. Rev. D, 65, 103005, (2002). [![]() ![]() ![]() |
![]() |
212 | Oechslin, R., UryĆ«, K., Poghosyan, G.S. and Thielemann, F.K., “The Influence of quark
matter at high densities on binary neutron star mergers”, Mon. Not. R. Astron. Soc., 349,
1469–1480, (2004). [![]() ![]() ![]() |
![]() |
213 | O’Leary, R.M., Kocsis, B. and Loeb, A., “Gravitational waves from scattering of stellar-mass
black holes in galactic nuclei”, Mon. Not. R. Astron. Soc., 395, 2127–2146, (2009). [![]() ![]() ![]() |
![]() |
214 | Oohara, K. and Nakamura, T., “Gravitational Radiation From A Coalescing Binary Neutron
Star”, Prog. Theor. Phys., 82, 535–554, (1989). [![]() ![]() |
![]() |
215 | Oohara, K. and Nakamura, T., “Gravitational Radiation from Coalescing Binary Neutron Stars.
III – Simulations from Equilibrium Model –”, Prog. Theor. Phys., 83, 906–940, (1990). [![]() ![]() |
![]() |
216 | Oohara, K. and Nakamura, T., “Gravitational radiation from coalescing binary neutron stars.
V – Post-Newtonian Calculation –”, Prog. Theor. Phys., 88, 307–316, (1993). [![]() ![]() |
![]() |
217 | O’Shaughnessy, R., Kalogera, V. and Belczynski, K., “Short Gamma-Ray Bursts and Binary
Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts”, Astrophys. J., 675,
566–585, (2008). [![]() ![]() ![]() |
![]() |
218 | O’Shaughnessy, R., Kalogera, V. and Belczynski, K., “Binary compact object coalescence
rates: The role of elliptical galaxies”, Astrophys. J., 716, 615–633, (2010). [![]() ![]() ![]() |
![]() |
219 | O’Shaughnessy, R., Kim, C., Kalogera, V. and Belczynski, K., “Constraining population
synthesis models via empirical binary compact object merger and supernovae rates”, Astrophys.
J., 672, 479–488, (2008). [![]() ![]() ![]() |
![]() |
220 | Özel, F., Baym, G. and Guver, T., “Astrophysical measurement of the equation of state
of neutron star matter”, Phys. Rev. D, 82, 101301, (2010). [![]() ![]() ![]() |
![]() |
221 | Özel, F. and Psaltis, D., “Reconstructing the neutron-star equation of state from astrophysical
measurements”, Phys. Rev. D, 80, 103003, (2009). [![]() ![]() ![]() |
![]() |
222 | Pandharipande, V.R. and Ravenhall, D.G., “Hot Nuclear Matter”, in Soyeur, M., Flocard, H.,
Tamain, B. and Porneuf, M., eds., Nuclear Matter and Heavy Ion Collisions, Proceedings of
a NATO Advanced Research Workshop, held February 7 – 16, 1989, in Les Houches, France,
NATO ASI Series B, 205, p. 103, (Plenum Press, New York, 1989). [![]() |
![]() |
223 | Pandharipande, V.R. and Smith, R.A., “A model neutron solid with π0 condensate”, Nucl.
Phys. A, 237, 507–532, (1975). [![]() ![]() |
![]() |
224 | Pazos, E., Tiglio, M., Duez, M.D., Kidder, L.E. and Teukolsky, S.A., “Orbiting binary black
hole evolutions with a multipatch high order finite-difference approach”, Phys. Rev. D, 80,
024027, (2009). [![]() ![]() ![]() |
![]() |
225 | Perna, R., Armitage, P.J. and Zhang, B., “Flares in long and short gamma-ray bursts: a common
origin in a hyperaccreting accretion disk”, Astrophys. J. Lett., 636, L29–L32, (2005). [![]() ![]() ![]() |
![]() |
226 | Peters, P.C. and Mathews, J., “Gravitational radiation from point masses in a Keplerian orbit”,
Phys. Rev. D, 131, 435–439, (1963). [![]() ![]() |
![]() |
227 | Piro, A.L. and Pfahl, E.D., “Fragmentation of Collapsar Disks and the Production
of Gravitational Waves”, Astrophys. J. Lett., 658, 1173–1176, (2007). [![]() ![]() ![]() |
![]() |
228 | Portegies Zwart, S.F., “Gamma-ray binaries: Stable mass transfer from neutron star to
black hole”, Astrophys. J. Lett., 503, L53–L56, (1998). [![]() ![]() ![]() |
![]() |
229 | Postnov, K. and Yungelson, L., “The Evolution of Compact Binary Star Systems”, Living Rev.
Relativity, 9, lrr-2006-6, (2006). [![]() ![]() http://www.livingreviews.org/lrr-2006-6. |
![]() |
230 | Prakash, M., Cooke, J.R. and Lattimer, J.M., “Quark-hadron phase transition in protoneutron
stars”, Phys. Rev. D, 52, 661–665, (1995). [![]() ![]() |
![]() |
231 | Pretorius, F., “Evolution of binary black hole spacetimes”, Phys. Rev. Lett., 95, 121101, (2005).
[![]() ![]() ![]() |
![]() |
232 | Pretorius, F., “Numerical relativity using a generalized harmonic decomposition”, Class.
Quantum Grav., 22, 425–452, (2005). [![]() ![]() ![]() |
![]() |
233 | Price, D. and Rosswog, S., “Producing Ultrastrong Magnetic Fields in Neutron Star Mergers”,
Science, 312, 719–722, (2006). [![]() ![]() ![]() |
![]() |
234 | Rasio, F.A. and Shapiro, S.L., “Hydrodynamical evolution of coalescing binary neutron stars”,
Astrophys. J., 401, 226–245, (1992). [![]() ![]() |
![]() |
235 | Rasio, F.A. and Shapiro, S.L., “Hydrodynamics of binary coalescence. I. Polytropes with stiff
equations of state”, Astrophys. J., 432, 242–261, (1994). [![]() ![]() ![]() |
![]() |
236 | Rasio, F.A. and Shapiro, S.L., “Hydrodynamics of binary coalescence. II. Polytropes with
Γ = 5â3”, Astrophys. J., 438, 887–903, (1995). [![]() ![]() ![]() |
![]() |
237 | Read, J.S., Lackey, B.D., Owen, B.J. and Friedman, J.L., “Constraints on a phenomenologically
parameterized neutron-star equation of state”, Phys. Rev. D, 79, 124032, (2009). [![]() ![]() ![]() |
![]() |
238 | Read, J.S., Markakis, C., Shibata, M., Uryƫ, K., Creighton, J.D.E. and Friedman, J.L.,
“Measuring the neutron star equation of state with gravitational wave observations”, Phys.
Rev. D, 79, 124033, (2009). [![]() ![]() ![]() |
![]() |
239 | Regge, T. and Wheeler, J.A., “Stability of a Schwarzschild singularity”, Phys. Rev., 108,
1063–1069, (1957). [![]() ![]() |
![]() |
240 | Rezzolla, L., Baiotti, L., Giacomazzo, B., Link, D. and Font, J.A., “Accurate evolutions of
unequal-mass neutron-star binaries: properties of the torus and short GRB engines”, Class.
Quantum Grav., 27, 114105, (2010). [![]() ![]() ![]() |
![]() |
241 | Rezzolla, L., Giacomazzo, B., Baiotti, L., Granot, J., Kouveliotou, C. and Aloy, M.A., “The
missing link: Merging neutron stars naturally produce jet-like structures and can power short
Gamma-Ray Bursts”, Astrophys. J. Lett., 732, L6, (2011). [![]() ![]() ![]() |
![]() |
242 | Rinne, O., Buchman, L.T., Scheel, M.A. and Pfeiffer, H.P., “Implementation of higher-order
absorbing boundary conditions for the Einstein equations”, Class. Quantum Grav., 26, 075009,
(2009). [![]() ![]() ![]() |
![]() |
243 | Rosswog, S., “Fallback accretion in the aftermath of a compact binary merger”, Mon. Not. R.
Astron. Soc., 376, L48–L51, (2007). [![]() ![]() ![]() |
![]() |
244 | Rosswog, S. and Davies, M.B., “High-resolution calculations of merging neutron stars. I: Model
description and hydrodynamic evolution”, Mon. Not. R. Astron. Soc., 334, 481–497, (2002).
[![]() ![]() ![]() |
![]() |
245 | Rosswog, S., Freiburghaus, C. and Thielemann, F.K., “Nucleosynthesis calculations for the
ejecta of neutron star coalescences”, Nucl. Phys. A, 688, 344–348, (2001). [![]() ![]() ![]() |
![]() |
246 | Rosswog, S. and Liebendörfer, M., “High-resolution calculations of merging neutron stars
– II. Neutrino emission”, Mon. Not. R. Astron. Soc., 342, 673–689, (2003). [![]() ![]() ![]() |
![]() |
247 | Rosswog, S. and Price, D., “MAGMA: a 3D, Lagrangian magnetohydrodynamics code
for merger applications”, Mon. Not. R. Astron. Soc., 379, 915–931, (2007). [![]() ![]() ![]() |
![]() |
248 | Rosswog, S. and Ramirez-Ruiz, E., “Jets, winds and bursts from coalescing neutron stars”, Mon.
Not. R. Astron. Soc., 336, L7–L11, (2002). [![]() ![]() ![]() |
![]() |
249 | Rosswog, S. and Ramirez-Ruiz, E., “On the diversity of short gamma-ray bursts”, Mon. Not.
R. Astron. Soc., 343, L36–L40, (2003). [![]() ![]() ![]() |
![]() |
250 | Rosswog, S., Ramirez-Ruiz, E. and Davies, M.B., “High-resolution calculations of merging
neutron stars – III. Gamma-ray bursts”, Mon. Not. R. Astron. Soc., 345, 1077–1090, (2003).
[![]() ![]() ![]() |
![]() |
251 | Ruffert, M. and Janka, H.-T., “Gamma-ray bursts from accreting black holes in neutron star
mergers”, Astron. Astrophys., 344, 573–606, (1999). [![]() ![]() |
![]() |
252 | Ruffert, M. and Janka, H.-T., “Coalescing neutron stars – A step towards physical models.
III. Improved numerics and different neutron star masses and spins”, Astron. Astrophys., 380,
544–577, (2001). [![]() ![]() ![]() |
![]() |
253 | Ruffert, M.H., Janka, H.-T. and Schäfer, G., “Coalescing neutron stars – a step towards
physical models. I. Hydrodynamic evolution and gravitational-wave emission”, Astron.
Astrophys., 311, 532–566, (1996). [![]() ![]() |
![]() |
254 | Ruffert, M., Janka, H.-T., Takahashi, K. and Schäfer, G., “Coalescing neutron stars – a step
towards physical models. II. Neutrino emission, neutron tori, and gamma-ray bursts”, Astron.
Astrophys., 319, 122–153, (1997). [![]() ![]() |
![]() |
255 | Ruffert, M., Rampp, M. and Janka, H.-T., “Coalescing neutron stars: Gravitational waves from
polytropic models”, Astron. Astrophys., 321, 991–1006, (1997). [![]() ![]() |
![]() |
256 | Ruiz, M., Rinne, O. and Sarbach, O., “Outer boundary conditions for Einstein’s field
equations in harmonic coordinates”, Class. Quantum Grav., 24, 6349–6378, (2007). [![]() ![]() ![]() |
![]() |
257 | Ruiz, M., Takahashi, R., Alcubierre, M. and Núñez, D., “Multipole expansions for energy
and momenta carried by gravitational waves”, Gen. Relativ. Gravit., 40, 1705–1729, (2008).
[![]() ![]() ![]() |
![]() |
258 | Sadowski, A., Belczynski, K., Bulik, T., Ivanova, N., Rasio, F.A. and O’Shaughnessy, R., “The
Total Merger Rate of Compact Object Binaries In The Local Universe”, Astrophys. J., 676,
1162–1169, (2008). [![]() ![]() ![]() |
![]() |
259 | Saijo, M., Shibata, M., Baumgarte, T.W. and Shapiro, S.L., “Dynamical bar instability in
rotating stars: Effect of general relativity”, Astrophys. J., 548, 919–931, (2001). [![]() ![]() ![]() |
![]() |
260 | Schäfer, G. and Gopakumar, A., “A minimal no radiation approximation to Einstein’s field
equations”, Phys. Rev. D, 69, 021501, (2004). [![]() ![]() ![]() |
![]() |
261 | Scheel, M.A., Boyle, M., Chu, T., Kidder, L.E., Matthews, K.D. and Pfeiffer, H.P.,
“High-accuracy waveforms for binary black hole inspiral, merger, and ringdown”, Phys. Rev.
D, 79, 024003, (2009). [![]() ![]() ![]() |
![]() |
262 | Schnetter, E., “CarpetCode: A mesh refinement driver for Cactus”, project homepage, Center
for Computation and Technology, Louisiana State University. URL (accessed 30 March 2012):
![]() |
![]() |
263 | Schnetter, E., Hawley, S.H. and Hawke, I., “Evolutions in 3-D numerical relativity using
fixed mesh refinement”, Class. Quantum Grav., 21, 1465–1488, (2004). [![]() ![]() ![]() |
![]() |
264 | Sekiguchi, Y., Kiuchi, K., Kyutoku, K. and Shibata, M., “Effects of hyperons in binary
neutron star mergers”, Phys. Rev. Lett., 107, 211101, (2011). [![]() ![]() ![]() |
![]() |
265 | Sekiguchi, Y., Kiuchi, K., Kyutoku, K. and Shibata, M., “Gravitational waves and neutrino
emission from the merger of binary neutron stars”, Phys. Rev. Lett., 107, 051102, (2011). [![]() ![]() ![]() |
![]() |
266 | Setiawan, S., Ruffert, M. and Janka, H.-T., “Three-dimensional simulations of non-stationary
accretion by remnant black holes of compact object mergers”, Astron. Astrophys., 458, 553–567,
(2006). [![]() ![]() ![]() |
![]() |
267 | Shen, H., Toki, H., Oyamatsu, K. and Sumiyoshi, K., “Relativistic equation of state of nuclear
matter for supernova and neutron star”, Nucl. Phys. A, 637, 435–450, (1998). [![]() ![]() ![]() |
![]() |
268 | Shen, H., Toki, H., Oyamatsu, K. and Sumiyoshi, K., “Relativistic equation of state of nuclear
matter for supernova explosion”, Prog. Theor. Phys., 100, 1013–1031, (1998). [![]() ![]() ![]() |
![]() |
269 | Shibata, M., “Instability of synchronized binary neutron stars in the first post-Newtonian
approximation of general relativity”, Prog. Theor. Phys., 96, 317–325, (1996). [![]() ![]() |
![]() |
270 | Shibata, M., “Numerical study of synchronized binary neutron stars in the postNewtonian
approximation of general relativity”, Phys. Rev. D, 55, 6019–6029, (1997). [![]() ![]() |
![]() |
271 | Shibata, M., “3-D numerical simulation of black hole formation using collisionless particles:
Triplane symmetric case”, Prog. Theor. Phys., 101, 251–282, (1999). [![]() ![]() |
![]() |
272 | Shibata, M., “Fully general relativistic simulation of merging binary clusters – Spatial gauge
condition –”, Prog. Theor. Phys., 101, 1199–1233, (1999). [![]() ![]() ![]() |
![]() |
273 | Shibata, M., Baumgarte, T.W. and Shapiro, S.L., “Stability of coalescing binary stars against
gravitational collapse: Hydrodynamical simulations”, Phys. Rev. D, 58, 023002, (1998). [![]() ![]() ![]() |
![]() |
274 | Shibata, M., Baumgarte, T.W. and Shapiro, S.L., “The bar-mode instability in differentially
rotating neutron stars: simulations in full general relativity”, Astrophys. J., 542, 453–463,
(2000). [![]() ![]() ![]() |
![]() |
275 | Shibata, M., Duez, M.D., Liu, Y.T., Shapiro, S.L. and Stephens, B.C., “Magnetized
hypermassive neutron star collapse: A Central engine for short gamma-ray bursts”, Phys. Rev.
Lett., 96, 031102, (2006). [![]() ![]() ![]() |
![]() |
276 | Shibata, M., Kyutoku, K., Yamamoto, T. and Taniguchi, K., “Gravitational waves from black
hole-neutron star binaries: Classification of waveforms”, Phys. Rev. D, 79, 044030, (2009).
[![]() ![]() ![]() |
![]() |
277 | Shibata, M. and Nakamura, T., “Evolution of three-dimensional gravitational waves: Harmonic
slicing case”, Phys. Rev. D, 52, 5428–5444, (1995). [![]() ![]() |
![]() |
278 | Shibata, M., Nakamura, T. and Oohara, K., “Coalescence of spinning binary neutron stars
of equal mass 3-D numerical simulations”, Prog. Theor. Phys., 88, 1079–1096, (1992). [![]() ![]() |
![]() |
279 | Shibata, M., Oohara, K. and Nakamura, T., “Numerical study on the hydrodynamic instability
of binary stars in the first post-Newtonian approximation of general relativity”, Prog. Theor.
Phys., 98, 1081–1098, (1997). [![]() ![]() ![]() |
![]() |
280 | Shibata, M., Suwa, Y., Kiuchi, K. and Ioka, K., “Afterglow of a Binary Neutron Star Merger”,
Astrophys. J. Lett., 734, L36, (2011). [![]() ![]() ![]() |
![]() |
281 | Shibata, M. and Taniguchi, K., “Solving the Darwin problem in the first postNewtonian
approximation of general relativity: Compressible model”, Phys. Rev. D, 56, 811–825, (1997).
[![]() ![]() ![]() |
![]() |
282 | Shibata, M. and Taniguchi, K., “Merger of binary neutron stars to a black hole: Disk mass,
short gamma-ray bursts, and quasinormal mode ringing”, Phys. Rev. D, 73, 064027, (2006).
[![]() ![]() ![]() |
![]() |
283 | Shibata, M. and Taniguchi, K., “Merger of black hole and neutron star in general relativity:
Tidal disruption, torus mass, and gravitational waves”, Phys. Rev. D, 77, 084015, (2008). [![]() ![]() ![]() |
![]() |
284 | Shibata, M. and Taniguchi, K., “Coalescence of Black Hole-Neutron Star Binaries”, Living Rev.
Relativity, 14, lrr-2011-6, (2011). [![]() http://www.livingreviews.org/lrr-2011-6. |
![]() |
285 | Shibata, M., Taniguchi, K. and UryĆ«, K., “Merger of binary neutron stars of unequal mass
in full general relativity”, Phys. Rev. D, 68, 084020, (2003). [![]() ![]() ![]() |
![]() |
286 | Shibata, M., Taniguchi, K. and UryĆ«, K., “Merger of binary neutron stars with realistic
equations of state in full general relativity”, Phys. Rev. D, 71, 084021, (2005). [![]() ![]() ![]() |
![]() |
287 | Shibata, M. and UryĆ«, K., “Simulation of merging binary neutron stars in full general
relativity: Gamma = two case”, Phys. Rev. D, 61, 064001, (2000). [![]() ![]() ![]() |
![]() |
288 | Shibata, M. and UryĆ«, K., “Gravitational waves from the merger of binary neutron stars in a
fully general relativistic simulation”, Prog. Theor. Phys., 107, 265–303, (2002). [![]() ![]() ![]() |
![]() |
289 | Shibata, M. and UryĆ«, K., “Merger of black hole-neutron star binaries: Nonspinning black
hole case”, Phys. Rev. D, 74, 121503(R), (2006). [![]() ![]() ![]() |
![]() |
290 | Shibata, M. and UryĆ«, K., “Merger of black hole-neutron star binaries in full general
relativity”, Class. Quantum Grav., 24, S125–S138, (2007). [![]() ![]() ![]() |
![]() |
291 | Shibata, M., UryĆ«, K. and Friedman, J.L., “Deriving formulations for numerical computation
of binary neutron stars in quasicircular orbits”, Phys. Rev. D, 70, 044044, (2004). [![]() ![]() ![]() |
![]() |
292 | Smith, J.R. (LIGO Scientific Collaboration), “The Path to the enhanced and advanced
LIGO gravitational-wave detectors”, Class. Quantum Grav., 26, 114013, (2009). [![]() ![]() ![]() |
![]() |
293 | Stephens, B.C., Duez, M.D., Liu, Y.T., Shapiro, S.L. and Shibata, M., “Collapse and black
hole formation in magnetized, differentially rotating neutron stars”, Class. Quantum Grav.,
24, S207–S220, (2007). [![]() ![]() ![]() |
![]() |
294 | Stephens, B.C., East, W.E. and Pretorius, F., “Eccentric Black Hole-Neutron Star Mergers”,
Astrophys. J. Lett., 737, L5, (2011). [![]() ![]() ![]() |
![]() |
295 | Stephens, B.C., Shapiro, S.L. and Liu, Y.T., “Collapse of magnetized hypermassive neutron
stars in general relativity: Disk evolution and outflows”, Phys. Rev. D, 77, 044001, (2008).
[![]() ![]() ![]() |
![]() |
296 | Stergioulas, N., Bauswein, A., Zagkouris, K. and Janka, H.-T., “Gravitational waves and
nonaxisymmetric oscillation modes in mergers of compact object binaries”, Mon. Not. R.
Astron. Soc., 418, 427–436, (2011). [![]() ![]() ![]() |
![]() |
297 | Surman, R., McLaughlin, G.C., Ruffert, M., Janka, H.-T. and Hix, W.R., “r-Process
Nucleosynthesis in Hot Accretion Disk Flows from Black Hole–Neutron Star Mergers”,
Astrophys. J., 679, L117–L120, (2008). [![]() ![]() ![]() |
![]() |
298 | Swesty, F.D., Wang, E.Y.M. and Calder, A.C., “Numerical models of binary neutron star
system mergers. I. Numerical methods and equilibrium data for Newtonian models”, Astrophys.
J., 541, 937–958, (2000). [![]() ![]() ![]() |
![]() |
299 | Taniguchi, K., Asada, H. and Shibata, M., “Irrotational and incompressible ellipsoids in the
first postNewtonian approximation of general relativity”, Prog. Theor. Phys., 100, 703–735,
(1998). [![]() ![]() ![]() |
![]() |
300 | Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Black hole-neutron star
binaries in general relativity: Effects of neutron star spin”, Phys. Rev. D, 72, 044008, (2005).
[![]() ![]() ![]() |
![]() |
301 | Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Quasiequilibrium black
hole-neutron star binaries in general relativity”, Phys. Rev. D, 75, 084005, (2007). [![]() ![]() ![]() |
![]() |
302 | Taniguchi, K., Baumgarte, T.W., Faber, J.A. and Shapiro, S.L., “Relativistic black
hole-neutron star binaries in quasiequilibrium: Effects of the black hole excision boundary
condition”, Phys. Rev. D, 77, 044003, (2008). [![]() ![]() ![]() |
![]() |
303 | Taniguchi, K. and Gourgoulhon, E., “Quasiequilibrium sequences of synchronized and
irrotational binary neutron stars in general relativity. 3. Identical and different mass stars with
gamma = 2”, Phys. Rev. D, 66, 104019, (2002). [![]() ![]() ![]() |
![]() |
304 | Taniguchi, K. and Gourgoulhon, E., “Various features of quasiequilibrium sequences of
binary neutron stars in general relativity”, Phys. Rev. D, 68, 124025, (2003). [![]() ![]() ![]() |
![]() |
305 | Taniguchi, K. and Shibata, M., “Binary Neutron Stars in Quasi-equilibrium”, Astrophys. J.
Suppl. Ser., 188, 187–208, (2010). [![]() ![]() ![]() |
![]() |
306 | Taylor, J.H. and Weisberg, J.M., “Further experimental tests of relativistic gravity using the
binary pulsar PSR 1913+16”, Astrophys. J., 345, 434–450, (1989). [![]() ![]() |
![]() |
307 | “The Cactus Code”, project homepage, Max Planck Institute for Gravitational Physics. URL
(accessed 30 March 2012): ![]() |
![]() |
308 | Thierfelder, M., Bernuzzi, S. and Brügmann, B., “Numerical relativity simulations of binary
neutron stars”, Phys. Rev. D, 84, 044012, (2011). [![]() ![]() ![]() |
![]() |
309 | Tichy, W., “Initial data for binary neutron stars with arbitrary spins”, Phys. Rev. D, 84,
024041, (2011). [![]() ![]() ![]() |
![]() |
310 | Tóth, G., “The ∇⋅B = 0 Constraint in Shock-Capturing Magnetohydrodynamics Codes”, J.
Comput. Phys., 161, 605–652, (2000). [![]() ![]() |
![]() |
311 | UryĆ«, K. and Eriguchi, Y., “Stationary states of irrotational binary neutron star systems and
their evolution due to gravitational wave emission”, Mon. Not. R. Astron. Soc., 296, L1–L5,
(1998). [![]() ![]() ![]() |
![]() |
312 | UryĆ«, K. and Eriguchi, Y., “Stationary structures of irrotational binary systems: Models for
close binary systems of compact stars”, Astrophys. J. Suppl. Ser., 118, 563–587, (1998). [![]() ![]() ![]() |
![]() |
313 | UryĆ«, K. and Eriguchi, Y., “New numerical method for constructing quasiequilibrium
sequences of irrotational binary neutron stars in general relativity”, Phys. Rev. D, 61, 124023,
(2000). [![]() ![]() ![]() |
![]() |
314 | UryĆ«, K., Gourgoulhon, E. and Markakis, C., “Thermodynamics of magnetized binary
compact objects”, Phys. Rev. D, 82, 104054, (2010). [![]() ![]() ![]() |
![]() |
315 | UryĆ«, K., Limousin, F., Friedman, J.L., Gourgoulhon, E. and Shibata, M., “Binary neutron
stars in a waveless approximation”, Phys. Rev. Lett., 97, 171101, (2006). [![]() ![]() ![]() |
![]() |
316 | UryĆ«, K., Limousin, F., Friedman, J.L., Gourgoulhon, E. and Shibata, M., “Nonconformally
flat initial data for binary compact objects”, Phys. Rev. D, 80, 124004, (2009). [![]() ![]() ![]() |
![]() |
317 | UryĆ«, K., Shibata, M. and Eriguchi, Y., “Properties of general relativistic, irrotational binary
neutron stars in close quasiequilibrium orbits: Polytropic equations of state”, Phys. Rev. D,
62, 104015, (2000). [![]() ![]() ![]() |
![]() |
318 | Usui, F. and Eriguchi, Y., “Quasiequilibrium sequences of synchronously rotating binary
neutron stars with constant rest masses in general relativity: Another approach without
using the conformally flat condition”, Phys. Rev. D, 65, 064030, (2002). [![]() ![]() ![]() |
![]() |
319 | Usui, F., UryĆ«, K. and Eriguchi, Y., “A new numerical scheme to compute 3-D configurations
of quasiequilibrium compact stars in general relativity: Application to synchronously rotating
binary star systems”, Phys. Rev. D, 61, 024039, (2000). [![]() ![]() ![]() |
![]() |
320 | Van Den Broeck, C., Brown, D.A., Cokelaer, T., Harry, I., Jones, G., Sathyaprakash, B.S.,
Tagoshi, H. and Takahashi, H., “Template banks to search for compact binaries with spinning
components in gravitational wave data”, Phys. Rev. D, 80, 024009, (2009). [![]() ![]() ![]() |
![]() |
321 | van der Sluys, M., Raymond, V., Mandel, I., Röver, C., Christensen, N., Kalogera, V., Meyer,
R. and Vecchio, A., “Parameter estimation of spinning binary inspirals using Markov-chain
Monte Carlo”, Class. Quantum Grav., 25, 184011, (2008). [![]() ![]() ![]() |
![]() |
322 | van Meter, J.R., Baker, J.G., Koppitz, M. and Choi, D.-I., “How to move a black hole without
excision: Gauge conditions for the numerical evolution of a moving puncture”, Phys. Rev. D,
73, 124011, (2006). [![]() ![]() ![]() |
![]() |
323 | Voss, R. and Tauris, T.M., “Galactic distribution of merging neutron stars and black holes –
prospects for short gamma-ray burst progenitors and LIGO/VIRGO”, Mon. Not. R. Astron.
Soc., 342, 1169–1184, (2003). [![]() ![]() ![]() |
![]() |
324 | Wang, C., Lai, D. and Han, J.L., “Neutron star kicks in isolated and binary pulsars:
observational constraints and implications for kick mechanisms”, Astrophys. J., 639,
1007–1017, (2006). [![]() ![]() ![]() |
![]() |
325 | Weisberg, J.M., Nice, D.J. and Taylor, J.H., “Timing Measurements of the Relativistic Binary
Pulsar PSR B1913+16”, Astrophys. J., 722, 1030–1034, (2010). [![]() ![]() ![]() |
![]() |
326 | Wilson, J.R. and Mathews, G.J., “Relativistic hydrodynamics”, in Evans, C.R., Finn, L.S.
and Hobill, D.W., eds., Frontiers in Numerical Relativity, Proceedings of the International
Workshop on Numerical Relativity, University of Illinois at Urbana-Champaign, USA, 9 – 13
May 1988, pp. 306–314, (Cambridge University Press, Cambridge; New York, 1989). [![]() |
![]() |
327 | Wilson, J.R. and Mathews, G.J., “Instabilities in Close Neutron Star Binaries”, Phys. Rev.
Lett., 75, 4161–4164, (1995). [![]() ![]() |
![]() |
328 | Wilson, J.R., Mathews, G.J. and Marronetti, P., “Relativistic numerical model for close neutron
star binaries”, Phys. Rev. D, 54, 1317–1331, (1996). [![]() ![]() ![]() |
![]() |
329 | Winicour, J., “Disembodied boundary data for Einstein’s equations”, Phys. Rev. D, 80, 124043,
(2009). [![]() ![]() ![]() |
![]() |
330 | Xing, Z.-G., Centrella, J.M. and McMillan, S.L.W., “Gravitational radiation from coalescing
binary neutron stars”, Phys. Rev. D, 50, 6247–6261, (1994). [![]() ![]() ![]() |
![]() |
331 | Xing, Z.-G., Centrella, J.M. and McMillan, S.L.W., “Gravitational radiation from the
coalescence of binary neutron stars: Effects due to the equation of state, spin, and mass ratio”,
Phys. Rev. D, 54, 7261–7277, (1996). [![]() ![]() ![]() |
![]() |
332 | Yamamoto, T., Shibata, M. and Taniguchi, K., “Simulating coalescing compact binaries by a
new code (SACRA)”, Phys. Rev. D, 78, 064054, (2008). [![]() ![]() ![]() |
![]() |
333 | York Jr, J.W., “Conformal ‘thin sandwich’ data for the initial-value problem”, Phys. Rev.
Lett., 82, 1350–1353, (1999). [![]() ![]() ![]() |
![]() |
334 | Yoshida, S., Bromley, B.C., Read, J.S., UryĆ«, K. and Friedman, J.L., “Models of helically
symmetric binary systems”, Class. Quantum Grav., 23, S599–S614, (2006). [![]() ![]() ![]() |
![]() |
335 | Zerilli, F.J., “Gravitational field of a particle falling in a schwarzschild geometry analyzed in
tensor harmonics”, Phys. Rev. D, 2, 2141–2160, (1970). [![]() ![]() |
![]() |
336 | Zhang, W.-Q., Woosley, S.E. and Heger, A., “Fallback and Black Hole Production in Massive
Stars”, Astrophys. J., 679, 639–654, (2007). [![]() ![]() ![]() |
![]() |
337 | Zink, B., Schnetter, E. and Tiglio, M., “Multi-patch methods in general relativistic astrophysics:
Hydrodynamical flows on fixed backgrounds”, Phys. Rev. D, 77, 103015, (2008). [![]() ![]() ![]() |
![]() |
338 | Zorotovic, M., Schreiber, M.R., Gänsicke, B.T. and Nebot Gómez-Morán, A.,
“Post-common-envelope binaries from SDSS. IX: Constraining the common-envelope
efficiency”, Astron. Astrophys., 520, A86, (2010). [![]() ![]() ![]() |
http://www.livingreviews.org/lrr-2012-8 |
Living Rev. Relativity 15, (2012), 8
![]() This work is licensed under a Creative Commons License. E-mail us: |