Using this circularity of primordial binaries as a starting point, one may use the constraint equations of GR, along with an assumption of quasi-circularity, to derive sets of elliptic equations describing compact binary configurations. For both QE and dynamical calculations, most groups typically make use of the Arnowitt–Deser–Misner (ADM) 3+1 splitting of the metric [9], which foliates the metric into a set of three-dimensional hypersurfaces by introducing a time coordinate. The resulting form of the metric, which is completely general, is written
whereThe field equations of general relativity take the deceptively simple form
where For systems containing NSs, one must consider the effects of nuclear matter through its presence in the
stress-energy tensor . It is common to assume that the matter has the EOS describing a perfect,
isotropic fluid, for which the stress energy tensor is given by
The problem in constructing initial data is not so much producing solutions that are self-consistent
within GR, but rather to specify a sufficient number of assumptions to fully constrain a solution. Indeed,
there are only four constraints imposed by the equations of GR, known as the Hamiltonian and momentum
constraints. The Hamiltonian constraint is found by projecting Einstein’s equations twice along the
direction defined by a normal observer, and describes the way stress-energy leads to curvature in the metric
(see, e.g., [28] for a thorough review):
Projecting Einstein’s equations in the space and time directions leads to the vectorial momentum constraint
where
In order to specify all the free variables that remain once the Hamiltonian and momentum
constraints are satisfied, two different techniques have been widely employed throughout the
numerical relativity community. One, known as the Conformal Transverse-Traceless (CTT)
decomposition, underlies the Bowen–York [52] solution for black holes with known spin and/or
linear momentum that is widely used in the “moving puncture” approach. To date, however,
the CTT formalism has not been used to generate NS-NS initial data, and we refer readers
to [284, 63] for descriptions of the CTT formalism applied to BH-NS and BH-BH initial data,
respectively.
To date, most groups have used the Conformal Thin Sandwich (CTS) formalism to generate QE NS-NS
data (see [28] for a review, [13, 137] for the initial steps in the formulation, and [326, 327
, 333, 69] for
derivations of the form in which it is typically used today). One first specifies that the conformal 3-metric is
spatially flat, i.e.,
, where
is the Kronecker delta function. Under this assumption, the only
remaining parameter defining the spatial metric is the conformal factor
, which serves the role of a
gravitational potential. Indeed, in the limit of weak sources, it is linearly related to the standard
Newtonian potential. Next, one specifies that there exists a helical Killing vector, so that, as
the configuration advances forward in time, all quantities remain unchanged when properly
rotated at constant angular velocity in the azimuthal direction. This is sufficient to fix all but
the trace of the extrinsic curvature, with the other components forced to satisfy the relation
The trace of the extrinsic curvature remains a free parameter in this approach. While one may
choose arbitrary prescriptions to fix it, most implementations choose a maximal slicing of the spatial
hypersurfaces by setting
. Under these assumptions the Hamiltonian and momentum
constraints, along with the trace of the Einstein equations, yield five elliptic equations for the lapse, shift
vector, and conformal factor:
The breakdown in Eqs. 18, 19
, and 20
is not unique. The Meudon group [125
, 124
], to pick one
example, has often chosen to define
and
, and replace Eqs. 18
and 19
with the
equivalent pair
This approach is sufficient to define the field component of the configuration, but one still needs to solve
for the matter quantities as well. One starts by assuming that there is a known prescription for
reconstructing the density, internal energy, and pressure from the enthalpy . Next, one has to assume
some model for the spin of the NS. While corotation is often a simpler choice, since the velocity field of the
matter is zero in the corotating frame, the more physically reasonable condition is irrotational flow. Indeed
a realistic NS viscosity is never sufficiently large to tidally lock the NS to its companion during
inspiral [45
, 146
]. If we define the co-momentum vector
, irrotational flow implies the vanishing
of its curl:
To date, all QE sequences and dynamical runs in the literature have assumed that NSs are either irrotational or synchronized, but it is possible to construct the equations for arbitrary NS spins so long as they are aligned [29, 309]. While suggestions are also given there on how to construct QE sequences with intermediate spins using the new formalism, none have yet appeared in the literature. Similarly, a formalism to add magnetic fields self-consistently to QE sequences has been constructed [314], as current dynamical simulations typically begin from data assuming either zero magnetic fields or those that only contribute via magnetic pressure.
The primary drawback of the CTS system is the lack of generality in assuming the spatial metric to be conformally flat, which introduces several problems. The Kerr metric, for example, is known not to be conformally flat, and conformally flat attempts to model Kerr BHs inevitably include spurious GW content. The same problem affects binary initial data: in order to achieve a configuration that is instantaneously time-symmetric, one actually introduces spurious gravitational radiation into the system, which can affect both the measured parameters of the initial system as well as any resulting evolution.
Other numerical formalisms to specify initial data configurations in GR have been derived using different
assumptions. Usui and collaborators derived an elliptic set of equations by allowing the azimuthal
component of the 3-metric to independently vary from the radial and longitudinal components [319, 318],
finding good agreement with the other methods discussed above. A number of techniques have been
developed to construct helically symmetric spacetimes in which one actually solves Einstein’s equations to
evaluate the non-conformally-flat component of the metric, which are typically referred to as “waveless” or
“WL” formalisms [260, 50, 291]. In terms of the fundamental variables, rather than specifying the
components of the conformal spatial metric by ansatz, one specifies instead the time derivative of the
extrinsic curvature using a physically motivated prescription. These methods are designed to match
the proper asymptotic behavior of the metric at large distances, and may be combined with
techniques designed to enforce helical symmetry of the metric and gauge in the near zone (the near
zone helical symmetry, or “NHS” formalism) to produce a global solution [315
, 334, 316
].
QE sequences generated using this formalism [315] have shown that the resulting conformal
metric is indeed non-flat, with deviations of approximately 1% for the metric components, and
similar differences in the system’s binding energy when compared to equivalent CTS results.
They suggest [316
] that underestimates in the quadrupole deformations of NS prior to merger
may result in total phase accumulation errors of a full cycle, especially for more compact NS
models.
QE formalisms reflect the assumption that binaries will be very nearly circular, since GW emission
acting over very long timescales damps orbital eccentricity to negligible values for primordial NS-NS
binaries between their formation and final merger. Binaries formed by tidal capture and other dynamical
processes, which may be created with much smaller initial separations, are more likely to maintain
significant eccentricities all the way to merger (see, e.g., [213] for a discussion of such processes for BH-BH
binaries) and it has been suggested based on simple analytical models that such mergers, likely occurring in
or near dense star clusters, may account for a significant fraction of the observed SGRB sample [167].
However, more detailed modeling is required to work out accurate estimates of merger rates given the
complex interplay between dynamics and binary star evolution that determines the evolution of dense star
clusters, and given the large uncertainties in the distributions of star cluster properties in galaxies
throughout the universe. No initial data have ever been constructed in full GR for merging
NS-NS binaries with eccentric orbits since the systems are then highly time-dependent, while
the calculations performed to evolve them generally use a superposition of two stationary NS
configurations [122].
http://www.livingreviews.org/lrr-2012-8 |
Living Rev. Relativity 15, (2012), 8
![]() This work is licensed under a Creative Commons License. E-mail us: |