Let us recall that the angular diameter distance in a FLRW model can be written as:
where We can invert the last equation to obtain an expression for the curvature parameter that depends on the
Hubble parameter and comoving angular diameter distance
only, see [240]:
The idea is then to measure the curvature parameter at different redshifts. Let us consider again
Eq. (4.4.2
); if we are in a FLRW universe then
should be independent of redshift, i.e., its derivative
with respect to
should be zero
A possible test to measure at various redshifts is provided by baryon acoustic oscillations.
Observing the features of BAO in the galaxy power spectrum in both angular (orthogonal to the line of
sight
) and radial direction (along the line of sight
) allows us to measure with a great accuracy
both
and
, respectively.
If the geometry is not FLRW, then the standard BAO will be deformed in three different ways:
Also the growth factor will be modified, perhaps in a scale dependent way. If the true underlying model is radically inhomogeneous, but we assume a FLRW in interpreting the observations, the derived cosmological parameters will be biased (or unphysical) and the parameters derived from BAO data will be different from those measured by SN Ia and/or lensing. As argued also in different contexts, a mismatch on the value of one of more parameters may indicate that we are assuming a wrong model.
We show here the sensitivity that can be reached with an experiment like Euclid for the curvature
parameter (Amendola and Sapone, in preparation). We choose a redshift survey with a depth of
and consider different redshift bins.
In Figure 53 we show the first
absolute errors on the curvature parameter for different redshift
bins that can be obtained measuring the Hubble parameter and the angular diameter distance. In obtaining
these errors we used Fisher-based forecasts for the radial and angular BAO signal following [815
, 338], as
discussed in Section 1.7.3.
The sensitivity that can be reached with an experiment like Euclid is extremely high; we can
measure the curvature parameter better than 0.02 at redshift of the order of . This will
allow us to discriminate between FLRW and averaged cosmology as for example illustrated in
Figure 54
.
An alternative to measuring the global curvature is to measure the shear of the background geometry. If
there is a large inhomogeneous void then a congruence of geodesics will not only expand but also suffer
shear [382]. The amount of shear will depend on the width and magnitude of the transition between the
interior of the void and the asymptotic Einstein–de Sitter universe. Normalizing the shear w.r.t. the overall
expansion, one finds [382]
http://www.livingreviews.org/lrr-2013-6 |
Living Rev. Relativity 16, (2013), 6
![]() This work is licensed under a Creative Commons License. E-mail us: |