The idea that the dark universe may be a signal of modified gravity has led to the development of a plethora of theories. From polynomials in curvature invariants, preferred reference frames, UV and IR modifications and extra dimensions, all lead to significant modifications to the gravitational sector. A universal feature that seems to emerge in such theories is the existence of fields that may serve as a proxy to dark matter. This should not be unexpected. On a case by case basis, one can see that modifications to gravity generically lead to extra degrees of freedom.
For example, polynomials in curvature invariants lead to higher-derivative theories which inevitably
imply extra (often unstable) solutions that can play the role of dark matter. This can be made
patently obvious when mapping such theories onto the Einstein frame with an addition scalar field
(Scalar-Tensor theories). Einstein-Aether theories [989] explicitly introduce an extra time-like
vector field. The time-like constraint locks the background, leading to modifications to the
background expansion; perturbations in the vector field can, under certain conditions, lead to
growth of structure, mimicking the effect of pressureless dark matter. The vector field plays the
same role in TeVeS [117], where two extra fields are introduced to modify the gravitational
dynamics. And the same effects come into play in bigravity models [83
] where two metrics
are explicitly introduced – the scalar modes of the second metric can play the role of dark
matter.
In what follows we briefly focus on three of the above cases where extra gravitational degrees of freedom play the role of dark matter: Einstein-Aether models, TeVeS models and bigravity models. We will look at the Einstein-Aether model more carefully and then briefly discuss the other two cases.
As we have seen in a previous section, Einstein-Aether models introduce a time-like vector field into
gravitational dynamics. The four vector
can be expanded as
[989]. In Fourier space we have
, where, for computational convenience, we have
defined
and have used the fact that the constraint fixes
.
The evolution equation for the perturbation in the vector field becomes (where primes denote derivatives with respect to conformal time)
The perturbation in the vector field is sourced by the two gravitational potentials and
and will in turn source them through Einstein’s equations. The Poisson equation takes the
form
To understand why the vector field can play the role of dark matter it is instructive to
study the effect of the vector field during matter domination. It should give us a sense of how
in the generalized Einstein-Aether case, the growth of structure is affected. Let us consider
the simplest case in which the the dominant remaining contribution to the energy density is
baryonic, treated as a pressureless perfect fluid with energy-momentum tensor and let us
introduce the variable
. For ease of illustration we will initially consider only the case
where
is described by a growing monomial, i.e.
. During the matter era we
have
with ,
, and
On small scales (), we find
We have already come across the effect of the extra fields of TeVeS. Recall that, in TeVeS, as well as a metric (tensor) field, there is a time-like vector field and a scalar field both of which map the two frames on to each other. While at the background level the extra fields contribute to modifying the overall dynamics, they do not contribute significantly to the overall energy density. This is not so at the perturbative level. The field equations for the scalar modes of all three fields can be found in the conformal Newtonian gauge in [841]. While the perturbations in the scalar field will have a negligible effect, the space-like perturbation in the vector field has an intriguing property: it leads to growth. [318] have shown that the growing vector field feeds into the Einstein equations and gives rise to a growing mode in the gravitational potentials and in the baryon density. Thus, baryons will be aided by the vector field leading to an effect akin to that of pressureless dark matter. The effect is very much akin to that of the vector field in Einstein-Aether models – in fact it is possible to map TeVeS models onto a specific subclass of Einstein-Aether models. Hence the discussion above for Einstein-Aether scenarios can be used in the case of TeVeS.
In bigravity theories [83], one considers two metrics: a dynamical metric and a background metric,
. As in TeVeS, the dynamical metric is used to construct the energy-momentum tensor of the
non-gravitational fields and is what is used to define the geodesic equations of test particles. The equations
that define its evolution are usually not the Einstein field equations but may be defined in terms of the
background metric.
Often one has that is dynamical, with a corresponding term in the gravitational action. It then
becomes necessary to link
to
with the background metric determining the field equations of the
dynamical metric through a set of interlinked field equations. In bigravity models both metrics are used to
build the Einstein–Hilbert action even though only one of them couples to the matter content. A complete
action is of the form
http://www.livingreviews.org/lrr-2013-6 |
Living Rev. Relativity 16, (2013), 6
![]() This work is licensed under a Creative Commons License. E-mail us: |