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Abstract. Almost Lie algebroids are generalizations of Lie algebroids, when the Jacobiator
is not necessary null. A simple example is given, for which a Lie algebroid bracket or
a Courant bundle is not possible for the given anchor, but a natural extension of the bundle
and the new anchor allows a Lie algebroid bracket. A cohomology and related characteristic
classes of an almost Lie algebroid are also constructed. We prove that these characteristic
classes are all pull-backs of the characteristic classes of the base space, as in the case of a Lie
algebroid.
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1 Introduction

The Lie algebroids (as, for example [14]) are generalizations of Lie algebras and integrable regular
distributions. In fact a Lie algebroid is an anchored vector bundle (see [17, 18, 20]) with a Lie
bracket on the module of sections.

The use of Lie algebroids is very widespread in the literature. It is involved as a geometric
settings, generalizing different geometric notions. But some relaxations of the definition of
a Lie algebroid are already studied under different names and different conditions (see [6] for an
up-to-day review).

The Jacobiator of the bracket has different forms, according to the setting (for example, for
manifolds or supermanifolds, for skew symmetric or general brackets etc.) The Jacobi identity
(i.e., the vanishing Jacobiator) is an essential condition for a Lie algebroid [2].

The use of relaxation conditions of Lie algebroids give a simple and elegant way to describe
some mechanical systems. For example, linear almost Poisson structures [3], quasi-Lie alge-
broids [7], or algebroids [5, 8], but the list can be easily extended, most due to the same authors.

According also to [3, 5, 7], the interest in almost Lie algebroids comes also from that they
are involved in nonholonomic geometry.

The aim of this paper is to investigate some properties of an almost Lie algebroid, i.e., an
anchored vector bundle with an a corresponding almost Lie bracket. For sake of simplicity we
consider the almost Lie case, but some almost Lie conditions can be removed. Some abstract
properties are given explicitly in some simple and concrete examples.

Specifically, we consider a trivial vector bundle πE0 : E0 → R2 having a four-dimensional fibre
and we construct:

• a specific anchor ρ0 : E0 → TR2 (see formulas (2.1)) such that its image is surjective,
except the origin, where its image is null and

• a corresponding almost Lie bracket (see formula (2.2)) that gives an almost Lie algebroid
structure on E0.
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We prove (Theorem 2.3) that there is no skew symmetric bracket to give a Lie algebroid
structure on E0. It is interesting that if we remove the origin of the base, then the resulting
vector bundle E′0 has a Lie algebroid bracket. But there is a subalgebroid E′′0 ⊂ E0 that is
a Lie algebroid that generate the same (generalized) distribution of TR2 as E0, described above.
Notice that the orbit set of the almost Lie algebroid E0 has two elements: the origin (singular)
and the rest of R2 (regular).

The derived anchored bundle constructed in [20], used for E0, gives a Lie algebroid structure
(Theorem 2.9). The proof of this result needs some long computations, based on some auxiliary
and technical results proved in Proposition 2.6.

The interest in E0 supporting an almost Lie algebroid structure comes not only from the fact
that it has no Lie algebroid structure, but also from the fact that it can not be a Courant vector
bundle (Proposition 2.10). But according to the definitions related to the almost complex Lie
algebroid case in [11, 19], E0 has an almost complex endomorphism that has a null Nijenhuis
tensor, i.e., it is integrable (Proposition 2.11).

Notice that the existence of a Lie algebroid bracket for a transitive Lie algebroid has obstruc-
tions (see, for example, [12, 14, 16]).

The cohomology of a Lie algebroid was defined in [15] as the cohomology of an associated
differential complex (see also [14]). The characteristic classes of a Lie algebroid are constructed
in [4], where there is proved that they are the pull back of the characteristic classes of the base
manifold.

An interesting problem related to almost Lie algebroids comes to be a construction of a co-
homology theory and then some characteristic classes, related to this. The reasons come true as
those in the Lie algebroid case.

In the last section we construct the cohomology complex of an almost Lie algebroid. In spite
of the fact the complex is a quotient set, we use definitions adapted to corresponding sets. Using
an analogous way as in [10] to construct characteristic classes in the classical case, we construct
the characteristic classes of an almost Lie algebroid. We prove an analogous result as in [4], i.e.,
the characteristic classes of a skew algebroid are the pull back of the characteristic classes of the
base manifold (Theorem 3.4).

A construction of a cohomology theory for almost lie algebroids is given also in [9], using
a supergeometry setting. The calculations with cohomology classes in a such context are tech-
nically quite difficult, such as to construct characteristic classes following a classical way. The
main difficulty to handle classical tools in this case is that some objects can not be used related
to some sections of vector bundles.

In our paper we consider a different approach. The cohomology classes are obtained in a more
simply form, from a technical point of view. The differential complex elements are equivalence
classes of antisymmetric forms of the vector bundle support of the almost Lie structure. For
the sake of simplicity of our constructions (cohomology classes and then characteristic classes),
we do not use the language of sheaf theory, nor any elaborated algebraic form of the differential
complexes as equivalence classes.

Given the above, we think it is an interesting problem, but not a simple one, to relate the
cohomology defined in the paper with that considered in [9].

2 Skew symmetric algebroids

Let πE : E → M be a (smooth) vector bundle. An anchor on E is a vector bundle map
ρ : E → TM , where πTM : TM →M is the tangent vector bundle of M ; equivalently, an F(M)-

linear ρ : Γ(E) → Γ(TM)
not.
= X (M). A skew symmetric bracket on E is a map [·, ·]E : Γ(E) ×

Γ(E)
not.
= Γ(E)2 → Γ(E), such that [Y,X]E = −[X,Y ]E , [X, fY ]E = ρ(X)(f)Y + f [X,Y ]E and
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ρ([X,Y ]E) = [ρ(X), ρ(Y )], ∀X,Y ∈ Γ(E) and f ∈ F(M). The tensor map JE : Γ(E)3 → Γ(E),
JE(X,Y, Z) =

∑
circ[X, [Y,Z]E ]E is called the Jacobiator map of the bracket. An almost Lie

algebroid is a Lie algebroid provided that the Jacobiator of the bracket vanishes.
If πA : A → M is a vector bundle over M , then a linear E-connection on A is a map

∇ : Γ(E)×Γ(A)→ Γ(A) that verify Koszul conditions: ∇fXs = f∇Xs,∇(X+X′)s = ∇Xs+∇X′s,
∇X(fs) = ρ(X)(f)s+f∇Xs, ∇X(s+s′) = ∇Xs+∇Xs′, ∀X,X ′ ∈ Γ(E), s, s′ ∈ Γ(A), f ∈ F(M).
Its curvature is the tensor R : Γ(E)2 × Γ(A)→ Γ(A), given by the formula

R(X,Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]Es,

∀X,Y ∈ Γ(E) and s ∈ Γ(A).
In particular, for an E-connection ∇ on E we can consider its torsion T : Γ(E)2 → Γ(E),

given by formula

T (X,Y ) = ∇XY −∇YX − [X,Y ]E

and we denote its curvature

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]EZ
not.
= ∇X∧Y Z,

∀X,Y, Z ∈ Γ(E).
The following result follows by straightforward computations.

Proposition 2.1 (first Bianchi identities). Let ∇ be an E-connection on E with torsion T and
curvature R. We have∑

circ

R(X,Y )Z =
∑
circ

(∇XT )(Y, Z) +
∑
circ

T (T (X,Y ), Z) + JE(X,Y, Z).

An immediate corollary is the following result.

Corollary 2.2. Consider an almost Lie algebroid E →M .

1. If there are locally E-connections on E with vanishing torsion and curvature, then E is
a Lie algebroid, i.e., the bracket of E has a null Jacobiator. Or, equivalently:

2. If the bracket of E has a non-null Jacobiator on an open U ⊂ M , then there is no local
E-connection on EU with vanishing torsion and curvature.

Notice that the Jacobiator and the curvature are tensors only in the case when E is an
algebroid, thus the vanishing conditions above have sense only in this setting.

Let us consider the following anchored vector bundle E0 → M on the base M = R2, where
E0 = R2 ×M2(R) and the anchor defined as follows. In every point x̄ =

(
x1, x2

)
:

ρ
(
X1

1

)
=
(
x1
)2 ∂

∂x1
, ρ

(
X1

2

)
=
(
x1
)2 ∂

∂x2
,

ρ
(
X2

1

)
=
(
x2
)2 ∂

∂x1
, ρ

(
X2

2

)
=
(
x2
)2 ∂

∂x2
, (2.1)

where Xi
j is the matrix with null entries, except 1 on the position (i, j), ∀ i, j ∈ {1, 2}. It is easy

to see that the image by ρ of sections of E0 generates the whole tangent space Tx̄R2 for x̄ 6= 0̄
and {0̄} ∈ T0̄R2 for x̄ = 0̄ = (0, 0). A section on E0 is in ker ρ iff it is an F

(
R2
)
-combination

of sections X1 =
(
x2
)2
X1

1 −
(
x1
)2
X2

1 and X2 =
(
x2
)2
X1

2 −
(
x1
)2
X2

2 . We notice that these two
sections do not generate a regular vector subbundle of E0. A general and more compact form,
useful to extend in higher dimensions, is ρ

(
Xj
i

)
=
(
xj
)2 ∂
∂xj

.
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In the sequel we consider some important examples using E0.

There is a bracket that gives a skew algebroid structure on E0, given by[
X1

1 , X
1
2

]
E

= 2x2X1
2 ,

[
X1

1 , X
2
1

]
E0

= −2x1X2
1 ,

[
X1

1 , X
2
2

]
E0

= 0,[
X1

2 , X
2
1

]
E0

= 2x2X1
1 − 2x1X2

2 ,
[
X1

2 , X
2
2

]
E0

= 2x2X1
2 ,

[
X2

1 , X
2
2

]
E0

= −2x2X2
1 .

In a compact form[
Xi
j , X

k
l

]
E0

= 2xkδkjX
i
l − 2xiδilX

k
j . (2.2)

The Jacobiator is

J
(
X1

1 , X
1
2 , X

2
2

)
= J

(
X1

1 , X
2
1 , X

2
2

)
= 0, J2F2

(
X1

1 , X
1
2 , X

2
1

)
= −2X2,

J
(
X1

2 , X
2
1 , X

2
2

)
= −2X1.

By a direct computation, we get[
X1, X

1
1

]
E0

=
[
X1, X

2
1

]
E0

=
[
X2, X

1
2

]
E0

=
[
X2, X

2
2

]
E0

= 0,
[
X1, X

2
2

]
E0

= −2x2X1,[
X1, X

1
2

]
E0

= 2x1X2,
[
X2, X

1
1

]
E0

= −2x1X2,
[
X2, X

2
1

]
E0

= 2x2X1.

Let us consider another bracket [·, ·]′E0
= [·, ·]E0 + B, i.e., [X,Y ]′E0

= [X,Y ]E0 + B(X,Y ),

∀X,Y ∈ Γ(E0), where B : Γ(E0)2 −→ Γ(E0) is an F
(
R2
)
-linear and sqew-symmetric map.

If the bracket [·, ·]′E0
gives an algebroid, then ρ([X,Y ]′E0

) = [ρ(X), ρ(Y )]. It follows that
ρ(B(X,Y )) = 0, thus B(X,Y ) = B1(X,Y )X1 + B2(X,Y )X2 defines two bilinear forms B1

and B2.

Let us denote by J and J ′ the Jacobiators of the brackets [·, ·]E0 and [·, ·]′E0
respectively. By

a straightforward computations, we have J ′(X,Y, Z) = J(X,Y, Z) + B(X,Y, Z), where

B(X,Y, Z) =
∑

cicl. X,Y,Z

(
[B(X,Y ), Z]E0 +B([X,Y ]E0 , Z) +B(B(X,Y ), Z)

)
.

Since J
(
X1

1 , X
1
2 , X

2
2

)
= J

(
X1

1 , X
2
1 , X

2
2

)
= 0, there are induced Lie algebroids structures on

the subbundles E01 and E02, generated by
{
X1

1 , X
1
2 , X

2
2

}
and by

{
X1

1 , X
2
1 , X

2
2

}
respectively.

Let us prove now that it is not possible to have

B
(
X1

1 , X
1
2

)
= B

(
X1

1 , X
2
1

)
= B

(
X1

1 , X
2
2

)
= B

(
X2

2 , X
1
2

)
= B

(
X2

2 , X
2
1

)
= 0,

but B
(
X1

2 , X
2
1

)
= B1X1 +B2X2.

Indeed, by a direct computation, we get

B
(
X1

1 , X
1
2 , X

2
1

)
= −

(
x1
)2
B1,1X1 −

(
x1
)2
B2,1X2

and

B
(
X1

2 , X
2
1 , X

2
2

)
= −

(
x2
)2
B1,2X1 −

(
x2
)2
B2,2X2.

Thus, in order that J ′ = 0, we must have −
(
x1
)2
B2,1 − 2 = 0, but this is not possible, for

example for x1 = 0. A similar argument can be used to prove the following result.

Theorem 2.3. There is no Lie algebroid bracket corresponding to the anchor ρ.
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Proof. Let us suppose that

B
(
X1

1 , X
2
2

)
= A1X1 +A2X2, B

(
X1

1 , X
2
1

)
= B1X1 +B2X2,

B
(
X1

1 , X
1
2

)
= C1X1 + C2X2, B

(
X2

2 , X
1
2

)
= D1X1 +D2X2,

B
(
X2

2 , X
2
1

)
= E1X1 + E2X2, B

(
X1

2 , X
2
1

)
= F1X1 + F2X2.

By a direct computation, we get from

J ′
(
X1

1 , X
e1
2 , X2

1

)
= J

(
X1

1 , X
1
2 , X

2
1

)
+ B

(
X1

1 , X
1
2 , X

2
1

)
= 0,

that there are smooth functions f, g : R2 → R such that x1f
(
x1, x2

)
+ x2g

(
x1, x2

)
− 2 = 0, but

this is not possible, for example for x1 = 0 and x2 = 0. �

Corollary 2.4. There is no E0-linear connection on E0 with simultaneously vanishing torsion
and curvature.

Consider now the following algebroid. The vector bundle E′0 over R2 is generated by four
generators, denoted by

{
Y 1

1 , Y
2

2 ,Y1,Y2

}
, the anchor is given by

ρ′
(
Y 1

1

)
=
(
x1
)2 ∂

∂x1
, ρ′

(
Y 2

2

)
=
(
x2
)2 ∂

∂x2
, ρ′

(
Y1

)
= ρ′

(
Y1

)
= 0

and the bracket of generators is[
Y 1

1 , Y
2

2

]
E′

0
= 0,

[
Y 1

1 ,Y1

]
E′

0
=
[
Y 2

2 ,Y2

]
E′

0
= 0,

[
Y 1

1 ,Y2

]
E′

0
= 2x1Y2,[

Y 2
2 ,Y1

]
E′

0
= 2x2Y1,

[
Y1,Y2

]
E′

0
= 2
(
x1
)2
x2Y1 + 2x1

(
x2
)2Y2.

Let us consider the map

f0 : E′0 → E0, f0

(
Y 1

1

)
= X1

1 , f0

(
Y 2

2

)
= X2

2 , f0

(
Y1

)
= X1, f0(Y2) = X2,

then extended by generators. Then f0 is a morphism of algebroids.

It is interesting that the new bracket given by[
Y 1

1 , Y
2

2

]′
E′

0
= 0,

[
Y 1

1 ,Y1

]′
E′

0
=
[
Y 2

2 ,Y2

]′
E′

0
= 0,

[
Y 1

1 ,Y2

]′
E′

0
= 2x1Y2,[

Y 2
2 ,Y1

]′
E′

0
= 2x2Y1,

[
Y1,Y2

]
E′

0
= 0

gives a Lie algebroid bracket on E′0. Obviously, there is not any Lie algebroid structure on E0

such that f0 be a Lie algebroid morphism.

In fact the vector subbundle E′′0 ⊂ E0 generated by A1 = X1
1 + X2

1 and B1 = X1
2 + X2

2 is
a subalgebroid and the induced bracket gives a Lie algebroid structure on E′′0 .

Denote now by S0 = {A′1,A′2,X ′1,X ′2} the restrictions of the corresponding sections A1, A2,
X1, X2 to E00 = E0\{(0, 0)} −→ R2\{(0, 0)}. Then S0 is a global base of sections Γ(E00).
More, considering the restriction of the anchor from E0 to E00 and the bracket [X ′1,X ′2]E00 =
[X ′α,A′β]E00 = 0, α, β = 1, 2, and [A′1,A′2]E00 = −2x2A′1 +2x1A′2, then one obtain a Lie algebroid
structure on E00. Thus removing the origin, the almost Lie algebroid on E0 (that has not a Lie
algebroid structure) changes essentially to the almost Lie algebroid on E00, that allows a Lie
algebroid structure. Notice that S0 can not extend to a base of Γ(E0).

As in the general case in [20], we can consider the derived anchored bundle E(1) = E⊕(E∧E),
where the anchor is denoted as ρ(1) and the bracket by [·, ·]E(1) . Concretely, ρ(1)(X) = ρ(X),
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ρ(1)(X ∧ Y ) = [ρ(X), ρ(Y )]− ρ([X,Y ]E), and consider an E-connection ∇ on E that has a null
torsion. We can lift ∇ to a linear E(1)-connection ∇(1) on E(1) using formulas

∇(1)
X Y = ∇XY + 1

2X ∧ Y, ∇(1)
X∧Y Z = ∇X∧Y Z,

∇(1)
X (Y ∧ Z) = ∇X(Y ∧ Z) = ∇XY ∧ Z +X ∧∇XZ

and

∇(1)
X∧Y (Z ∧ T ) = ∇X∧Y (Z ∧ T ) = ∇X∧Y Z ∧ T + Z ∧∇X∧Y T.

We define the bracket [·, ·]E(1) on E(1) by [U, V ]E(1) = ∇(1)
U V −∇(1)

V U , i.e., such as ∇(1) has
a null torsion.

Proposition 2.5. If E is an algebroid, then E(1) is an algebroid iff

ρ(R(X,Y )Z) = 0,

∀X,Y, Z ∈ Γ(E).

Proof. We have that E is an algebroid iff ρ(1)(X ∧ Y ) = 0. Thus if E(1) is an algebroid, then[
ρ(1)(X ∧ Y ), ρ(1)(Z)

]
= 0 = ρ(1)

(
[X ∧ Y,Z]E(1)

)
= ρ(1)(∇X∧Y Z −∇z(X ∧ Y )) = ρ(1)(∇X∧Y Z),

and conversely, this equality ensures that E(1) is an algebroid. �

We extend the definition of∇X∧Y Z = R(X,Y )Z to∇X∧Y (Z∧T ) = ∇X∧Y Z∧T+Z∧∇X∧Y T .
The following properties of curvature R(1) of ∇(1) can be obtained by straightforward com-

putations.

Proposition 2.6. If X,X1, X2, Y, Y1, Y2, Z, T ∈ Γ(E), then

1) R(1)(X,Y )Z = R(1)(X,Y )(Z ∧ T ) = 0,

2) R(1)(X1 ∧X2, Y )Z = ∇X1∧X2∇Y Z −∇Y∇X1∧X2Z −∇∇X1∧X2
Y Z +∇∇Y (X1∧X2)Z,

3) R(1)(X1 ∧X2, Y )(Z ∧ T ) = R(1)(X1 ∧X2, Y )Z ∧ T + Z ∧R(1)(X1 ∧X2, Y )T,

4) R(1)(X1 ∧X2, Y1 ∧ Y2)Z = ∇X1∧X2∇Y1∧Y2Z −∇Y1∧Y2∇X1∧X2Z −∇∇X1∧X2
(Y1∧Y2)Z

+∇∇Y1∧Y2 (X1∧X2)Z,

5) R(1)(X1 ∧X2, Y1 ∧ Y2)(Z ∧ T ) = R(1)(X1 ∧X2, Y )Z ∧ T + Z ∧R(1)(X1 ∧X2, Y )T.

We use now this constructions in the case of E0.
An E0-linear connection ∇ on E0 with vanishing torsion can be constructed by generators

using the formulas

∇X1
1
X1

2 = −∇X1
2
X1

1 = x2X1
2 , ∇X1

1
X2

1 = −∇X2
1
X1

1 = −x1X2
1 ,

∇X1
1
X2

2 = −∇X2
2
X1

1 = 0, ∇X1
2
X2

1 = −∇X2
1
X1

2 = x2X1
1 − x1X2

2 ,

∇X1
2
X2

2 = −∇X2
2
X1

2 = x2X1
2 , ∇X2

1
X2

2 = −∇X2
2
X2

1 = −x2X2
1 .

In a compact form ∇ has the form

∇Xi
j
Xk
l = 2xkδkjX

i
l

By a direct computation, we can get the following result.
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Proposition 2.7. The curvature of the above E0-connection ∇ is

R
(
X1

1 , X
2
1

)
X1

2 = −2X2, R
(
X1

1 , X
2
1

)
X1

1 = −2X1, R
(
X1

1 , X
2
1

)
X1

2 = −2X2,

R
(
X2

2 , X
1
2

)
X2

1 = 2X1, R
(
X2

2 , X
1
2

)
X2

2 = 2X1, R
(
X2

2 , X
1
2

)
X2

2 = 2X2

and the corresponding skew symmetric relations, but the other components are null.

Since ρ (R(X,Y )Z) = 0, using Proposition 2.5 we get

Corollary 2.8. Using the above E0-connection ∇, the derived anchored E
(1)
0 has an almost Lie

algebroid structure.

By a straightforward and a long computations, but using Proposition 2.6 in order to shorten
the calculations, we obtain

Theorem 2.9. The almost Lie algebroid E
(1)
0 is a Lie algebroid.

According to [21] (see also [1, 13]), an anchored vector bundle E with anchor ρ is a Courant
vector bundle if there is a pseudo-euclidian metric g in the fibers of E such that ρ◦#◦ρ∗ : T ∗M →
TM vanishes, where #: E∗ → E is the musical isomorphism induced by g.

Proposition 2.10. There is no pseudo-euclidean metric g on E0 such that E0 is a Courant
algebroid according to the given anchor.

Proof. Let us suppose that there is a such metric g. Considering the F
(
R2
)
-generators{

X1
1 , X

1
2 , X

2
1 , X

2
2

}
of Γ(E0) and {ē1, ē2} of X

(
R2
)
, then the matrix of ρ : E0 −→ TR2 is((

x1
)2
I2

(
x2
)2
I2

)
and the matrix of g−1 is

(
G1 G2

G2 G3

)
, where G1, G2, G3 are functions of

variables
(
x1, x2

)
. It follows that

(
x1
)4
G1 + 2

(
x1
)2(

x2
)2
G2 +

(
x2
)4
G3 = 02, where 02 is the

(two) square zero matrix. But considering x2 = λx1, λ 6= 0, we get that for x1 6= 0, we have
G1 + 2λ2G2 +λ4G3 = 0 in any point

(
x1, λx1

)
, x1 6= 0. For x1 → 0, we obtain that the matrices

G0
i = Gi(0, 0), i = 1, 2, 3, verify the equation G0

1 + 2λ2G0
2 + λ4G0

3 = 0 for every λ 6= 0, thus
G0
i = 02, i = 1, 2, 3. But this is not possible for the metric g. �

Analogously to the Lie algebroid case [11, 19], an almost complex almost Lie algebroid is
a real almost Lie algebroid E such that there is an almost complex endomorphism on E (i.e.,
an endomorphism JE of E such that J2

E = −idΓ(E)). The almost complex structure is integrable
if the Nijenhuis tensor NJE : Γ(E)2 → Γ(E), NJE (X,Y ) = [JEX, JEY ]E − JE [X, JEY ]E −
JE [JEX,Y ]E − [X,Y ]E , vanishes, i.e., NJE = 0.

On the almost Lie algebroid E0 there is an almost complex endomorphism JE0 given by the
formulas JE0

(
X1

1

)
= −X1

2 , JE0

(
X1

2

)
= X1

1 , JE0

(
X2

1

)
= −X2

2 , JE0

(
X2

2

)
= X2

1 . In a compact

form, JE0

(
Xi
j

)
= (−1)iXi

j̃
, where j̃ = 2 if j = 1 and j̃ = 1 if j = 2.

Proposition 2.11. The above almost complex structure JE0 is integrable.

Proof. A straightforward computation leads to NJE0

(
Xj
i , X

k
l

)
= 0. �

Of course, since there is no Lie algebroid structure on E0, it can not be an almost complex
(or even complex) Lie algebroid structure on E0.
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3 Characteristic classes of almost Lie algebroids

We consider now an extension to almost Lie algebroids of the cohomology of Lie algebroids.

The background is also the exterior algebra of the dual E∗, denoted as Λ∗(E). The deriva-

tion d acts on functions f ∈ Λ0(E) as df(X) = ρ(X)(f)
not.
= [X, f ]E (the differential of f) and

for ω ∈ Λk(E) its differential is

dω(X0, . . . , Xk) =
k∑
i=0

(−1)i
[
X0, ω

(
X0, . . . , X̂i, . . . , Xk

)]
E

+
∑

0≤i<j≤k
(−1)i+jω

(
[Xi, Xj ]E , X0, . . . , X̂i, . . . , X̂j , . . . , Xk

)
.

We have that d2(f) = 0, but for ω ∈ Λ1(E), d2(ω) = ω ◦ J , where J is the Jacobiator of the
bracket.

Considering a given almost Lie algebroid structure on E, let us denote as

• Zk(E) ⊂ Λk(E) the set of ω such that there is θ ∈ Λk−1(E) such that dω = d2θ, we call ω
a strong closed form;

• Bk(E) ⊂ Zk(E) the set of ω ∈ Zk(E) such that there is θ′ ∈ Λk−1(E) such that ω = dθ′,
we call ω a strong exact form;

• Zk0 (E) ⊂ Λk(E) the set of ω such that dω = 0 (it is easy to see that Zk0 (E) ⊂ Zk(E));

• Bk
0 (E) = Bk(E) ∩ Zk0 (E).

It is also easy to see that Z∗0 (E) ⊂ Λ∗(E) is an exterior subalgebra and B∗0(E) ⊂ Z∗0 (E) is an
exterior ideal; also Bk(E) ⊂ Zk(E) and Bk

0 (E) ⊂ Zk0 (E) are real vector subspaces. Consider, for
every k ≥ 0, the real vector space quotients Hk(E) = Zk(E)/Bk(E) and Hk

0 (E) = Zk0 (E)/Bk
0 (E)

and for ω ∈ Zk(E) and ω′ ∈ Zk(E) denote their classes by [ω] and [ω′]0 respectively. Then
H∗0 (E) is an exterior real algebra. If ω ∈ Zk(E) and dω = d2θ, then ω′ = ω − dθ ∈ Zk0 (E) and
[ω] = dθ + [ω′]0. Notice that in the Lie algebroid case (when d2 = 0), one has [ω] = [ω′]0, since
dθ ∈ [ω′]0, more precisely [dθ]0 = [0]0; thus in this case the two types of cohomology classes
coincides. In the general case, [dθ]0 = [0]0 only when [dθ]0 has sense, i.e., d2θ = 0.

But we have to relax the above definitions, in order to construct higher order characteris-
tic classes (of order at least four). Consider a domain U ⊂ M of trivialisation and a base
{sα}α=1,...,k ⊂ Γ(EU ), as well the dual base {ωα}α=1,...,k ⊂ Γ(E∗U ). We denote by Λ(2)∗(EU ) the
exterior ideal generated in Λ∗(EU ) by the set

{
d2ωα

}
α=1,...,k

⊂ Λ2(EU ). Considering an open

cover of M with such U , For k ≥ 3, denote by Dk(E) the set of differential forms ω ∈ Λk(E)
such that ωU ∈ Λ(2)k(EU ), where ωU denotes the restriction. For k ∈ {0, 1, 2}, Dk(E) = {0}.
We have that Λ(2)∗(E) ⊂ Λ∗(E) is an exterior ideal and d induces a differential d̄ on Λ̄∗(E) =
Λ∗(E)/Λ(2)∗(E). It is easy to see that d̄2 = 0 and Λ̄∗(E) becomes a differential algebra. There
is a morphism of differential algebras ρ∗ : Λ(M)→ Λ̄∗(E), induced by the anchor ρ : E → TM .

Accordingly, we denote as

• Zk(E) ⊂ Λk(E) the set of ω ∈ Λk(E) such that dω ∈ Λ(2)k+1(E), we call ω a weak closed
form;

• Bk(E) ⊂ Zk(E) the set of ω ∈ Zk(E) such that there are θ′ ∈ Λk−1(E) and ω′ ∈ Λ(2)k(E)
such that ω = ω′ + dθ′, we call ω a weak exact form.

It is easy to see that Zk(E) ⊂ Zk(E) and Bk(E) ⊂ Bk(E), i.e., a form that is strong closed
(strong exact) is also weak closed (weak exact respectively).
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For every k ≥ 0, Bk(E) ⊂ Zk(E) is a real vector subspace; we call the quotient real vector
space Hk(E) = Zk(E)/Bk(E) as the order k real cohomology of E. Then H∗(E) is an exterior
real algebra, that we call the weak real cohomology of E.

In the Lie algebroid case, one has Λ(2)k+1(E) = {0}, Zk(E) = Zk(E), Bk(E) = Bk(E) and
Hk(E) = Hk(E) is the k-cohomology space of the Lie algebroid (as, for example in [21]).

First, let us see what can be recovered from Cartan calculus, in the case of an almost Lie
algebroid.

Let πA : A → M be a vector bundle over M . As in the case of Lie algebroids (as in [4]),
a linear E-connection on A is a map ∇ : Γ(E)×Γ(A)→ Γ(A) that fulfills Koszul conditions, i.e.,
it is F(M)-linear in the first argument and, considering the second argument, it is a 1-derivation
according to F(M) (see [20]). The E-curvature of ∇ is the F(M)-linear map R : Γ(E)×Γ(E)×
Γ(A) → Γ(A), R(X,Y )B = ∇X∇YB − ∇Y∇XB − ∇[X,Y ]AB. Consider now bases of local
sections over the same open subsets U ⊂ M , {sα}α=1,...,k ⊂ Γ(EU ) and {s̄a}a=1,...,n ⊂ Γ(AU ).
Let us consider the dual bases {ωα}α=1,...,k ⊂ Γ(E∗U ) and {ω̄a}a=1,...,n ⊂ Γ(A∗U ). A linear E-
connection on A gives the local functions Γaβb = ω̄a(∇sβ s̄b), Raαβb = ω̄a(R(sα, sβ)s̄b) and the

local forms θab = Γaβbω
β ∈ Γ(E∗U ) and Rab = 1

2R
a
αβbω

α∧ωβ. The following Cartan formula follows
by a straightforward verification.

Proposition 3.1 ([21]). The following formulas holds

Rab = dθab +
n∑
c=1

θac ∧ θcb. (3.1)

If one denotes the matrices θ =
(
θab
)
a,b=1,...,n

(of 1-forms) and R̄ =
(
Rab
)
a,b=1,...,n

(of 2-forms),

the above formula (3.1) has the form

R̄ = dθ + θ ∧ θ. (3.2)

Differentiating both sides of formula (3.2), then using the same formula for dθ, we obtain

dR̄ = d2θ + R̄ ∧ θ − θ ∧ R̄. (3.3)

Considering the traces R̄2 = Tr R̄ ∈ Λ2(E) and θ0 = Tr θ ∈ Λ1(EU ), then noticing that Tr(R̄ ∧
θ − θ ∧ R̄) = Tr(R̄ ∧ θ)− Tr(θ ∧ R̄) = 0, it follows that

dR̄2 = d2θ0,

thus R̄2 ∈ Z2(E) ⊂ Z2(E), i.e., it is a closed 2-form and d2θ0 ∈ Λ2(E) is a global 2-form. We
follow now a classical way for constructing characteristic classes (for example [10]),

If ∇ is a metric linear connection, then θ0 = 0, thus dR̄0 = 0, i.e., R̄0 ∈ Z2
0 (E).

For k ≥ 1, the k-order characteristic class is defined by the 2k-form R̄2k = Tr R̄k ∈ Λ2k(E),
where R̄k is R̄ ∧ · · · ∧ R̄ (k times).

Proposition 3.2. The form R̄2 ∈ Z2(E), i.e., it is strong closed, and for k ≥ 2, R̄2k ∈ Z2k(E),
i.e., it is weak closed.

Proof. The proof for k = 1 is performed above, and for k ≥ 2 we follow the same idea used
in [10].

We have, for k ≥ 2:

dTr R̄k = Tr dR̄k =
∑

i+j=k−1

Tr
(
R̄i ∧ dR̄ ∧ R̄j

)
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=
∑

i+j=k−1

Tr
(
R̄i ∧

(
d2θ + R̄ ∧ θ − θ ∧ R̄

)
∧ R̄j

)
= kTr

(
d2θ ∧ R̄k−1

)
+ kTr

(
R̄k ∧ θ − θ ∧ R̄k

)
= kTr

(
d2θ ∧ R̄k−1

)
,

since

Tr
(
R̄k ∧ θ − θ ∧ R̄k

)
= Tr

(
R̄k ∧ θ

)
− Tr

(
θ ∧ R̄k

)
= 0.

Thus the conclusion follows. �

We prove now that the cohomology class of R̄2k is the same for different E-linear connections
on A. In order to prove this, we consider the skew algebroid product Ẽ = E × TR, as in the
classical way for Lie algebroids [21] and for differentiable manifolds in [10] and the induced vector
bundle Ã over M×R. Every two E-linear connections ∇(1) and ∇(2) on A gives rise to a Ẽ-linear

connection ∇̃ on Ã, by ∇̃Xs = (1− t)∇(1)
X s+ t∇(2)

X s and ∇̃ ∂
∂t
s = 0, ∀X ∈ Γ(E) and s ∈ Γ(A).

Considering the morphisms of almost Lie algebroids Ĩu = (iu, Iu), where iu : M → M × R and
Iu : E → Ẽ, u = 0, 1, iu(x) = (x, u), Iu(e) = (e, u). The vector bundles i∗uE are canonically
isomorphic with E and the restrictions of ∇̃ to i∗uE coincides with ∇. More, concerning the
curvatures R(u) of the two linear E-connections and the curvature R̃, the restrictions Ĩ∗u of the

curvature tensors are Ĩ∗uR̃ = R(u), u = 0, 1. Thus Ĩ∗uR̃
k =

(
R(u)

)k
.

We consider now an integration operator H : Λp+1
(
Ẽ
)
→ Λp(E) of the differential forms of Ẽ,

on the real fibers of Ẽ → E, where p ≥ 0. More exactly:

– if a local p + 1 form ω̃ on Ẽ is locally generated by forms induced from the fibers of E,
i.e., it is a sum of local forms θ̃(x,t) = f(x, t)θx, then H(ω̃) = 0;

– if a local p+ 1 form ω̃ on Ẽ is not locally generated by forms induced from the fibers of E,

i.e., it is a sum of local forms θ̃(x,t) = f(x, t)θx ∧ dt, then H(ω̃) =
(∫ 1

0 f(x, t)
)
θx.

Notice that the local considerations correspond to domains of local trivial decomposition
charts of E, and the definition of H does not depend on local decompositions or coordinates,
i.e., it is a global one.

By a straightforward computation one can prove the following result.

Proposition 3.3. The global operator H has the following properties:

1) H ◦ d̃+ d ◦H = Ĩ∗1 − Ĩ∗0 ;

2) H ◦ d̃2 = d2 ◦H;

3) H
(
Λ(2)k+1

(
Ẽ
))
⊂ Λ(2)k

(
Ẽ
)
.

As a consequence, we can prove the following result, that allow to construct the characteristic
classes of almost Lie algebroids.

Theorem 3.4. If ∇ is an E-linear connection on A, then each weak cohomology class
[
Rk
]
,

k ≥ 1 has the following properties:

1) it is independent of ∇;

2) it defines a 2k-cohomology class of
(
Λ̄∗(E), d̄

)
, induced by ρ∗ : Λ∗(M)→ Λ̄∗(E) from a 2k-

characteristic class on the base M .

Proof. It remains to prove only that there is an E-connection ∇ on A that is induced by the
bracket using a linear connection D on A. Indeed, it is ∇Xs = Dρ(X)s. This ends the proof. �
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Let us explicit some facts concerning the particular almost Lie algebroid E0, constructed
previously.

Let us denote by F0 ⊂ F
(
R2
)

the set of global (smooth) functions f : R2 → R having

the form f
(
x1, x2

)
=
(
x1
)2
f1

(
x1, x2

)
+
(
x2
)2
f2

(
x1, x2

)
, where f1, f2 ∈ F

(
R2
)
. Let us denote

by
{
ωij
}
i,j=1,2

⊂ Γ(E∗0) the dual base of
{
Xi
j

}
i,j=1,2

⊂ Γ(E0). Considering the derivation d

on Λ∗(E0), a straightforward computation leads to

• d2
(
Λ0(E0)

)
⊂ Λ2(E0) is the null set;

• d2
(
Λ1(E0)

)
⊂ Λ3(E0) is the set of forms ω of degree three having the form ω = f1ω

1
2 ∧

ω2
1 ∧ ω2

2 + f2ω
1
1 ∧ ω1

2 ∧ ω2
1, where f1, f2 ∈ F0;

• d2
(
Λ2(E0)

)
⊂ Λ2(E0) is the set of forms ω of degree four having the form ω = fω1

1 ∧ ω1
2 ∧

ω2
1 ∧ ω2

2, where f ∈ F0;

• d2
(
Λk(E0)

)
⊂ Λk+2(E0) is the null set, for k > 2.

Since on E0 there is a base of the F
(
R2
)
-module of sections, i.e.,

{
Xi
j

}
i,j=1,2

⊂ Γ(E0), and E0

is an almost Lie algebroid, then there is an E0-connection on E0 (extending the conditions
∇Xi

j
Xk
l = 0, by Koszul’s rules) having a null curvature, thus its characteristic classes vanish in

all dimensions.

Acknowledgements

The authors thank all three distinct referees for their valuable comments that helped us to
improve the content of the paper. The research was supported by Horizon2020-2017-RISE-
777911 project.

References

[1] Bruce A.J., Grabowski J., Pre-Courant algebroids, arXiv:1608.01585.

[2] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics
Lecture Notes, Vol. 10, Amer. Math. Soc., Providence, RI, 1999.

[3] de León M., Marrero J.C., Mart́ın de Diego D., Linear almost Poisson structures and Hamilton–Jacobi
equation. Applications to nonholonomic mechanics, J. Geom. Mech. 2 (2010), 159–198, arXiv:0801.4358.

[4] Fernandes R.L., Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002), 119–179,
arXiv:math.DG/0007132.

[5] Grabowska K., Grabowski J., Variational calculus with constraints on general algebroids, J. Phys. A: Math.
Theor. 41 (2008), 175204, 25 pages, arXiv:0712.2766.

[6] Grabowski J., Brackets, Int. J. Geom. Methods Mod. Phys. 10 (2013), 1360001, 45 pages, arXiv:1301.0227.

[7] Grabowski J., de León M., Marrero J.C., Mart́ın de Diego D., Nonholonomic constraints: a new viewpoint,
J. Math. Phys. 50 (2009), 013520, 17 pages, arXiv:0806.1117.
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