Measurement Duality*
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Introduction

It is a public fact that “shape” can only be defined in operational terms.

“Shape” is only operationally defined. Thus things do not “have a shape” the way Santa
Claus has a red suit.

—JAN KOENDERINK (1990)

A shape can bebservedr manufacturedand even its mere thought entails the possibility of a
potentialrealization of such an act (an imagination in your mind’s eye, a gesticulation). Shape
as an attribute of an observable puts the very role of observation—generically the physical
interaction with some kind of source—into focus.

Ich werde [...] in der transzendentaléberlegung meine Begriffe jederzeit nur unter den
Bedingungen der Sinnlichkeit vergleichemussén, und so werden Raum und Zeit nicht
Bestimmungen der Dinge an sich, sondern der Erscheinungen sein: was die Dinge an sich
sein mogen, weif3 ich nicht, und brauche es auch nicht zu wissen, weil mir doch niemals
ein Ding anders, als in der Erscheinung vorkommen kann.

—IMMANUEL KANT (1787)

One branch of mathematics, knowndistribution theory and in particular its central concept

of duality, is particularly suited for the purpose of operational shape description, because it
provides a mechanism for probing shapes. That is, it explicitly accounts for the indispensable
role of a sensorium—or motorium, the analogy is somewhat whimsical—in the representation
of shape.

Just for the gist of it | consider a very specific kind of duality and a very specific type of
source fields, viztopological dualityin the context of the structural description diital

images “Raw images™—a collection of pixels on a lattice—are much like “die Dinge an sich”,

not because they are not operationally represented (on the contrary!), but because their form
reflects computer architecture rather than “relevant” structure. To abstract from the machine

*This work has been presented at the Spring School “Biophysics of Shape”, organised by the Helmholtz
Institute, Utrecht, The Netherlands, April 2—4, 1997.
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Figure 1: Duality amounts to a “what-you-see-is-all-you’ve-got” philosophy and boils down
to straightforward linear filtering.

implies that one declines from the representation dictated by machine technicalities, such as
discretisation and quantisation details, in return for an alternative, more sophisticated format
(“die Erscheinung”).

Theory

Let us denote the class of all possible raw images:bynd call itstate spacdor ease of
reference. Instead of directly accessing pixels, we postuldeviae spacef filters, A say—
sensorium or motorium—and monitor tjuent responseriggered by an inputimage: Figure 1.
Formalised:

Paradigm 1 State space is the topological dual of device spacd? A'.

This paradigm entails that we conceive of a grey-value as the otifplie IR of a linear filter
¢ € A, not as a function or pixel valugx) € IR. (I use the latter to model a “raw image”.)

In the context of duality it is natural to considequivalence classesput images that trigger
identical responses are equivalent. Example: suppose we have only one filter at our disposal,
which reads its inpuf and returns its pixel average Theng ~ fiff § = f. Clearly lots

of images map to the same mean value. One cannot expect to solve a sophisticated image
analysis task on the basis of such a poor “resolution”. In view gé@ericimage processing
framework, we cannot content ourselves with this state of affairs. A conceptual imagest
somehow be one-to-one related to the given pixel dataxcept for non-measurable nitty-

gritty details. That s, ify(«) = f(«) almost everywhere, thef[¢] = F[¢] for all physically
plausible filters), and vice versa

This leads us to the question: what are “physically plausible” filters? Without loss of generality—
and by virtue of various consistency considerations beyond the scope of this summary—one
can adopt the class proposed by Laurent Schwartz.

Definition 1 LetS(IR") be the class of smooth functions of rapid decay, the#' S(IR"),
whenceX ¥ §'(IR"™). The latter is also known as the class of tempered distributions.



Figure 2: Image processing calls for an algebraic structure on device space.

The majority of tempered distributions is “regular’, meaning that they can be written by an
integral formula known as thReiesz representation formula

Flgl = [dz J(=) (=),

for some functionf of polynomial growth. Tempered distributions which are not regular
always involve théirac distribution 6[¢] = #(0). In practice one uses the integral formula
even in these cases, associating the Dirac distribution with the “function-under-the-integral”
d(z). Such distributions are not at all pathological, and share virtually all nice properties
characteristic for distributions in general, e.g. infinite differentiability! “Point stimuli” lie at
the core of “reverse engineering” disciplines, in which one aims to establish filter profiles of
a black box system. In image analysis the stimulus is given (a raw irfipgend filters are
definedad libitum

Rapid decay reflects filter confinement. Despite this filters may aaysize; a suitable mea-
sure of size is the usual normalised second order central momentum. SmoothSeks' pf
is hardly a demand. This follows from the fact ti&{IR") is larger than any of the function
spaces typically employed in non-dualistic models. In other words, the filter£{d#$s) guar-
antees a more-than-sufficient segregation of quality. In fagtdf = G/[¢] forall ¢ € S(IR"),
then f andg differ by at most a non-measurable function, exactly as desired.

Oneimage processing consistendgmand should be mentioned. If output is interpreted as
potential input to yet another filtering stage, then it can be shownAhatust constitute a
convolution algebraFigure 2. Fortunately this is the case &(R")!

“Scale-space theory” is basically Schwartz theory equipped with a point concept: a positive
“zeroth order” filter consistent with the image processing demaed, one generating an
autoconvolution algebraThere exists only one point operatorlR™), viz. the normalised
Gaussian (of arbitrary width and base point). For later use | will collectively denote these
operators, together with all their derivatives,®yR").

Definition 2 A scale-space representation is obtained by subjecting a raw image to the Gaus-
sian familyA %' G(IR"), in other words, it is an element &f &' g/(IR").

If you look at the integral formula, you will appreciate that there are always dual interpretations
explaining a given change in grey-value: either your filter, or your input image has changed.
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This trivial observation has far-reaching consequences, and is formalised as follows. When we
talk of a “spatial transformation” (shift, rotation, scalirgic), we are in reality thinking of
relative spatial relationships betweghysical objects

Definition 3 (Push Forward) Letd : IR" — IR" : = — 6(x) be a spatial transformation. The
push forward of a filter is then defined as the mapping

B0 Ay = Ngpay 6> 0.6 | det VO™ | g0 g™,

Subscripts attached ta indicate what happens to a filter's centre of gravity (whence the
terminology). One naturally “pulls back” the source field in the dual view.

Definition 4 (Pull Back) With §(x) and its push forward..¢ as defined in the previous defi-
nition, the pull back of the input image is defined as the mapping

0" Sgwy = Zp s F s 0°F  defined by 6°F[¢] < F[0.4].

Note that the base point (“focus of attention”) now moves in opposite direction! These def-
initions may seem a bit abstract on first sight, but biih (filter transformation) as well as

6= F' (transformation of input image) should make more sense ghan(transformation of a
“void™!), and in a way it is better to say that one of the former two defines the others. Indeed,
it is easy to think of dual filter/image transformations without existence of an underlying spa-
tial transformation, but impossible to make sense of the latter without any manifestation on
physical objects:

Space and time are not measurable in themselves: they only form a framework into which
we arrange physical events.

—MORITZ ScHLICK (1920)

If you write Definition 4 in integral form you will see that it is basically a change of integration
dummies:

0 F19] = [d= [(0(2)) (=) = [substy = 0(=)] = [dy|det VO™ ()| f(y) (6™ (y)) = Fl6.0].

Example: one can acquire an image either by shifting a patient underneath a scanner, or
by moving the scanner in the opposite sense. This generalises to any not necessarily rigid
transformation (at least conceptually: in this example one option will likely have legal im-
plications...). The relevant formulas in this case a&te:) = = + =, 0 f(z) = f(z + z),

0.0(z) = ¢(z — x), and the above equality can be rewritten as the correlgtion(z) in two
equivalent ways.

Definitions 3 and 4 form the basis for all image manipulations. | will mention a few important
ones.

From Samples to Images
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The step from a mere grey-value sampl| to an actual output image x ¢(x) in the patient
example relies on the push forward/pull back principle, applied to spatial translations over all
vectorszy within the relevant field of view.

A consistent image model takes into account all symmetries of space and.&nmat only
translations (homogeneity), but also spatial rotations (isotropy) and spacetime scalings (scale
invariance). The technique remains the same.

Derivatives

If you want to take alerivativeof your image, you implement trdual derivativeof your basic
filter. The relevant formula is
def
VIE[¢]'= F[-V4].

(Why the minus sign? Hint: use the integral formula and your secondary school math.) Note
that the r.h.s. is both well-defined as well as operationally realizalite py plain linear
filtering). This generalises to any order!

Temporal Causality

It is sometimes argued that the Gaussian filter family is not suited inroaséest temporal
causalityis a prerequisite, as in active vision. However, the following “Koenderink trick” can
be applied (consider only 1D temporal sequenggs for simplicity).

The basic observation is that there mustsbenetime domain in which the Gaussian family
makes sense (by virtue of its uniqueness there is no alternative), say parametrised by a param-
eters € IR. The physically reasonable domain for a visual system actively participating in
the world is of course the history part of the time axis. Therefore discard the unknown future
by introducing a time horizon (the present moment) and mapping the past semi-axis onto the
s-domain: Figure 3 (left). Once such an isomorphism has been established=s&y:; a )—

note that it depends on the present momesfollow your nose: the isomorphism acts on a

filter ¢(s) by the recipe of “push forward”, yielding a filter ¢(¢; «)—which again depends on
a—producing the desired filter profile in thedomain: Figure 3 (middle and right).

The construction reminds us of Kant's remark, but note that the “causal world” picture obtained
by the dual action of pull back,

T F6] = Flrgl,

cannot be disqualified on objective grounds! Théwith Riesz representatiofi(¢)) on the
r.h.s. could be a causally processed but fully recorded video itepeausality is introduced
by the act of observation as Kant conjectures (note that the content of the tapetidesend
on the present momei). The 7*F on the l.h.s. is a signal in thedomain—which does
depend orv—and could reflect the signal history as a function of fiducial acquisition time
(if history is what you recall of it then it indeed changes over time!).
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Figure 3: Left: the isomorphism = 7(s; ) discards the unknown future. The asymptote
indicates the time horizon. The box delimits a typical time window for a real-time system.
Note that uniform sampling of th&-domain implies agraded resolution historyMiddle and

right: Comparison of causal point operator profiles iand: domains. The map,—which
depends om—brings us from there to therepresentation on the right, which corresponds to

a fixed delayx — ¢. Time progresses from left to right; the causal filter vanishes rapidly but
smoothly towards the time horizon. (Of course there is no such moment in the left graph.) The
shaded region indicates the unrevealed future.

Optic Flow

The appropriate differential tool in the context of optic flow is the derivative It expresses
the rate of change of a quantity when moving in the direction of a vectordiesady, and is
proportional to that vector field. The following definition therefore suggests itself:

(v-V)F[¢] = F[-V - (v9)].

The L.h.s. has Riesz representatian- V) f(x), the usual directional derivative for a scalar
function. Transposed to filter space on observes that the dual Lie derivative of & fiftest
be—V - (v ¢). Apart from the minus sign we see that the gradient operator acts on both filter
as well as vector field,e. contains an additional divergence tetmdiv v not present in the
scalar case.

Optic flow is a velocity patterm such that if one comoves with the induced fleame mea-
surable entityis preserved. The simplest instance of such entify[is, i.e.

d 0
SFI6] = (0 V)Flél + 5:Fl6] =0,

or, in dual form (omitting the overall minus),

d 0

S8 = FIV - (06)] + Fl:6] = 0.

A suggestion for solving the latter will appear in the International Journal of Computer Vision
in the near future.
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