
ASITA: Advanced Security Infrastructure
for Multi-Agent-Applications

in the Telematic Area

vorgelegt von
Diplom-Informatiker

Torge Schmidt

Von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuß:

Vorsitzender: Prof. Dr. Dr. h.c. R. Popescu-Zeletin
Berichter: Prof. Dr.-Ing. H. Krallmann
Berichter: Prof. Dr. P. Pepper

Tag der wissenschaftlichen Aussprache: 08.01.2002

Berlin 2002

D 83

Preface

Software agents with their specific attributes are seen as a promising ap-
proach to fulfill the conceptual and operational demands for service provi-
sioning in the telecommunication area. Mobile agents might autonomously
roam through heterogenous and international networks in their tasks to dis-
cover, filter, aggregate, and forward information.

The more information one trusts to software agents, though, the greater is
the potential of abuse. This work will shed light on the inherent dangers of
mobile software agents in telecommunication applications, and, based upon
the available technology, several mechanisms to circumvent the dangers will
be elaborated. The work results in an encompassing security infrastructure
for a software agent platform.

Therefore, this work is divided into three major parts. It starts with an
introduction into the domain and gives an idea for future service access. The
second part is an overview of the three major domains: software security,
Java programming, and software agents. In the remainder of the work, the
infrastructure is conceived and discussed. The appendix gives extracts of real
code from the system built.

This work has been influenced by a lot of people, whom I wish to thank.
Dr.-Ing. Sahin Albayrak provided extraordinary support and domain-specific
knowledge. Thanks go to Prof. Dr. Krallmann and Prof. Dr. Pepper who
greatly helped in pushing the work forward. The discussions and work with
Karsten Bsufka, Thomas Joachim Wilke, and Stefan Holst resulted in fruitful
ideas for this thesis. The whole staff at the DAI-Lab supported me and was
involved in the development of JIAC. Detlef Raben helped proof-reading this
work. Most of all, I thank my mother for everything she has done for me.

Torge Schmidt
Berlin, September 2001

Abstract

An approach to solve the security aspects raised by agent systems, especially
with mobile code and in an open environment, in the context of telecommu-
nication applications is presented.

A scenario is given that represents a typical user approach to tomorrow’s
integrated services. Typical applications and services are thoroughly charac-
terized, electronic markets are introduced, the players in the new market are
shown, and the new market models and related security questions are put
into relation to applicable law.

The technology involved in the framework is presented. Various security
related aspects are shown, Java is discussed as a programming language
facilitating security and providing a secure runtime environment. Software
agents and their communities are given.

An advanced security infrastructure is then devised. It comprises of mecha-
nisms on several different abstraction and realization layers. On a low level
basic mechanisms are given irrespective of the “agentness” of the system. Se-
curity functionality is added to agents and they are enabled to reason about
security, service provisioning is secured.

Communities of agents are enriched with security functionality to prevent
malicious intruders to enter the protected domain, “own” agents are pre-
vented from migrating to mischieveous other agent places. Crossing borders
of domains, means for secured e-commerce even between unknown agents are
provided.

Contents

I Introduction and Domain 1

1 Introduction 3

1.1 Synopsis . 3

1.2 Domain Definition . 3

1.3 What This Is About . 5

1.4 What This Is Not About . 6

1.5 Structure of the Thesis . 7

2 Telematic Services 9

2.1 Synopsis . 9

2.2 Demonstration Scenario . 10

2.3 Telecommunication Applications and Services 15

2.4 Electronic Markets . 22

2.5 Roles . 24

2.6 Law . 29

2.7 Summary . 35

viii Contents

II Technology 37

3 Security Technology 39

3.1 Synopsis . 39

3.2 Terminology . 40

3.3 General Concepts . 42

3.4 Basic Techniques . 45

3.5 Symmetric Ciphers . 51

3.6 Asymmetric Ciphers . 55

3.7 Security Systems . 58

3.8 Secure Socket Layer . 70

3.9 System Security Requirements 73

3.10 Attacks . 75

3.11 Summary . 80

4 Java 83

4.1 Synopsis . 83

4.2 Programming Language . 84

4.3 Execution Environment . 86

4.4 Standard Class Library . 92

4.5 Java Tools . 92

4.6 Summary . 93

5 Agents 95

5.1 Synopsis . 95

5.2 Notions of an Agent . 96

5.3 Definitions of Agents . 97

5.4 The Single Agent . 100

5.5 Agent Community . 103

Contents ix

5.6 Agent Architectures . 110

5.7 Agent Platforms and Toolkits 113

5.8 Pitfalls of Agents . 113

5.9 Summary . 114

III Security Infrastructure for Agents 117

6 Analysis and Design 119

6.1 Synopsis . 119

6.2 Existing Agent Architectures 119

6.3 Certificates . 125

6.4 Communication . 125

6.5 Mobile Agents . 126

6.6 Intra-Agent Security . 127

6.7 Platform Security . 128

6.8 Implementation Specifics . 129

6.9 Summary . 130

7 Basic Security 133

7.1 Synopsis . 133

7.2 Platform Security . 134

7.3 Transport Layer Communication Security 141

7.4 Certificates . 141

7.5 Summary . 148

8 Agent Security 149

8.1 Synopsis . 149

8.2 Agent’s Security Awareness 150

8.3 Knowledge Base Protection 153

x Contents

8.4 Transport Layer Communication Security 160

8.5 Application Layer Communication Security 164

8.6 Service Authorization . 172

8.7 Summary . 174

9 Agent Community Security 175

9.1 Synopsis . 175

9.2 Manager Agent . 176

9.3 Security Agent . 181

9.4 Summary . 185

10 Global Security 187

10.1 Synopsis . 187

10.2 Certificate Authority Agent 188

10.3 Security Service Agent . 195

10.4 Summary . 200

11 Conclusions 201

11.1 Synopsis . 201

11.2 Analysis . 202

11.3 Achievements and Related Work 202

11.4 Further Work . 203

11.5 Summary . 204

IV Appendices 209

A CAL 211

A.1 CAL Introduction . 211

A.2 Component Objects . 213

Contents xi

A.3 Ability Objects . 213

A.4 Security Dependencies Objects 218

A.5 Service Security Requirements Objects 220

Glossary i

Bibliography xvii

List of Figures

1.1 Structure of the Thesis . 7

3.1 Symmetric Encryption . 51

3.2 Asymmetric Encryption . 56

3.3 Hybrid Encryption . 57

3.4 Hybrid Decryption . 58

3.5 Message Integrity Check . 61

3.6 Digital Signature . 63

3.7 Relative Distinguished Name 65

3.8 X.509 Certificate . 66

3.9 X.509 Certificate Extensions 66

3.10 KeyUsage Certificate Extensions 67

3.11 Certificate Revocation List . 68

3.12 SSL Handshake Protocol . 71

4.1 Java 1.0 Sandbox . 88

4.2 Java 1.1 Sandbox . 88

4.3 Java 1.2 Sandbox . 89

5.1 BDI Agent . 102

5.2 Agent Component Plugging 110

xiv List of Figures

5.3 Layered Agent Architecture View 112

6.1 CASA Agent Kernel Default Architecture 123

6.2 CASA Knowledge-based Behaviour 124

6.3 Communication Security . 126

6.4 Protection Layers . 128

6.5 Security Components . 130

7.1 Thread Group Hierarchy . 137

7.2 Security Manager Code for Checking Thread Access 139

7.3 Certificate Category . 142

7.4 Certificate Extension Category 143

7.5 BasicConstraint Extension Field Category 144

7.6 SubjectAltName Extension Field Category 145

7.7 KeyUsage Extension Field Category 146

7.8 Certificate Revocation Categories 147

8.1 Security Object Naming Ontology 150

8.2 Security Dependencies Ontology 151

8.3 Service Security Requirements Ontology 152

8.4 Service Ontology . 152

8.5 ContentInfo Type of PKCS#7 154

8.6 Protected Content Ontology 154

8.7 Critical Data Ontology . 155

8.8 Critical Data Object with Meta-Attribute 155

8.9 SAS Handshake Protocol . 167

8.10 SSL for Speech Act Security Ontology 168

8.11 Service Control Ontology . 172

9.1 Enhanced Migration Protocol 178

List of Figures xv

9.2 Agentplace Trust Lists Ontology 183

9.3 Meta-Attribute Declarations 184

9.4 TrustEntry Object . 184

9.5 Community Security . 186

10.1 Certificate Request Categories 190

10.2 Certificate Request GUI . 190

10.3 Certificate Extensions GUI . 191

10.4 Certificate Usage GUI . 191

10.5 Certificate Chain Length GUI 192

10.6 Certificate Revocation Request Category 193

10.7 Certificate Revocation GUI 194

10.8 Arbitrated Timestamp Categories 197

10.9 Simultaneous Contract Signing Protocol 199

10.10Simultaneous Contract Signing Categories 200

11.1 Security Components (again) 205

11.2 Communication Security (again) 205

11.3 Community Security (again) 206

List of Tables

3.1 Determination of Distinguished Names 65

7.1 Granted Permissions . 135

7.2 Granted Runtime Permissions 136

7.3 Granted Security Permissions 136

8.1 Cipher Suites of IAIK . 161

8.2 Mandatory Properties of the SSL component 162

8.3 Optional Properties of the SSL component 163

8.4 Protection by PKCS#7 Content Type 166

Part I

Introduction and Domain

Chapter 1

Introduction

“I am the beginning and the end.
I bring order into chaos.”

Borg Queen, Star Trek: First Contact

1.1 Synopsis

This Chapter gives an overview over the thesis. It especially constraints the
work into a specific application domain, and gives the limits and boundaries
of the elaborations. The Chapter closes with a structure of the work.

1.2 Domain Definition

The telecommunication market is expanding rapidly and players in that mar-
ket are facing increasingly stiff competition. The key to commercial success in
the telecommunication market will be the provisioning of adequate services,
the focus shifting from a purely technological one to one of convenience and
usefulness. An important prerequisite is the effective management of basic
telecommunication infrastructure supporting the rapid deployment of new
services.

These future services will determine the market shares to be gained. Not
only must their time to market be reduced, but also other requirements need

4 Chapter 1, Introduction

to be fulfilled, e.g. dynamic service development and configuration. Due to
a demand for permanent availability the motto to be followed is informa-
tion “for everybody, anywhere, anytime.” [ist99] Service maintenance must
not interfere with continuous service usage; future services must allow for
personalization, meet security demands, and provide management function-
ality. Furthermore, asynchronous service usage has to be supported as well
as demand-driven service combination and integration. Not the least, ser-
vices must allow for access independent of specific technologies and terminal
equipment.

Beside the technical requirements, new business models must be developed
reflecting the fact that various actors in new roles, e.g. content provider or
application service provider, will need to co-operate and coordinate in order
to provide these future services. Companies will provide integrated solutions
with own and third-party services being bundled on their platforms. These
platforms will realize required infrastructure functionality and enable various
means of access by facing influencing factors and developments of the future
telecommunication market such as consumer devices (mobile phones, screen
phones, PDAs), networks (e.g. GPRS, UMTS), languages, and software tech-
nologies (Java, Jini), consumer demands and trends like convenience of use,
mobility, and ubiquitous computing.

Each role participating in the future telecommunication world will have spe-
cific requirements to such service platforms. These demands differ in the
extent of infrastructure being needed for service usage and provisioning, ac-
cording to different necessities regarding aspects such as security, personal-
ization, asynchronous usage, mobility, device-independency, and supporting
tools.

The issues outlined above open up new perspectives for services and appli-
cations, especially in the domains of service and network-management, elec-
tronic business, mobility supporting services, and “Intelligent Home.” The
future of telecommunication services will be highlighted in Chapter 2.

Agent-oriented technology seems to be an adequate way to combine high
quality of service with reduced costs of service development, rollout, and
provisioning. (cf. Chapter 5) It enables quick reaction to changing demands
and looks like an ideal candidate to realize the telematic and telecommuni-
cation applications of the future. [Dr.01]

Very important aspects of the acceptance of the new technology by the users
are the questions of security involved. [Aud01] This covers aspects of reli-
ability, trust, non-repudiation, protection against eavesdropping and ma-

1.3 What This Is About 5

nipulation, electronic money, protection against fraud, and a lot more. (cf.
Chapter 3)

But there are more roles involved in the new telecommunication market than
the end-user. Service provider, platform provider, information broker, etc.
each have their own requirements, which will be discussed in more detail in
Section 2.5.

1.3 What This Is About

The ultimate goal of this work is to present a comprehensive security in-
frastructure for an agent toolkit. The infrastructure will comprise of basic
security functionality in software agents, supplemented by mechanisms on
the level of agent communities, and the integration of non-agent-aware pro-
tocols. Supporting tools are envisioned as well, but are neither regarded as
an integral part of the infrastructure nor are they fully discussed. The in-
frastructure has been prototypically implemented within a research project.

The security infrastructure to be developed will be based on the agent ar-
chitecture CASA. [Ses02] The conceptualization of the ASITA work was co-
developed with the CASA architecture and its prototypical implementation.

The single aspects of the presented solution are motivated by the specific re-
quirements of the application domain, the employed agent technology, com-
mon security mechanisms and good practices, and the programming language
as will be used.

The result of the work is an infrastructure for running software agents in an
open environment, but secured against various attacks and fraud attempts.
The acceptance of users and providers of services will be raised and that will
foster the penetration of agents into the telecommunication and service provi-
sioning domain on a large scale. As will be seen in Section 11.3, the proposed
framework will “boldly go where no agent platform has gone before.”

6 Chapter 1, Introduction

1.4 What This Is Not About

This work does not deal with more hardware-oriented security techniques.
For instance, hardware leaking information about the performed operations,
as e.g. exploited by differential power analysis [KJJ99], is not in the scope of
this paper.

Neither is steganography, i.e. how to hide messages in other messages, covered
in this work. Covering safety aspects like backups and availability is generally
out of discussion as well. An exception is the notion of the Java programming
language, which provides for secure programs due to its safety features. (cf.
Chapter 4)

This thesis doesn’t deal with network security or host system security in gen-
eral. No mechanisms to overcome today’s shortfalls in system architecture,
hardware, networks, or protocols are discussed, like fighting denial of service
attacks, host address spoofing, or traffic analysis. Specific aspects especially
with respect to mobile agent technology or for providing a secure execution
environment will be mentioned, though.

Beside security considerations, other management aspects of the FCAPS ser-
vice model, [ITU97a] being fault, configuration, accounting, and performance
management, are not covered.

To embed software agents into a working electronic market environment,
there have to be means for exchange of goods and of money, based of account-
ing data. All of these aspects are not covered in this work. The exchange of
money is a matter of either electronic cashing or conventional business billing
processes. Goods exchange is dealed with in the service provisioning frame-
work of the respective agent platform if the discussion is about electronically
delivery, or is again done by already deployed business processes. Collection
of billing data is to be handled by the service provisioning procedure as well.

1.5 Structure of the Thesis 7

1.5 Structure of the Thesis

Figure 1.1: Structure of the Thesis

The work is divided into three major parts. (cf. Figure 1.1) Part I in this
Chapter 1 gives an introduction into the paper, the aims, and prospected
solutions. Chapter 2 delves into the requirements of the future landscape of
telematic services by presenting an example scenario and discussing relevant
parts of the future development. Applications and services are then more
thoroughly characterized, electronic markets are introduced, the players in
the new market are shown, and the new market models and related security
questions are put into relation to applicable law.

In Part II the state of the art of the relevant technologies used to fulfill the
requirements as analysed in Part I are shown. Chapter 3 discusses related
security considerations and the mechanisms of security that will be employed
later in this thesis. The basics of security technology are summarized to en-
able the reader to understand the complex and difficult layers, algorithms,
and protocols involved. Further, requirements for secure systems are dis-
cussed and common attacks are given to demonstrate how and against which
threats to protect these systems.

Following that, the Java programming language is introduced with special
considerations of its features pertaining to the production of secure programs
as well as its capabilities for providing a secure runtime environment and to
protect the executing host against mischief.

8 Chapter 1, Introduction

Last in that Part, software agents and their communities are presented and
their commonly perceived properties and advantages are shown. Platforms
and toolkits as realizations of agent concepts are discussed and often heard
misunderstandings and glorifications are put into perspective.

Based on the intermediary results and presented knowledge, a security system
for agents is designed in Part III. According to engineerical practices, the
system is designed bottom-up: After an analysis phase, the founding building
blocks are developed, thereupon in several iterations creating more complex
systems synthesized by the lower layers, resulting in an encompassing total.

Part III begins with an analysis of the needs of the system and available
prerequisites to begin with in Chapter 6. Other approaches of related works
are analyzed and an advanced security framework is designed.

Chapter 8 describes mechanisms on the agent level, so that a single agent is
enabled to deal with security mechanisms. Agents are endowed with func-
tionality to secure themselves against intruders or prying eyes, and to restrict
service provisioning.

The Chapter 9 deepens the considerations of security aspects of multi-agent
systems, where several agents form one application. To facilitate secure com-
munities of agents, on that level agents for security related tasks are intro-
duced, respectively existing infrastructure management agents are enhanced.

The following Chapter 10 then describes mechanisms to be provided to agents
independent of their community deployment, crossing the borders of their
administrative domain. Functionality is provided to allow for secure agent-
based e-commerce on a global level even between unknown and untrusted
parties.

The concluding Chapter 11 points out the achievements of this work. Related
work is described and set into context for this paper. Possibilities for further
enhancements to be derived from this thesis are shown.

The Appendices give listings of program code and other detail not appropri-
ate for inline text.

Chapter 2

Telematic Services

“If you have walked all these days
with closed ears and mind asleep,
wake up now!”

Gandalf, The Lord of the Rings

2.1 Synopsis

This Chapter shall shed some light on the problem domain, the rest of the
work is placed in. It gives a discussion of the application area which is the
target field for the systems that will be created using the framework as devel-
oped in Part III. The word “telematic” is a synthesis of telecommunication
and information technology.

The description begins with a very informal presentation of a typical scenario
in the telematics domain, how a future service and its use is envisoned by
experts in the domain. Though it is very colloquial, important aspects of the
security demands can be identified.

The discussion is continued by describing characteristical features of appli-
cations and service usage in that domain. Following, electronic markets as
means to model real-world market situations are introduced. Role models
for players in the telematic area are shown that allow to categorize tasks
and interrelationships in the domain. The Chapter closes with a discussion
of jurisdictional questions in the domain of electronic markets, privacy, and
multi-country distributed software.

10 Chapter 2, Telematic Services

2.2 Demonstration Scenario

In this Section, a typical application for agent-based technology of electronic
commerce in the traffic telematic area is given. It is provided to give an osten-
sive view on the domain and inherent requirements, which will be elaborated
in the following Sections. The security aspect is given specific attention.
The explanations of specific security terms and mechanisms is delved into in
Chapter 3.

The initial installation of the relevant software isn’t considered either. It is
assumed, that all installed platforms were installed securely. The process
must have happened before the service usage as described below is begun.

The first installation might require a service registration as well. For sim-
plicity reasons, this isn’t treated either. Ultimatively, the registration boils
down to out-of band communication for authentication. That might be per-
sonal appearance at a service provider to prove one’s existence and data. It
might include external entities, like trust centers, birth records, phone calls,
presenting a legitimation or an official identity card, etc. Those can never be
handled with the system itself, as long, as the process isn’t anchored securely.

Software update is a related area. Again, either secured out-of band mech-
anisms must be used, or a secure anchor like trusted certificates are to be
used. (cf. Section 3.7.5)

A general security requirement for all of the communication of the installed
software is to secure that communication from tampering with: no part of
the data transfer should be alterable by an active attacker on the line without
this modification being noticed by the communicating parties.

Guaranteed connectivity can not be achieved without dedicated and special-
ized network hardware, that isn’t present on the open network environment
as assumed. An active man-in-the-middle attacker has always the option of
interrupting the “cable.”

For privacy reasons, the user might want, in addition to all of the communi-
cation, even the data collection and search specification, that his data can’t
be eavesdropped on by unauthorized third parties.

The service providers, though, possibly don’t want to offer the service to just
anyone. Pre-registration might be required, that can be authenticated by
trusted certificates. The provider then might want to restrict access, after
verifying authenticity, only to registered and authorized users.

2.2 Demonstration Scenario 11

It is assumed, that the user is using a laptop for his tasks, and can connect to
the Internet by some way, including wireless. Possible options thereof include
UMTS or wireless LAN connections.

2.2.1 Task to Solve

As an example, the complex planning and booking of a travel is envisaged,
including information collection and aggregation. The main motivation for
the journey is a business trip, but the system will add value for the spare
time of the user, depending on his preferences.

2.2.2 Travel Specification

The user starts on his laptop the agent-based access software and requests
the travel service. The search for applicable providers is done transparently
for him by the agent system. The service provider sends a mobile agent to
the platform of the user, that includes the necessary graphical user interface
(GUI) for specification of his needs. The user must trust the provider to send
agents to his agent platform to be executed, and it must be secured, that the
agent in fact migrates from and belongs to the service provider.

It is worthwhile to note, that the mobile agent is the most current version of
the appropriate execution logic and data management. Thus, the user always
has access to the latest and most advanced version of the software without
having to trouble himself with update cycles and incompatibilities. This is
in some respect similar to the application service provisioning approach.

After successful migration from the provider domain onto the user’s platform,
the potentially expensive connection to the network over a wireless phone can
be terminated. The next step being a time-consuming one is done locally on
the laptop thus saving the user money by reducing necessary online time.

The user specifies his travel: “Tomorrow date in Hamburg, CCH, 1400-1700.
The day after date in Frankfurt, airport hotel, 0900-1700. Then back.” The
preferences of the user specify further constraints, like using first class tickets,
non-smoking seat.

12 Chapter 2, Telematic Services

2.2.3 Migration to Service Provider

A mobile agent is sent from the user platform to the provider platform. This
might either be the original agent, that came from the provider, or a new
one spawned by it.

Again, migration security is an issue. The user will possibly restrict the set
of target agent platforms where to send agents to. The receiver would like
to ensure, that the mobile agent really stems from the user’s platform. To
prevent hostile agents, that came to the user’s platform to subvert other
machines from there, it must be determined, whose agent it is. After de-
termining the originator of the agent, the receiving platform has to confirm,
that the mobile agent is allowed to migrate there.

If his preferences aren’t stored locally on his laptop and given the mobile
agent before migration, but instead reside in the fixed network, e.g. because
he needs them at different terminals, they must be communicated between
agents. The sensitivity of the data demands, that nobody can eavesdrop on
them. Further, only allowed parties may access them.

2.2.4 Complex Information Retrieval

The mobile agent retrieves addresses of local service providers for his task
to solve. The agent contacts the providers and negotiates terms of usage.
If acceptable terms are agreed upon, the mobile agent uses the service. If
the received answers satisfy the service goal, and a parent agent exists (see
next Subsection), the answers are sent to the parent and the collecting agent
terminates. Section 2.2.7 describes the following steps for result integration.

Again, if necessary, the communications of the agents might be sensitive
enough for the user that he wants to hide them from third parties. Successful
service must be accounted for securely, or possibly be paid directly with
electronic money. In the case of accounting, offline processing steps will use
the collected accounting data for billing.

2.2 Demonstration Scenario 13

2.2.5 Problem Partitioning

If the answers aren’t satisfying, and/or no service usage terms have been ne-
gotiated, the problem is partitioned according to the principles of distributed
problem solving. (cf. Section 5.4) The preferences of the user and the know-
ledge of the agent about the problem domain influence the partitioning.

New agents are cloned, that each have individual goals to solve. The results
of their plans are to be sent back to the spawning parent agent. Each newly
created agent starts its work as described in Section 2.2.3.

The new agents have to be initialized with all necessary information to fulfill
their tasks. The more the initial information is distributed, though, the more
potential for a leak exists. It should be taken care of, that the potential
benefit of a security breach is inverse to the probability of the loss of the
data.

The cloned agents must be properly authorized to use the forseeable services,
i.e. eventually it has to carry several different certificates issued from different
authorities. On the other hand, provisions against escrowing and unlimited
service usage must be taken, if spawned agents accidently go rampage. Again,
the new agents must decide, which agent place is acceptable to migrate to,
and the receiving place must decide, if that agent should be received and
started. This time, it is not the user’s platform, where the new agents come
from, though.

2.2.6 Simple Communication

For simple tasks it is sufficient for the agent to directly communicate with
the service provider by speech acts, (cf. Section 5.5.1) instead of migrating to
its platform. The speech act then is a detailed request containing possibly
sensitive information. The answer as well has some details, which the user
often doesn’t want to be exposed.

The contents of the communication should be protectable according to the
service used. This includes protection against modification of data, spoofing
of communication partners, and preventing others from spying out the data.
Some means to configure the needed security requiremts of the service use
and of the provisioning is needed.

14 Chapter 2, Telematic Services

2.2.7 Result Integration

The parent agent collects the information gathered by its clones. There are
two generally possible ways therefore. The information is either sent by
speech acts over the network as described in the previous Section. As an
alternative, the spawned agents migrate back to the parent for local com-
munication. (cf. Section 2.2.3) The requirements for simple communication
or mobile agent migration apply as discussed above. The receiving agent
combines the results into an optimal solution, according to the information
at hand.

2.2.8 Completing the Transactions

The agent books each of the necessary tickets for the travel, depending on
the scenario and the user’s requirements, automatically or after manual con-
firmation or adaptation.

The contract conclusion will include modality agreement for paying for and
delivery of tickets. This again might require remote communication or migra-
tion for local negotiation, if not already done beforehand, as just described.

The conclusion is embedded in a respective protocol, ensuring non-repudiation
and measures for fair exchange, either self-enforcing or by an arbitrator.

Payment can be done by different payment mechanisms, either debit-based
or credit-based, or with any kind of cyber-coins. Later billing is possible
either. Ticket delivery can either be done by traditional mail service, or per
electronic document exchange to the agent.

This is potentially the most sensitive part of the transaction, because “real”
value changes “hands.” In a business to business setting, the amount of
money might be very high. The user’s information like credit card numbers
or electronic coins must be protected from loss. The service provider must
receive his payment for the service. On the other hand, it must be assured,
that the user’s agent and finally the user gets what he paid for.

2.3 Telecommunication Applications and Services 15

2.2.9 User Notification

Finally, the user will receive the results of the agent’s work. Several delivery
mechanisms can be supported, like email, fax, or SMS notification. If the
communication to the user is over insecure channels like email, it should be
protected as well against eavesdropping or modification.

2.2.10 Sub-Summary

As can be seen from the above short scenario, there is a minimal set of fea-
tures that must be supported by a secure agent platform in the telematic
area. Communicating parties must be authenticated and their communi-
cation protected against eavesdropping and manipulation by third parties.
Migration of software agents must be supported as well as non-repudiation
of communication. The executing platforms must be protected against ma-
licious code, vice versa the agents should be protected as much as possible
against malicious executing environments. The agents on the platform must
be protected against each other. Contracting and the resulting fair exchange
of electronic goods should be found in a corresponding infrastructure. Ser-
vice use and provisioning should be configurable with respect to the security
features.

The omnipresence of the necessity and the multitude of the above-mentioned
features makes it clear, that it is important to have an encompassing infras-
tructure supporting and providing those attributes and functionalities. It
can be envisaged to have this support on different levels of the architecture-
to-be-developed.

2.3 Telecommunication Applications and
Services

Motivated by the previous Section 2.2 the application domain of telecommu-
nication applications will be discussed in more detail in this Section. The
consequences for a new toolkit, that fits the deduced requirements of the
application domain, will be shown.

In the future, the revenue in the telecommunication sector will be gained in
providing and billing for services. Today’s application service provisioning

16 Chapter 2, Telematic Services

business models and on demand generation of content are ways to that sce-
nario. The important features of tomorrow’s services will be shown in this
Section, several aspects are derived from [Alb98] and [AW99].

2.3.1 Features to the Service User

The attributes of future services are divided here in two categories. In this
Subsection, features are decribed that are directly visible to the user, he has
an obvious benefit from the aspects. In the following Subsection, benefits
more relevant to the service provider are described.

Mobility

In the context of globalization and independence of location for new services
the legal circumstances and potentially restrictions in different countries must
be considered. Cryptography is still deemed dangerous in the hands of the
citizens in some countries, and is accordingly supervised. Service provisioning
must adapt to the legal environment. (cf. Section 2.6) On the other hand,
the consumer potentially doesn’t want to do business in those environments
and must accordingly be enabled to restrict the service usage to minimal
acceptable standards.

Common telecommunication applications today assume a fixed client-server
relationship between service provider and user, where the user typically is
fixed to a specific hardware device at a specific location. In the future, this
will change. The user demands mobility, with different aspects as described
in the following.

Device Independence The user of future services will change his terminal
device even for the same service. For example, at work he might use his
stationary PC, while in a train he makes use of a laptop, and in other en-
vironments a PDA or a WAP-enabled cell phone will be used as an access
device, at home a set-top box might be applied. The telecommunication
service of the future shall be usable on all of the potential platforms.

The service provided and the information returned shall be the same for all
platforms. Only the presentation of the data will differ according to the
capabilities of the specific device.

2.3 Telecommunication Applications and Services 17

User Mobility While using the same service, the user changes its physical
location. In the example of Section 2.2, part of the travel route might be
replanned during the trip itself due to traffic jam conditions. Combined with
device independence the user will then be able to access and continue to use
a service independent of the access media and his location.

On the service side this requires continuation of a service even if the syn-
chronous connection to the user is lost for a short interval because of location
or device change. The service must provide a method of asynchronous usage
even for disconnected users.

Depending on the deployment of the network infrastructure, tomorrow’s ser-
vices will become ubiquitous in the sense, that the user can access the network
at any location.

Code Mobility The future will see an increasing amount of mobile program
code to make efficient use of sparse resource like network connectivity or
processing power. The code itself will wander through the network and seek
the execution place best fitted to the situation at hand. If complex algorithms
are to be processed, the code will migrate to a fast machine. If significant
amount of memory is to be used, the code will seek a machine with a lot of
ram. If specific information is to be filtered out of a database, the program
will move to the database and process the data locally to reduce network
load. etc.pp.

Mobile code adds to the resistance against connection failure and is a way to
enable asynchronous service usage. The advantages for the user have been
shown in Section 2.2.

Service Personalization

“One face to the customer” is a service provisioning doctrine implemented
today. But perhaps Bill Gates and an eight year old boy have different needs
and expectations upon drawing their pocket money from a bank account?

The service from tomorrow will, for the provider, still have the benefit of be-
ing the same for each customer, thus holding maintenance cost at a minimum.
To the user, the service can be customized to his needs. The appearance as
well as the functionality can be tailored by the user to its wants.

18 Chapter 2, Telematic Services

User Profiling

Users are bored by having to provide the same details over and over again.
With the increased circulation of small devices with only limited ergonomic
features like WAP-phones comes demand for requiring as little input to a
service as necessary. By saving a user profile and forwarding the data to a
service when needed, the user can be relieved from input tasks. Profiling is
tightly intercoupled with service personalization.

This feature is under heavy controversial discussion, an exemplary forum is
[Wei]. While some users want their privacy protected, others simply don’t
care and prefer ease of use over privacy. The debate is not an issue of this
thesis, but should be remembered and closely followed in the future.

Delegation

Again, the user should be relieved of tedious and repetitive work as much
as possible. This will include delegating a task to be done to autonomous
entities. The user should be interacted with only at the start of service usage
and only as much as needed. Other information sources will be used to derive
other necessary data, like the user profile as described above.

The delegation will include processing the request in the network, even with
the user not online. The results of the service usage will be forwarded to
the user according to his preferences or as specified in the request. Unified
messaging mechanisms will be employed for feedback to the user.

It should be kept in mind, that giving control out of hand might not be
desirable to some users. Thus, the service must be at least configurable in
its transparency attributes, giving feedback to the user in a verbosity of his
choice.

Robustness

The service execution must be able to adapt to unforseen events. There must
exist failure reaction schemes and rollback points. This increases service
availability and user acceptance even under difficult conditions due to the
specific usage environment.

2.3 Telecommunication Applications and Services 19

2.3.2 Features to the Service Provider

In this Subsection, attributes of future services with pre-dominant relevance
to the service provider are described. Where appropriate, the visible benefit
for the user is given as well.

Networks

“People operate in two worlds today – one of computing and one of commu-
nications” said Lew Platt, chairman and chief executive of Hewlett-Packard
in 1999. Up to today there exists a separation between telephony and data
carrier networks. Further, the access to the carrier network is dependent on
the access network and applicable devices. It is expected, that in the future
the different networks converge into one single large network which carries
voice and data transmissions. For this reasons, migration paths from the
diversity to unification are sought, and enabling technology is developed.

Networks in the future will become ubiquitous. One isn’t restricted any
longer to the one data link connected to one terminal, e.g. at home. In-
stead, toasters and similar day-to-day devices will get networked. Further,
the network will appear everywhere, e.g. by employing wireless carrier tech-
nology like Bluetooth [Met99] and service discovery software architectures
like Jini. [Sun99a]

As a consequence, services will be independent of the carrier used to access
them, and they must be independent of the access device. For this work
it is presumed, that the global internet will be used for service provision-
ing. [Inf81a, DH98] On the other hand, nothing in particular precludes the
application or deployment of the proposed system in another network con-
text, be it an IP-based local area network or another transport layer used.

2.3.3 Composability

In traditional systems, each application is re-done from scratch. The services
of tomorrow can easily be combined into new services. By combining simple
services into complex and integrated new ones, substantial benefit can ensue
and be charged as an added value. The integration might even be done
on-the-fly upon request by a user.

20 Chapter 2, Telematic Services

2.3.4 Scalability

The underlying implementation architecture should support services of dif-
ferent magnitudes. From only a few users in a closed environment to massive
access by potentially millions of users at a time in an open network should
be supported. That reduces maintenance needs on the provider side due to a
homogenous service provisioning environment. A benefit for the user is, that
he will interact with the same environment independent of his application,
because all his service uses in all contexts of use are similar.

2.3.5 Openness

The new services will be based upon standards. Proprietary solutions not
only hamper interoperability, but lead to increased maintenance costs as
well. Further, it is a trend for the future, that systems are increasingly
interconnected. This will only be possible, if those systems are opened to a
common communication infrastructure, specifically the Internet.

2.3.6 Manageability

Traditional management capabilities, like the ISO fault, configuration, and
performance management are to be supported. [ITU97a] This ensures con-
sistent management over different service domains and different technology
providers. Existing tools and policies can be used easing the migration path.

2.3 Telecommunication Applications and Services 21

2.3.7 Accounting and Billing

Revenue generation is the main reason for providing telecommunication ser-
vices. Thus, a consistent accounting and billing framework and infrastructure
must be found to integrate existing and new services.

2.3.8 Security

Consumer, provider, and producer of telecommunication applications are in-
terested in trusted exchange of information and goods. The systems put
into use must be reliable and robust. In the case of employing software
agents, this pertains especially to supported security functionalities of the
agent architecture and the security of agent places, where agents meet. (cf.
Chapter 5)

Personal and private data of the user has to be secured against loss during
communication. This includes direct financial data like credit card num-
bers, but other confidential data like personal preferences of the user must
be protected, too. This could be done with smartcard systems or other lo-
cally trusted storage or processing devices. On the other hand, these aren’t
available to a mobile agent on a remote execution place.

Access to the data must be restricted to properly authenticated and autho-
rized entities, and encompass only the data needed for the task at hand.
The saved data must be protected against eavesdropping as well, so that
other users of the same machine won’t have access. The programming lan-
guage and execution environment Java already provides some corresponding
solutions. (cf. Chapter 4)

Because agents rely heavily on communication, (cf. Section 5.5.1) that must
be secured against unnoticed modification and eavesdropping. Identification
of entities must be provided for authentication and billing functionalities.
Despite being on an open network, not every user should be able to access
all functions unrestricted, hence authorization is desirable. For signing con-
tracts, certificates and electronic signatures must be supported, accompanied
by additional services like time-stamping and non-repudiation. Chapter 3
gives more details on the mechanisms to employ.

Another important point of a security infrastructure for agents is to secure
the migration of agents between agent execution places. An agent should
be protected against modification while migrating, and it should be able to

22 Chapter 2, Telematic Services

migrate only to trusted agent places. Protecting an agent against a mali-
cious host would be desirable, but is, in the general case, not possible. (cf.
Section 6.5)

In the view of the executing host, an agent has properties of a virus. There-
fore, the host must be secured against harmful agents. Again, Java provides
some corresponding solutions. (cf. Chapter 4)

2.4 Electronic Markets

In the economic science a market is defined as a mechanism by which buy-
ers and sellers interact to determine the price and quantity of a good or
service. [SN95] The technical advances in the area of networks enable the au-
tomatization of the relevant steps of a business process. Depending on the
specific market, the possible automatization differs. The steps are summa-
rized in the market transaction model, which is discussed in the following.

2.4.1 Information Phase

The information about the provisioning of some wanted good is essential to
the potential buyer. A simple form of an electronic market is a collection of
information services, that provide comprehensive data about products and
their suppliers. This services might either be provided free of charge, or are
to be paid by itself. Current examples are well-known WWW search engines.

Contrary to the described active or user-driven mechanisms are the passive
distribution channels: Providers pro-actively give information to potential
customers. This “active trading” is often implemented in the form of mailing
lists.

Information technology can significantly reduce time and money needed in
the information phase.

2.4 Electronic Markets 23

2.4.2 Agreement Phase

The buyer contacts potential suppliers. The goal is to define the product
to be bought, including as much of its qualities as possible and reasonable.
Further, the price and modalities of exchange will be set. The result of this
phase is a contract mutually agreed upon.

The necessary negotiations can get very complicated, influenced by the com-
plexity of the good and the pricing models of the suppliers. In the general
case, this is very difficult to achieve in an automated way. In today’s sys-
tems, this works best for well-defined goods with defined and simple qualities,
like at stock exchanges. Stocks have well-defined qualities, only the price is
negotiated.

Newer auction systems on the Internet allow for trading non-standard goods,
where the quality can be negotiated as well, and/or that have no pre-defined
market value. Today, the user has to evaluate the offer, while intelligent
agent technology might be a way to automate these kinds of transactions.

User-oriented services are usually based on web forms. For business-to-
business processes, EDI is a standard for data exchange. [oST96] Telematic
services help to streamline internal and external business processes and to
reduce transaction costs. The benefit raises with the volume of transactions
handled.

2.4.3 Settlement Phase

After contract conclusion, money has to be paid. Money can be exchanged in
numerous ways. Crediting and debiting a bank or credit account can be done
by a partaking bank. More indirect ways of payment include different ecash-
systems, either credit- or debit-based. Electronic money in the form of virtual
coins is another way of money exchange. Money transactions can be either
anonymous or the business partners know each other. Money exchange can
be done very efficiently by computers, and is deployed in several variations.

24 Chapter 2, Telematic Services

2.4.4 Goods Delivery

After contract conclusion, the good and the money have to change hands.
If hard goods are to be exchanged, traditional “real-world” delivery services
are to be employed, which is another business transaction again. Linking the
business processes of supplier and distributor in a supply chain offers great
benefit in optimizing and reducing costs in the business processes for both
parties. The benefit of the user lies in faster delivery and the possibility of
package tracking.

In the case of virtual goods, computer based delivery is very appropriate.
For example, electronic books, music, videos, and software can easily be
distributed. The delivery method might vary, and requires different network
infrastructure. If a high-quality video is to be streamed, the bandwidth of
the network must be higher and isochronous transfer is needed, contrary to
when a software package is downloaded. Establishing the right connection
might again be another business process, or is part of the service provisioning
supply chain.

If the communication channel between user and provider is bidirectional, in-
teractive services can be provided. The user could modify the virtual “good”
received, e.g. an electronic newspaper would contain only articles interesting
for the subscribed user, or the camera angle of a sports broadcast can be
selected.

2.5 Roles

Each actor in a business process is an instantiation of a role. An actor
can instantiate several roles at the same time, and the same role can be
filled concurrently by several actors. In this Section, the typical roles in the
telematics domain will be introduced. Their specifc needs for security are
emphasized.

Most of the roles can be deduced from the above scenario, (cf. Section 2.2)
but some are only implicitly deducable. The roles, which will be explained
in the following in more depth, are:

Consumer: User of a service.

Provider: Offers services.

2.5 Roles 25

Retailer: A special case of a provider, who makes available services of other
providers, potentially by adding value due to intelligent combination
of services.

Content Provider: A special case of a provider, who only serves content
without supporting or wrapping services.

Connectivity Provider: Offers network access.

Platform Provider: Offers the execution environment, where instances of
other roles meet and communicate.

Broker: The broker mediates information, often pertaining to the availabil-
ity of services, between actors.

Arbitrator: In a security-aware environment, as neutral party in an ongo-
ing communication protocol is charged with ensuring, that a contract
conclusion or information exchange is done fairly.

Adjudicator: In a security-aware environment, a neutral party, that, after
a dispute about an already completed transaction arises, acts as a judge
to set things right.

These roles will now be more elaborated upon. Each role will be described in
more depth. The requirements of the roles with respect to a security infras-
tructure for agent-based telecommunication applications will be identified.

2.5.1 Consumer

In the telecommunication market, everyone who uses a service is a consumer.
This can be an end-user, a company, or an institution. The service can either
be charged for or be given free of charge. Service usage might either be
anonymous or the consumer may be identifiable. In reference to the above
scenario, the consumer is the person who has his trip planned and the tickets
booked.

The user wants his data to be protected against other roles, and against
instances of his own role. Only the entities selected by the consumer, respec-
tively only the entities necessary for service provisioning shall get his data.
His communication shall not be successfully eavesdropped upon.

He wants a guarantee, that he will receive the goods or services, he has paid
for. Nobody else should be able to impose him, and to receive the goods
instead of him.

26 Chapter 2, Telematic Services

2.5.2 Provider

A provider is the general case of providing a service. This role is described in
more detail in the next Subsections pertaining to the possible incarnations
of a provider.

2.5.3 Retailer

A retailer offers services to consumers, he is the intermediary between con-
sumer and content provider. A retailer can provision several client groups
and offer multiple services, the services might be used for free or are charged,
they might be anonymous or offered only to identified and authenticated
actors.

For service provisioning, the retailer can integrate the services of another
retailer, content provider, broker, or connectivity provider, or he can delegate
tasks to them. He will then be himself a customer to the other party. The
retailer can instantiate several roles at the same moment. He can, e.g., be
his own content provider or connectivity provider.

In the context of the above scenario, a travel agency or a provider of flight
tickets could be a retailer, because they employ the data basis of other re-
tailers or content providers.

The retailer wants to ensure, that he gets paid correctly for his provided
services. He wants to hide his data and possibly algorithms before other
parties, not to loose his business secrets. In the case of non-anonymous
services, he wants to ensure, that the remote party is properly authenticated
and authorized to use the service.

2.5.4 Content Provider

The content provider offers services for access to its database. He supports
retailers and other content providers in their service provisioning. A content
provider has no direct business with the consumer. That doesn’t preclude,
that the content provider itself acts as a retailer as well. For example, an
airline is a content provider upon relaying its flight information and booking
capacities to travel offices. The airline might sell its tickets to the consumer
as well, therupon acting as a retailer.

2.5 Roles 27

The data of the content provider must be protected against loss to unau-
thorized parties. Its protocols must be protected against impersonation and
modification. Again, the services provided must be payed for.

2.5.5 Connectivity Provider

This is the manager of a transport network, be it switches, cross-connects,
bridges, routers, etc. Normally positioned at the interface between content
provider and retailer, they are entitled to establish connections between ar-
bitrary nodes in the network. Because no single one connectivity provider
connects all nodes of a network, this is normally done in close relationship to
other connectivitiy providers connecting their respective subnets to a com-
plete end-to-end link. The established connection often has to fulfill certain
quality of service requirements. This parameter negotiation is a business
process in itself. [Töb99]

Normally, one of the required quality of service parameters pertains to se-
curity. Authentication, integrity, and protection against eavesdropping are
typically needed aspects. This is the domain of virtual private networks, not
covered in detail in this work.

2.5.6 Platform Provider

A platform provider has the technical equipment to execute the programs of
other roles. This is a set of hardware, and an execution environment.

It is mandatory, that entities executing on the platform do not impair the
execution of programs belonging to other entities. No entity is allowed to have
access to any other entity, neither its code nor data nor its very existence,
except through well defined and mediated interfaces.

It is desirable to protect the executing entities against malicious hosts as
well, but this is very hard to achieve, because the host must have access to
the entity to execute it, or the host might modify or ignore the entity at will.
Protecting against other platforms except the local one, running the code
under discussion, is possible, though.

28 Chapter 2, Telematic Services

2.5.7 Broker

A broker informs entities about the location of and access to services. This is
particularly important for the consumer role, so that the customer can find
the needed services. It is important for a provider to locate the consumer, if
the service provisioning is done for a mobile or roaming consumer. Again, the
broker can impersonate other roles as well. A broker is in fact a specialization
of a retailer, but reduced to service and entity location.

In the above scenario, a broker would mediate the access to retailers and
content providers offering booking services, e.g. airlines, hotels, and booking
agencies.

The information itself is the main business value of a retailer. It must be
protected especially well against loss to third parties. The broker must get
his money for the service provided. A broker should be unbiased in its given
information, else his value to the other roles will shrink. Though, if he is
bound by contract to mediate a certain provider, he must do so.

2.5.8 Arbitrator

An arbitrator is a disinterested third party trusted by the other involved
parties to complete a protocol. Disinterested means that the arbitrator has
no vested interest in the protocol and no particular allegiance to any of the
parties involved. Trusted means that all people involved in the protocol ac-
cept what he says as true, what he does as correct, and that he will complete
his part of the protocol. Arbitrators can help complete protocols between
two mutually distrustful parties. [Sch96]

In the above scenario, an arbitrator could be involved to guarantee the book-
ing, the modes of the contract, and processing of the bill.

The arbitrator is a very sensitive entitiy in the system. It is the single
most point of failure in a protocol, because both parties expect it to com-
plete its part of the process. Integrity, authentication, enciphering, and non-
repudiation are strong requirements for this role. Its database is to be pro-
tected to prevent data sniffing and profiling.

2.6 Law 29

2.5.9 Adjudicator

The adjudicator has the same properties as an arbitrator. Although, this
role is activated not within the protocol, but after its completion, and only if
one of the parties suspect illegitimate action by the other. The adjudicator
then has to decide, which party of the protocol hasn’t fulfilled its obligation.
This decision will involve contacting the arbitrator for the correctness of the
presented proof of evidence.

The security requirements are similar to the arbitrator, while its non-reach-
ability is not critical to the already finished protocol.

2.6 Law

All cryptography-related discussions are held in the context of applicable law.
The first aspect to be considered is the relationship between cryptography
and ecommerce, repectively the necessary prerequisites to be established in
law for providing a reliable framework for conducting electronic business.

But there is more in cryptography in this field. Algorithms, protocols, and
systems are patented and thus protected by patent law issues. Because strong
cryptography enables people to hide information, military and government
departments have an interest against widespread use of cryptography. This
finally leads to a political aspect as well.

2.6.1 Ecommerce

It is often mentioned, e.g. in [Ern01], that the upcoming ecommerce boom will
only be successful, if the customer has the impression of a secured business
process. This, on one hand, pertains to the technical aspects as mentioned so
far in Chapter 3. On the other hand, there are important legal considerations
involved. Is an electronic contract binding? How is it to be enforced? What,
if the good doesn’t arrive, but the money has already been paid? What to
do, if the good is damaged?

In Germany, there is a strong support in politics and the responsible justice
departments for ecommerce. Germany was one of the first countries to es-
tablish digital signatures (cf. Section 3.7.4) as a binding signature by law, in

30 Chapter 2, Telematic Services

the respective German law. [Bun97] Further, there is a catalogue of measures
that describes, how the law is technically to be implemented. [Reg97]

Further accomodations are in work, to adapt other laws to ecommerce. The
“Bürgerliches Gesetzbuch,” [Rei96] (civil law) will be adapted in the near
future in §126 BGB to anchor digital signatures as equally binding as written
signatures currently are. [Reg00]

In Europe, national laws concerning warranty have to be significantly adapted
until 2002. Up to then, upon a flaw in a good, the customer had to prove
the flaw, and that he handled the object carefully, and didn’t harm it. Since
2002, the seller of a good is responsible to prove, that the good had been
error-free at the time of purchase. Further, the period of complaining will be
significantly enhanced from six months to two years. [Möc99]

Upon the growing volume of electronically conducted commerce, tax laws are
considered, so that the government will participate in the profits. There is
no final decision yet, how to implement such a tax.

The legal considerations get extremly complicated if one considers the nature
of the Internet as an international web of nodes. Then, e.g., a customer
might be in Germany, the server providing the relevant information for the
buy is in Korea, the server handling the money in South Africa, the clearing
institution in Swiss, the content server in Russia, and the business partner
has its legal residence in Brazil. How can such a buy be regulated by national
law?

This is an ongoing point of discussion. Some parties assume, that there is
sufficient law in place to handle such a situation, because each and every
involved component has some physical aspect, and that aspect can be dealt
with under conventional law. Though, there are open questions: What,
if the respective countries’ laws are contradictory? German law specifies,
a jurisdictional controversy has to be conducted at the city of the buyer;
a South African content provider (and/or the remote court) might think
otherwise, or simply refrain from appearing.

One could try to avoid such a situation, but this is neither easy nor reliable.
The World Wide Web gives no location information to the user. Knowing
with whom one conducts business in the WWW is a “service” provided by the
provider, not an information gained from the system per se. That provider
might have an interest not to provide too much details, or is conducting fraud
by making false claims.

Copying digital goods is easy. Therefore, copyright infringement is another

2.6 Law 31

aspect discussed in ecommerce, though applicable only to exchanged digital
goods, physical goods are not concerned. Technology for copyright enforce-
ment is handled on the application or content layer of an exchange and is
not a matter of this work.

2.6.2 Patent Law and Trademarks

Software patents are problematic in the ecommerce area. First, they might
induce uncertainty in the legal status of to-be-deployed or installed sys-
tems, thus might block innovation and growth. Second, they might lead to
concentration of technology in few hands, fostering monopolistic structures
and hampering competition. As an example, British Telecom had patented
the concept of a hyperlink in the USA in 1989. [Sar89] If this patent is en-
forced and licensed for significant fees, the WWW might come to a sudden
end. [Die00b]

A lot of algorithms and protocols currently in use in the cryptography area
are protected by patents. That patents might be local to some countries,
or be applicable world-wide. For example, the IDEA symmetric encryption
algorithm is only usable on a royalty-free basis for non-commercial applica-
tions. The very popular asymmetric algorithm RSA was protected in the
USA, but nowhere else. That license expired on September 20, 2000.

There is currently an ongoing debate about if software can be patented “as
such.” In the USA and Japan, this is the case without restrictions. In Europe,
under current legislation, software is not viable for a software patent. The
European Patent Oranization has voted for unrestricted software patents,
though. [Org99, Die00a] The European Commission has declared its intention
against it. [Die00c] It should be noted with care, how the future in this area
evolves.

Before using any specific algorithm, protocol, system, or implementation one
has to assert, that no patents are infringed. As a result of such an audit,
certain parts of the system can’t be used. The conclusion is, a potential
software system must be adaptable to a newly arising situation.

32 Chapter 2, Telematic Services

2.6.3 Export Law

The export of cryptography has long been restricted. Evidently, governments
have wanted to avoid strong cryptography from falling into the hands of for-
eign powers, which would have thwarted their ability to compile intelligence.
Cryptography has long been regarded as a weapon, and it has featured on
lists controlling the export of munitions.

The export restriction pertain mostly to encryption and decryption technol-
ogy. (cf. Chapter 3) Digital signatures, hashes, and other such algorithms are
normally exempt from the regulations.

In the following, due to the more widespread implementation, export laws
are discussed. There are some countries, though, that impose import restric-
tions on cryptography. [Koo00] Account has to be taken for that by software
systems employing mobile cryptographic code, as is the case in mobile agent
systems.

In July 1996, 31 countries signed the Wassenaar Arrangement on Export
Controls for Conventional Arms and Dual-Use Goods and Technologies. The
Wassenaar Arrangement controls the export of weapons and of dual-use
goods, that is, goods that can be used both for a military and for a civil
purpose; cryptography is such a dual-use good. The General Software Note
excepted mass-market and public-domain crypto software from the controls.

Negotiations in 1998 resulted in restrictions on the General Software Note
and in some relexations. The status quo is:

• free for export are all symmertic crypto products of up to 56 bits, all
asymmetric crypto products of up to 512 bits, and all subgroup-based
crypto products (including elliptic curve) of up to 112 bits;

• mass-market symmetric crypto software and hardware of up to 64 bits
are free for export (this limit applies until December 3, 2000, by which
date a new agreement should have been reached);

• the export of products that use encryption to protect intellectual prop-
erty (such as DVDs) is relaxed;

• export of all other crypto still requires a license.

The United States of America has restricted cryptography export by the more
severe International Traffic in Arms Regulation (ITAR). [otOoDTC99] ITAR

2.6 Law 33

restricted export of dual-use cryptography by placing it on the Munitions List
and treated it like military weapons’ ammunition.

At the end of 1996, cryptography export was transferred to the Export Ad-
ministration Regulations of the Department of Commerce (BXA). The export
policy was relaxed. Even new regulations were again published on January
12, 2000. The major components of the updated policy, being the status quo,
are the following: [Koo00]

• Any crypto of any key length can be exported under a license exception,
after a technical review, to non-government end users in any country
except “terrorist countries.” Exports to governments can be approved
under a license.

• Retail crypto (i.e., crypto which does not require substantial support
and is sold in tangible form through retail outlets, or which has been
specifically designed for individual consumer use) of any key length can,
after a technical review, be exported to any recipient in “non-terrorist
countries.”

• Unrestricted crypto source code like most “open source” software and
publicly available commercial source code like “community source”
code can be exported to any end-user under a license exception with-
out a technical review. BXA must be given a copy or the URL of the
source code. All other source code can be exported under license excep-
tion after a technial review to any non-government end-user. One may
not, however, knowingly export source code to a “terrorist country,”
although source code may be posted on the WWW for downloading
without the poster having to check whether it is downloaded from a
“terrorist country.”

• Any crypto can be (re-)exported to foreign subsidiaries of US firms
without a technical review. Foreign nationals working in the US no
longer require an export license to work for US firms on encryption.

• The regulations implement the December 1998 Wassenaar changes to
the General Software Note.

• Post-export reporting is required for exporting certain products above
64 bit to non-US entities.

34 Chapter 2, Telematic Services

2.6.4 Law Enforcement

Despite the opposing advise of cryptography experts,[AAB+98] there have
been numerous attempts in the mid-90’s to establish key escrow schemes by
law. Key escrow refers to usage of keys as secrets for encrypting communica-
tion; government; military, and other security institutions want to gain access
to encrypted data streams by having access to the secret key used for achiev-
ing confidentiality. None of the respective products have achieved any sig-
nificant market share. There are several security weaknesses as well. [Sch96]

In 1997, the German Minister of the Interior Kanther made an effort to
establish key escrow in Germany. Only two months later, he had changed his
mind, the issues was postponed. With the new government elected shortly
after, the issue was dropped. [Möl97]

Within the same year, the European Commission has chosen a direction
away from key recovery. The publicized document aims at creating a re-
liable European framework for digital signatures. It also addresses policy
regarding confidentiality. It stresses the economic and social importance of
cryptography. The Commission is concerned that restrictions on encryption
affect the right to privacy, its effective exercise and the harmonisation of
data protection laws in the Internal Market. Also, “divergence between reg-
ulatory schemes might result in obstacles to the functioning of the Internal
Market.” [Com97]

After numerous outcries and campaigns of public organizations, the key es-
crow efforts “look like to die a slow and quiet death, but standards have a
way of creeping up on you.” [Sch96]

As an example for this “creeping up,” in Germany §88 und §90 of the law
regulating telecommunication [Bun96] in conjunction with the respective ex-
ecutive order [Bun95] define, that it is required for the provider of a telecom-
munication system to offer the technical means for surveillance of phone to
the appointed governmental authorities as well as he has to provide cus-
tomer’s data in an automated way to said authorities.

In other countries, things are different, though. There still exist restrictions
on the domestic use of cryptography in several countries. [Koo00] A software
system must be designed to take that restrictions into account.

2.7 Summary 35

2.7 Summary

This Chapter has named the requirements of future telematic services. One
possibility to fulfill these requirements is the introduction of intelligent agent
technology into the telematics domain.

Now follows Part II that gives an introduction of the technology as will be
used for the framework to be developed. Chapter 3 will delve into the domain
of security and clear up the security terms already introduced in this Chapter.
Algorithms and protocols are shown, and security and attack categorizations
are given that today’s systems have to withstand.

The then following Chapter 4 on the programming language and execution
environment Java will discuss the programming context to be used in the
finished system, highlighting its use in security-related programming.

Software agents are expected to solve several problems in the domain of
distributed problem solving based on open networks, as it is the needed case
in the presented typical telematic scenario here. Chapter 5 will introduce
software agents and shows software agents as a possible way for fulfilling the
demands of the problem domain.

Part II

Technology

Chapter 3

Security Technology

“Trust me,
I know what I’m doing.
bang *ouch*”

Sledge Hammer

3.1 Synopsis

This Chapter gives an introduction into the current state of the art in the
area of security technology. The contents is often based on [Sch96].

The text is structured by the level of complexity of the respective topic. The
terminology of the area of expertise is introduced first. Before then going
into the technical details, some general concepts of the area of expertise
are introduced, and some common misunderstandings will be cleared up.
Subsequently, the technical discours starts with basic techniques. Due to the
complexity of the nature, they are followed by separate Sections dealing with
symmetric encryption and asymmetric encryption. Thereupon builds the
discussion of security systems by combining the basic techniques. Afterwards,
the SSL protocol as an implementation of those systems and as the standard
for secured data exchange is discussed.

The Chapter concludes with a Section on system security based on the Rain-
bow Book Series and the description and categorization of several forms of
attacks a system is exposed to.

http://www.phrank.com/sh/

40 Chapter 3, Security Technology

The mathematical and theoretical computer science background, playing an
important role in the workings of cryptography, are left out due to space
constraints. The reader should be aware of the foundations of complexity
theory and underlying hardware operations.

3.2 Terminology

Cryptography is the science of keeping messages secure. People who work
on that field are called cryptographers. Trying to break the security of a
message is called cryptanalysis, and people who do so are cryptanalysts. The
field of cryptography and cryptanalysis together form the expertise of cryp-
tology, being done by cryptologists. Although [Sch96] and [otA90] restrict
the meaning of these words to encryption and decryption (see below), within
this paper the meaning is broadened to include all aspects of securing data
storage and communication.

Saying to keep a message “secure” depends on the circumstances and the
respective requirements. Within the context of this work, it pertains to
make sure, that the wanted attributes for a communication as given in this
Chapter are fulfilled.

Encrypting a communicated message hides its contents, so that third par-
ties, that don’t have access to a certain secret, i.e. the key, are not able
to semantically understand the contents. The reverse operation of restoring
the original contents is called decryption. The less common, but in [Int89]
“officially standardized” names for these operations are enciphering and deci-
phering. These terms are synonymous. The class of functions for en- and/or
decrypting is called a cipher.

Steganography is the science of hiding the very existence of data. This in-
cludes hiding large amounts of stored or communicated data in other data.
Another aspect of steganography is the concealment of performed commu-
nication, or the hiding of communicating partners. Steganography is not
further elaborated on in this paper.

Upon communication, data is sent from a sender to a receiver. Sometimes,
more parties are involved in a communication. To distinguish between parties
and for easy handling, they are named with “real life names” like “Alice,” who
is normaly the initiator,“Bob,” the responder, “Carol,” and “Dave” for more
participants in arbitrary roles. “Eve” is commonly used for an eavesdropper,

3.3 General Concepts 41

“Malice” is a malicious active attacker. “Trent” is the common name for a
trusted arbitrator, “Peggy” tries to prove something, and “Victor” verifies
that.

Within more mathematical expressions, M normally denotes a message, P is
a plaintext, also knows as cleartext, and C the ciphertext, i.e. encrypted data.
E is an encryption function, D the corresponding decrypting function; S is a
signatory function and V the corresponding verification function. An index
K denotes an indexed function, this is usually the application of a key to an
en- or decrypting function. Sometimes, the key is given as a party, which is
to be understood as the applicable key of that party, for this function.

E.g., reading from the inner expression outwards, VA(DB(EB(SA(M)))) means,
Alice signs a message M with her private key A, then encrypts the signed
data with the public key B of Bob, who afterwards decrypts this data with
his private key B, and then verifies the message with the public key A of
Alice.

The use of “⊕” denotes the mathematical exclusive-or operation.

3.2.1 Security in German

In the English language, the semantic concept of computer and software
security is intuitively clear, and pertains to the protection of a system against
willfull attacks of intruders.

Upon using the German language, the meaning is easily confused, because of
several semantics of the common translation “Datensicherheit,” translated to
English as an aspect of “safety.” There are instances, though, where safety
leads to security. (cf. Section 4.2)

Within this work, “security” is limited to the above strict english mean-
ing. It does not cover strategies against accidental data loss, like backups
or CRC codes, correctly translated as “Datensicherung.” Neither does the
notion of “security” in this document cover the aspect of uncertainty in
knowledge. [Sch97]

42 Chapter 3, Security Technology

3.3 General Concepts

This section introduces some general ideas and widely adopted good practices
in the field of computer security. By doing so, common pitfalls are shown
and alleviated.

3.3.1 Code and Cipher

The distinction between Code and Cipher is often blurred, but has to be
cleared up. A code refers to a cryptosystem that deals with linguistic units:
words, phrases, sentences. [Sch96] Ciphers deal with the characters of a mes-
sage, at the syntactical instead of the semantical level.

This reduces usage of codes to the use in environments, where for every
semantic item to be communicated there exists a referring code-word. The
most prominent and almost exclusive use of codes is in the military sector,
where e.g. “Barbarossa” in 2nd world was the German’s code-word for the
military operation of invading Russia. Today, the military shifts to ciphers as
well, because flexibility is gained, but nothing lost: codes can be encrypted
with ciphers as well.

In an open environment like the Internet, where it is essential to communicate
about almost everything and especially about non-predetermined contents
without changing the underlying technical system, encryption using codes is
not reasonable. Therefore, within the open Internet community, only ciphers
are used, as will be in this paper.

3.3.2 Security by Obscurity

A lot of security technology vendors rely on not opening their algorithms or
devices to the public, neither the specification nor the source code base. This
is commonly called “Security by Obscurity.”

The “a closed system is more secure”-view is rather näıve: In the open
market, where products are handed over to the customer, nothing can be
hidden from a dedicated attacker. The story of computer security shows a
lot of failed attempts on securing products by not revealing their secrets.

Either tamper-resistant devices or physical barriers would be needed to re-
duce the risk of these attacks. First, these approaches are not feasible on

3.3 General Concepts 43

the consumer mass-market. Products must be widely available, early on the
market, and cheap, if they are to be successful. They must be handed over
to the customer.

Second, even then, attacks are very possible and have often occured: break-
ins in secured building complexes are commonplace. Attacks on non-disclosed
material can be done by observation, both of the expected and wanted be-
havior, and of side-effects not covered by the specification of the system,
and hence they are neglected by the implementation. The differential power
analysis [KJJ99] and timing attacks [Koc95] on SmartCards are examples of
successful attacks by the second type of observation.

The common denominator of the security professionals therefore is to have as
much qualified peer review and analysis of their cryptosystems as possible.
Cracking contests are sometimes used to attract the attention of cryptog-
raphers, but are normally ignored for more interesting tasks. Thus, their
results can not be used as a “proof” of the security or quality of a system.
Not finding an error does not mean, there is none. Even worse, the contests
themselves often rely on the “Security by Obscurity” principle, important
information is non-disclosed, making the attempt to hack the system more
difficult, but leading to a false sense of security. [Sch98]

Futile are “security concepts,” that rely on the good will of the rest of
the world to function. As Bruce Schneier said: “its just a matter of time
before someone with the right combination of resources and ethics comes
along.” [Sch96]

Another problem with systems not open to public scrutiny is the very real ex-
istence of backdoors. As for example can be seen in [Yah01], in “well-known”
software even of large companies code is found, that opens up unwanted ac-
cess to the customers’ machines, be it by malicious individuals, by company
policy, or by other unnamed influence groups. As a general rule, the “a little
paranoia never hurts” [Pro01] paradigm sounds odd, but has its applicability.

3.3.3 Old means Trusted

The cryptology community has a somewhat conservative attitude. New al-
gorithms, protocols, and cryptosystems aren’t embraced lightly. [Sch99a]
explains by similarity and by example, why this is the case.

The bottom line is, one should prefer well-proven systems over newly-invented
ones. Nevertheless, perfect security is not possible. One can only try to
reduce the risk to a minimum, but a residual risk will always remain.

44 Chapter 3, Security Technology

3.3.4 Snake Oil

Obviously, in choosing a security product a user has to consider its security.
The security of a product depends on several factors. The algorithm used is
normally of the least concern, because there is a number of well-established
mechanisms available, all well-proven as discussed above.

The pitfalls normally lie in the implemention of the system, which is very
often extremly fragile with respect to various implementation details, e.g. the
correct mode of an algorithm used. (cf. Section 3.5.3) Things get even worse,
if the vendor implements its own algorithms or protocols.

In the commercial world, it is rather uncommon for a vendor to put its
product under an open source license. Thus, the potential buyer and user
of the software has no opportunity to look at the software first-hand, or to
have it examined by experts. Rather, his decision on trusting the software
has to rely on the information he gets from the supplier.

The advertisements of vendors often help to distinguish between good prod-
ucts and bad products, because there exist obvious warning signs for software
to avoid. This is exemplified and described for encryption algorithms in the
“Snake Oil FAQ.” [Cur98] They are summarized in [Sch99b] as follows:

Pseudo-mathematical gobbledygook: (also known as technobabble) If
the contents of a system’s description appears to be nonsense, it often
is.

New mathematics: If an algorithm is newly invented, there often are new
security holes as well, which are discovered only shortly later.

Proprietary cryptography: If the company refuses to open their technol-
ogy to public scrutiny, they are very suspect of having something to
hide. The security of an encryption algorithm, for example, lies in
the non-disclosure of the keys used, and not in the knowledge about
the algorithm itself. The distributed code, and hence the algorithm it
implements, is subject to reverse engineering anyway.

Extreme cluelessness: If it appears that a company doesn’t know, what
its talking about, it is very likely that it doesn’t. This point is closely
related to technobabble, as described above.

Ridiculous key length: If a vendor is proud of “overkill” attributes of their
product, it is a hint that something other more important is missing.
This point might be an expression of the previous warning sign.

3.4 Basic Techniques 45

Unsubstantiated claims: If the vendor makes claims of world-wide accep-
tance of the security or technology of their product, than there normally
isn’t.

Security proofs: These warning signs are divided in two categories. Either
the system is “proven” by explaining some well-known knowledge, and
then acclaiming that the product inhibts these properties, or there is a
real mathematical proof, which isn’t directly related to the product.

Cracking contests: Often, vendors encourage the public to try to break
an algorithm. Out of the fact that no-one succeeded they infer that
their algorithm is secure. This is more closely analysed in [Sch98]
and [Spa95].

[Sch99b] concludes with:

These snake-oil warning signs are neither necessary nor sufficient
criteria for separating the good cryptography from the snake oil.
Just as there could be insecure products that don’t trigger any
of these [. . .] warning signs, there could be secure products that
look very much like snake oil. But most people don’t have the
time, patience, or expertise to perform the kind of analysis nec-
essary to make an educated determination. [. . .] the only thing
a reasonable person can do is to use warning signs like these as
guides.

This effectively means, that one can not be sure of a product used. Instead,
one has to build up some trust in the product by relaying to the expertise of
others whom one trusts. It is therefore not possible to attain perfect security
with a proprietary product.

3.4 Basic Techniques

This section covers some basic technical aspects of computer security. It
covers methods used as building blocks in the other algorithms and protocols
as described in further Sections.

46 Chapter 3, Security Technology

3.4.1 Random Numbers

Random numbers form the basis for a lot of cryptographic methods. The un-
predictability of e.g. key material used in encryption is fundamental. Random
numbers are used as secrets between two parties for denying a third party
access to the information communicated. Therefore, the random numbers
used for cryptography must be “good.”

There exist several categories of random numbers: The first category is called
pseudo random numbers. They appear to be random, and pass all statistical
tests of randomness, like the χ2-test. Unfortunately, they have a period and
thus are predictable after a certain amount of randomness they generate. A
discernable period, though, makes applying the data to cryptography worth-
less, because then, statistical attacks on the material are viable. Further, on
any computer under the same circumstances, the generated sequence is the
same. This is not sufficiently random.

Cryptographically secure pseudo-random numbers are, in addition to the
above properties, non-predictable, even if full knowledge of the algorithm
and any sequence-related data is given. This is a demand on the random
number generating algorithm, which must exhibit a sufficient amount of en-
tropy. Still, there is a problem with cycles, but good algorithms have a
period of 2256 and more. [Sch96] Hashes (cf. Section 3.4.3) and encryption
functions, (cf. Section 3.5) due to their chaotic behavior and large periods,
are often employed as random number generators.

A cryptographically secure pseudo-random number generator still produces
the same sequence of numbers, if it is being fed the same initial state. Real
random numbers have the property of being non-reproducable. For a real
random number generator, the same initial input, if at all possible to pro-
vide, yields different resulting random number streams. For these purposes,
specialized hardware is utilized. Commonly, radioactive decay is measured,
filtered, and converted to a random number stream. The radioactive decay
is, for human means and technology, neither reproducable nor predictable.

[ECS94] gives in-depth thoughts about the generation of randomness on com-
puter systems.

3.4 Basic Techniques 47

3.4.2 Keys

The security of a message being worked on with a proven cryptographic
function relies entirely on the secrecy and quality of the key material used.

Key Length

The keyspace should be large enough to ward off brute-force attacks, (cf.
Section 3.10.2) but longer keys lead to slower processing. The DES algo-
rithm [oST99] with its design restriction to 56 bit can not be considered
secure any more, even less the variant of varying only 40 bit thereof. It is
vulnerable to brute force attacks. Today’s standard is to have 128 bit of
symmetric key length. (cf. Section 3.5) For RSA keys, 1024 bit are defined as
to be used in several signature standards, [Reg97, oST00] but seriously secu-
rity concerned experts recommend 2048 bit. [Sch96] Some programms allow
to use 4096 or even 8192 bit as key length.

Randomness

The keys must be as random as possible, (cf. Section 3.4.1) so that no algo-
rithm or statistical analysis might be able to predict them.

The probability of an adversary succeeding at guessing a random key must
be made acceptably low, depending on the particular application. The size of
the space the adversary must search is related to the amount of information
present in the key. “Information” here pertains to the information theoretic
sense as defined in [Sha63]. This entropy of a message depends on the number
of different secret values possible and the specific probability of each value,
and is measured in bit.

Flat Key Space

A weak key of a symmetric algorithm leads back to the plaintext, if applied
twice: EK(EK(M)) = M . Semiweak keys are pairs of two keys K1, K2, where
DK2(EK1(M)) = M . Possibly weak keys restrict the way an algorithm works
on the keys, and theoretically lead to easier breakage, but it is unknown how
to exploit this vulnerability in reality.

Since there are so few weak keys in proportion to the keyspace, there exist
only an infinitesimal small chance of picking one at random. Within the

48 Chapter 3, Security Technology

cryptographer’s community it is debated, if it is worth the effort to test for
them upon key generation. [RSA00] On the other hand, the test itself isn’t
much effort either, so for serious applications or a paranoid user the test
should be performed. [Sch96]

It is the design goal of a cryptographer, to build algorithms with as few
weak keys as possible. The DES algorithm [oST99] has only four weak and
twelve semiweak keys. It has 64 possibly weak keys, out of its keyspace of
256 keys. [Sch96]

If all keys are of the same strength for the algorithm, the key space is said
to be linear or flat.

Total Keyspace

Not only should each generated key have the same probability to be generated
than each other generated key, but the whole keyspace should be used with
equal probability. This seemingly simple requirement is important for two
often encountered issues.

Implementation errors often lead to a non-exhaustive key usage, where whole
classes of keys will never be generated. This weakens the resulting system,
because it reduces the effort for a analysis and brute force attacks.

Second, due to export regulations of some countries require a maximum key
length to be used for encryption, so that their executive institutions will be
able to decrypt secret messages. (cf. Section 2.6) Therefore, in some products
part of the keys will be set to predefined values, for example setting 40 bit
of a “128 bit” key to a true random value, the remaining 88 bit to all zeroes.
This reduces the effective keyspace to be searched in a brute force attack
from 2128 to 240 and makes the attack feasible.

Key Storage

Having a good key is not enough. It is required, that the key does not fall
into wrong hands. This is a task harder than it sounds. Even on a single
computer system, the key will end somewhere on the hard disk. There it
might be accessed by other processes, possibly by other users, and might even
get send over a network accidentally. A comprehensive security system must
provide means to protect keys against getting lost. This includes never saving
keys willfully on a disk, using SmartCards for non-retrieval key storage, using

3.4 Basic Techniques 49

operating system means to prevent memory areas holding keys being swapped
to disk, encrypting keys before being saved, etc.

The standards [RSA93d], [RSA93f], and [RSA97] together define a way, how
to store a secret locally in an cryptographically secured form on disks. The
method is strong enough for transporting the data store over a network to a
remote machine.

For secret key sharing systems, as a requirement for the system to work, at
least two parties have to have access to shared and secret key material. This
explodes the chances for mishaps and keys gotten lost. A system, if possible,
should be designed not to require shared long-term secrets.

Duration of Use

The longer a key is used, the more amount of data can be collected to be used
for key retrieval. For high-traffic communication, symmetric keys should be
changed more often than for low-traffic data exchange. Further, the more
valuable an information is, the more often the key should be changed. The
disadvantage is, each new key exchange adds latency time to the communi-
cation.

Using ephemeral keys for just the session at hand reduces the valid lifetime
and therefore the damage possibly incurred with it. Wherever possible, tem-
porary keys should be used in exchange for long-term keys. Long-term keys
must never leave the system they are on.

Key Compromise

In practise, keys get lost, broken, or expired for different reasons. Therefore,
the revocation of keys must be provided for. This is no problem for ephemeral
keys, because the connection they pertain to can simply be closed. If the pro-
tected connection provides for perfect forward secrecy, this does not have any
security implications for other secured communications. For long-time keys,
there must be a corresponding mechanism and infrastructure installed. (cf.
Section 3.7.5)

50 Chapter 3, Security Technology

3.4.3 Hashes

Be there a function H for a message M that results in a hash value h of
constant length: h = H(M). H is called a hash function, if and only if

• for a given M , h is easily calculated, and

• for a given h, it is a “hard” problem to find an M with the property
h = H(M), and

• for a given M , it is a “hard” problem to find an M ′ with the property
H(M) = H(M ′).

Further, it is very desirable for H to be collision-free. That means, it
is a “hard” problem to find two random messages M and M ′, so that
H(M) = H(M ′). The term “hard” here and in the above list refers to
its complexity class. This property is directly targeted against the birthday
paradox problem, i.e. that it is significantly easier to find two random pairs
of the same number, than it is to find the corresponding number for a given
one. There is often a viable form of attack against a cryptosystem.

Unfortunately, collisions for widely-adopted and well-known hash functions
were discovered: RIPE-MD [DBP96] was discussed in [Dob97], MD4 in [Gol96].
MD5 [Riv92] was shown to have collisions in [dB94]. For SHA-1 [oST95] there
are currently no collisions known, it appears to be the favorite of a today’s
hash function usage evaluation although it is encumbered wih a patent and
a corresponding licensing scheme. [KBC97]

Hashes have chaotic properties, they inhibit an avalanche effect. That means,
one bit in a data collection, e.g. a key or a plaintext block, effects several bit
in a further operation. Hashes are used primarily for integrity checking. (cf.
Section 3.7.2)

Other names of hash functions are compression function, message digest,
fingerprint, cryptographic checksum, or message integrity check. Due to its
nature, the result of a hash incurs information loss. Tagging a hash function
as a “compression function” is insofar ambigous, as it contradicts with the
compression functions of the next Subsection.

3.5 Symmetric Ciphers 51

3.4.4 Compressions

A “true” compression function analyses its input data for redundancy and
tries to eliminate that in contrast to a hash by exchanging the redundant
data with a recoverable substitute. The inverse function recreates the original
input stream.

Compression functions find their use in cryptography for reducing the input
data volume thus speeding up the time-consuming cryptographic functions.
Additionally, a compressed data stream has a significantly reduced redun-
dancy and non-trivially predictable cleartext, which hampers attacks on the
stream.

3.5 Symmetric Ciphers

Symmetric ciphers have the property, that the same key is used for en- and
decrypting a message, i.e. DK(EK(M)) = M . Another class of symmetric
ciphers use the same function for both en- and decrypting, but different keys,
that are computable from each other: CK−1(CK(M)) = M , where K−1 is the
inverse of K, and C is the cipher. Figure 3.1 [Cer97] visualizes symmetric
encryption, where the encrypting and the decrypting key are the same. Be-
cause the key(s) have to remain secret between the communicating parties to
secure the data, this type of ciphers is also named secret-key cryptography.

Figure 3.1: Symmetric Encryption

There is an important distinction on what data fragment a cipher operates.

52 Chapter 3, Security Technology

This consideration has significant security implications, and the applicability
of the algorithms are different, as is shown in the following.

3.5.1 Stream Ciphers

A stream cipher transforms one bit of a cleartext to one bit of ciphertext per
operation. The bitstream of plaintext is ⊕-ed with a bitstream of keystream
bits. For decryption, the resulting ciphertext bitstream is again ⊕-ed with
the same key bitstream and according to the properties of an ⊕-operation
yields the plaintext again.

The more random the generated keystream is, the better is the security of
the ciphertext. The period of the stream must be, as always in cryptography,
as large as possible, to thwart statistical analysis. On the other hand, the
keystream must be reproducable, else decryption would not be possible.

The keystream generator must not produce the same keystream every time
it is used. Instead, a key is used to initialize the keystream generator, so that
only if one knows the initially used key, one is able to reproduce the same
keystream. If the key is not known, the keystream is non-predictable, hence
the ciphertext can’t be decrypted. Thus, the security of a stream cipher lies
in the size and randomness of the key as well.

3.5.2 Block Ciphers

A block cipher works on a fixed length of bits at a time. A typical number of
bits is 32 or 64, the number often results from optimization of the algorithm
for a specifc hardware architecture. The ability to make advantage of the
inherent word size of a processor leads to high performance, normally faster
than stream ciphers.

As a further difference to stream ciphers, a block cipher operates on several
bits a time. This allows to use forward references to bits in the block within
the algorithm. Avalanche effects can be implemented with less operations,
due to the availability of more bit material. The result is enhanced security
due to increased entropy.

Because block ciphers need to have a complete block of input before they
generate a ciphertext block, they are not suitable for serial communication
and other instances, where encryption bit-by-bit is needed. Where there is a

3.5 Symmetric Ciphers 53

bulk of data ready at hand, a block cipher is the preferred encryption algo-
rithm. Block ciphers are more flexible upon usage of the algorithm mode. (cf.
Section 3.5.3)

The inner working of a block cipher depends heavily on the design, so there
is no general image to show. Block ciphers employ a subset of the available
basic techniques as shown in Section 3.4 and 3.5.

Padding

Because block ciphers require a fixed amount of data, special considerations
are to be taken for the last amount of a bulk of input data. The last few bytes
usually do not conform to the block boundary as imposed by the algorithm
used. The short block is padded at the end with an arbitrary pattern.

If the padding is to be recognized as such after deciphering, some padding
indicator is to be used. This is normally implemented by appending the
amount of padding into the last few bit (usually the last byte) of the padded
plaintext. Upon deciphering, the last byte is interpreted as the number of
bits or bytes to eliminate from the decoded data. This semantics requires
that every last block is to be padded, even if it is already conforming to
the block length, to prevent accidental data loss due to interpretation of the
counter where it shouldn’t have been. As a consequence, the ciphertext will
be longer than the plaintext, up to one additional block.

3.5.3 Algorithm Modes

An algorithmic mode is the combination of a cipher and some feedback, also
named chaining, mechanisms applied to the data.

Further, the mode in stream ciphers is often implemented in the keystream
generator and is not only hidden from the application programmer’s interface,
but often defined at design time and can’t be changed afterwards. Because of
these reasons, only block ciphers are assumed for use of modes. In principle,
though, all statements are valid for stream ciphers as well.

The näıve way of applying a cipher to a sequence of blocks of data is to use
the cipher for each block irrespective of any previous or following ones. This
mode is called Electronic Code Book (ECB), because each plaintext block
encrypts to the same ciphertext block, provided the same key is used. Thus
one could, for each key, build a complete book showing for each input block

54 Chapter 3, Security Technology

the resulting cipherblock. Upon getting hold of one encrypted block, the
corresponding cleartext could easily be attained by mapping it back with the
help of the previously generated codebook. This attack is even more feasible,
because especially the start and end of messages tend to repeat: e.g., mail
headers or signatures are stereotypical.

To circumvent the security problems of arbitrarily modified, inserted, and
repeated blocks in ECB mode, the ciphertext blocks will be connected and
depend on each other if the cipher is used in Cipher Block Chaining (CBC)
mode, where each resulting cipher block is ⊕-ed with the next plaintext block
before encryption.

Different bulks of data would, using the same key, encrypt to the same ci-
phertext up to the first difference. To circumvent this problem, and to be
able to use the same encryption routine even for the first block, where there
is no previous ciphertext block available, an initialization vector (IV) is used
for ⊕-ing the first plaintext block with. This is a strengthening of the ci-
pher’s application, because with a sufficiently large IV, a codebook attack
on a stereotypical first data block would become infeasible. Hence, an un-
predictably random initialization vector should be used, but it need not be
secret.

Using a block cipher in Cipher Feedback (CFB) mode allows to send along
single bytes before the whole block is computed. For generating the next
output chunk, the previous ciphertext chunk is encrypted and then ⊕-ed
with the plaintext chunk. If only processing one bit at a time, this mode
becomes undistinguishable from a stream cipher.

The Output Feedback Mode (OFB), also called internal feedback, is very simi-
lar to CFB mode. Instead, the keystream is independent of the plaintext and
the ciphertext. Large amounts of key material can be pre-generated, even
before the plaintext arrives, which helps securing high-speed data communi-
cation.

In some instances, it is desirable to combine the qualities of several algorithms
into a composite one. For example, DES [oST99] has very good resistance
properties against linear and differential cryptanlaysis. (cf. Section 3.10) Un-
fortunately, the key length of 56 bit makes a brute force attack very practical
with today’s hardware. To circumvent this, the variant Triple-DES [oST99]
(also called 3DES, or TDES) has been introduced.

For encrypting a plaintext block, it is encrypted with the first key, then
decrypted with the second, following encrypted again with the third key.
The three keys are independent of each other and randomly determined. For

3.6 Asymmetric Ciphers 55

Triple-DES this results in an effective key length of 3 · 56 = 168 bit, enough
to withstand brute force attacks in the forseeable future. The three rounds
of encryption are combined in outer-CBC mode. Using the same algorithm
repeatedly instead of combining different algorithms has the advantage of
exploiting existing speedup hardware devices.

Which mode to chose depends on several factors, primarily security, speed,
and access considerations. ECB mode is the weakest, but is very well suited
for encrypting non-message oriented and short data, like ephemeral keys.
CBC mode is the most secure mode and applicable to large bulks of data
with a low chance for bit errors, as in encrypting data files on disk. CFB
is adequate for character-oriented streams of data like terminals of a host
system. OFB is suitable for high-speed synchronous data communcication
applications.

3.5.4 One-Time Pad

The only unbreakable encryption known today is the one-time pad. It com-
prises of a simple ⊕-operation, with a completly random and non-repeating
key. Then, if given a ciphertext and testing a key, every resulting plain-
text is equally probable, and the original plaintext can’t be identified by any
statictical means.

Unfortunately, the key length has to be the same as the message length. This
makes distributing the key to the communication partner as problematic as
sending the message itself, thus renders the one-time pad as unpractical in
an open and high-bandwith environment between identities unknown before
commencing the communication.

3.6 Asymmetric Ciphers

This kind of encryption functions use two different keys for encryption and
decryption, the two keys are interdependent. For an attacker it is not feasi-
ble to compute one key from the other, because all asymmetric ciphers are
based on “hard” problems according to complexity theory. Figure 3.2 [Cer97]
visualizes asymmetric encryption.

Because usually one of the keys is made public for purposes of either en-
cryption or signature checking, the resulting system is often called public-key

56 Chapter 3, Security Technology

Figure 3.2: Asymmetric Encryption

system.

For encryption applications, the public key is used to encrypt a message,
which can only be decrypted using the private key of the recipient. For
authentication purposes, the secret key is used to sign a message; the public
key is then used to ensure, that the signature has been made with the secret
key.

Due to the fact, that an attacker has access to the public key of the recipient,
he is able to pre-generate a codebook EK(P) for chosen P ’s. This is a
practical attack, if P is either short or well-known, and faster to resolve
than an attack on the key itself. Therefore, public key algorithms should be
avoided for classes of applications with a short plaintext, or messages should
be padded with random data to at least a secure length.

The factorization of large numbers into their prime components is one of the
“hard” problems made use of in cryptography. The most known represen-
tative is the RSA cipher, betitled after the names of its inventors, and it is
currently the best analysed asymmetric cipher. Because there hasn’t been
any serious security issues discovered since its inception, it is regarded as
the most secure asymmetric cipher as well. Further, it is easy to implement,
resulting in RSA being the most popular asymmetric cipher today.

Neither the insecurity nor the security of RSA has been proven. It is only
assumed, that breaking the RSA keys is as difficult as factoring the numbers
used in the key generation. There might well be a shortcut to factoring being
undiscovered yet, putting the security of RSA at stake.

ElGamal was the first who realized using the difficulty of calculating dis-

3.6 Asymmetric Ciphers 57

crete logarithms in a finite field for encrypting and signing, [EG85] hence this
mechanisms is known under his name as well, variants have been proposed
by Schnorr.

The resulting ciphertext is twice the size of the plaintext, which renders
it unattractive for purposes of encryption. The ElGamal scheme is well
established in the area of digital signatures. (cf. Section 3.7.4)

Elliptic curves are mathematical constructions from number theory and al-
gebraic geometry, which in recent years have found numerous applications
in cryptography. An elliptic curve can be defined over any field (for exam-
ple, real, rational, complex), though elliptic curves used in cryptography are
mainly defined over finite fields.

ECC has several advantages over RSA. For similar security, data require-
ments are reduced, as is shown in [Cer99] and in [Cer00]. This makes ECC
particularly attractive for data environments with strict hardware limita-
tions, like smartcards. Further, implementations are faster for ECC than for
RSA, e.g. signing up 10− 40 times. [Sch96] But, ECC cryptography is a rela-
tively new branch of cryptology, hence the community is somewhat reluctant
to embrace it. (cf. Section 3.3.3)

3.6.1 Hybrid Encryption

Figure 3.3: Hybrid Encryption

Asymmetric encryption is significantly slower than symmetric algorithms.
Further, keys for the former are about 10 times longer for comparable se-
curity. For these reasons, one combines both encryption types in a hybrid

58 Chapter 3, Security Technology

Figure 3.4: Hybrid Decryption

scheme: Beforehand, both communicating parties generate asymmetric keys
and publish their public part. For a communication session to initiate, a ran-
dom symmetric session key is generated. The session key is then encrypted
asymmetrically and sent to the partner. From here on, the session key is
used to symmetrically encrypt the communication. (cf. Figure 3.3 [Net99]
and Figure 3.4 [Net99])

3.7 Security Systems

In the former Sections, several algorithmic building-blocks for cryptography
applications have been introduced. To fulfill a specific purpose, though, these
algorithms must be combined into a security system. The system combines
algorithms into a complex synthesis to achieve a specific property. Protocols
are used for communication of data, where a protocol is defined as a series
of steps, involving two or more parties. [Sch96]

3.7.1 Key Agreement

For securing a communication against eavesdropping, the involved parties
have to agree upon a shared secret key to use for encryption, if they want
the benefits of symmetric ciphers as shown in Section 3.5. In the general
case, and according to good practices of key use and storage as described
in Section 3.4.2, an ephemeral key for the communication session at hand
has to be established and exchanged, before encrypted communication can

3.7 Security Systems 59

commence. The tricky part is, that neither of the party yet has a shared
secret to use for initialization, but even more a third party should not get
hold of the secret-to-be-established.

Upon encrypting a communication and thus deprieving third parties of the
possibility to eavesdrop on the exchanged data gives the property confiden-
tiality, sometimes also called privcay, to the communication.

Authentication and encryption should use different asymmetric key pairs.
Authentication is an orthogonal feature to confidentiality, so this is, in the
first place, a cleaner system architecture. There is a stronger reason for two
key pairs. If one key pair is used and it gets compromized, both encryp-
tion and authentication falls down. If two key pairs had been used, either
authentication or encryption could still hold an attacker at bay.

For key generation, the currently most often employed mechanism is very
similar to the ElGamal encryption scheme as introduced in Section 3.6. This
scheme is named after its two inventors Diffie and Hellman. It has the
very interesting property, that there is no other key material involved in the
process, i.e. not even a public key of the other party is needed to establish the
shared secret. Because each key exchange is independent of all others, the
compromise of one key does not lead to compromise of other communications
secured by different keys, this property is called forward secrecy. [RSA93c]
defines technical details, how to implement the algorithm, and defines object
identifiers.

If there exists a public key of the party one would like to establish a shared
secret key with, that key can be used to encrypt a randomly generated key
and then sent to the other party. No one else except the holder of the
corresponding secret key can then decrypt the generated ephemeral key.

One must take care of not falling victim to a man-in-the-middle attack, were
an attacker spoofs the identity of the recipient and issues the public key
to a secret key he possesses instead of the correct one. Certificates help to
thwart these attacks. (cf. Section 3.7.5) Either an infrastructure to retrieve
public keys or another means of key distribution must exist to get hold of
the public key.

This method of generating the shared secret on one side of the communication
is faster and the corresponding communication protocol for key exchange is
simpler than keys generated with the Diffie-Hellman method. In addition
to being prone to a man-in-the-middle attack, it is less secure because the
key is based on input of only one party. This makes bad random number
generators on one side having significant impact.

60 Chapter 3, Security Technology

3.7.2 Message Authentication Code

A special application of hashes is their use as a message authentication code
(denoted MAC), upon using it as a MAC it is also tagged keyed hash func-
tion. (cf. Section 3.4.3)

To compute a MAC, a shared secret key between the communicating parties
is needed, for example to be established by a Diffie-Hellman key exchange
protocol completion. The key is mathematically used as an index to the
hash function’s application, in practise this is realized as concatenating the
key with the message to be checked, and computing the hash value over the
concatenated data.

This intuitive approach of generating a hash is insecure, because an attacker
could add data blocks to the message, and be able to calculate and insert a
valid hash for that. Therefore, the strengthened scheme of a HMAC has been
introduced, where the data to be hashed is pre-processed, then hashed, then
alternatively pre-processed and hashed again. If, in the following, a MAC is
referenced, a HMAC is included in the semantics as well.

It is an ongoing debate in the cryptographer’s community, if truncating the
HMAC output is a strengthening or weakening of the mechanism. Truncation
has the advantage, that an attacker has less information about the output to
use for compromising the communication. On the other hand, requiring less
data for integrity checking makes forging the checksum easier.

Employing a MAC in a communication enables to ensure the integrity of
a communication. No one is able to modify the communicated data block
without it being noticed. Although, this only ensures, that each specific block
has not been tampered with. If the sequence of data flowing in a connection
should be protected (partial sequence integrity), additional measures must
be taken, as described in Section 3.7.3

Figure 3.5 [Cer97] visualizes the same process upon using public key cryp-
tography: The computed hash is decrypted by Bob with his secret key and
then sent along with the message to Alice. She checks the hash value by
encrypting it with Bob’s public key. The result must match with her own
calculation of the hash, else the message has been tampered with. This also
is an application of authentication (cf. Section 3.7.6) and digital signing. (cf.
Section 3.7.4)

3.7 Security Systems 61

Figure 3.5: Message Integrity Check

3.7.3 Block Counter

Within each message exchanged between two parties, a message counter is
inserted. The counter is incremented strictly monotonic, i.e. for each block.
It is included in MAC computation to prevent it from being tampered with.
A packet is only valid, if its counter is one larger than the last received. This
strict form of sequence integrity is called connection-oriented integrity, all
blocks must be received strictly in order. Lost blocks are detected (except
the last, special measures upon closing the connection must be conceived
there), if the increment is by a known fixed amount.

Overflow of the counter should be detected and a mutual re-initialization
has to take place for continued communication; choosing the counter large
enough for any reasonable data exchange can accomodate for this.

Adding a block counter to communicated data blocks ensures replay protec-
tion: No data blocks can be re-inserted into the communicated data stream
without being noticed. Also, it is impossible to re-order data blocks.

The situation gets complicated, if data exchanged is not strictly sequen-
tial, as in the situation of receiving internet protocol datagrams out-of-order.
A replay protection window can be used. A datagram is additionally still

62 Chapter 3, Security Technology

considered valid, if its counter is not larger than the last received, and its
sequence number is not older than a predefined window size, and has not
been received before. [KA98] This is also known as partial sequence integrity.

Block counters do not protect against replay of the entire communication,
including the first block. Therefore, a nonce is used by both parties as part
of establishing the security session. A nonce is a random piece of data to
be included in MAC computation or into key generation. Introduction of a
nonce guarantees liveness of the communication. [MSST98]

3.7.4 Digital Signatures

Signatures in the “real world” have been used to express commitment to the
contents of a document. This only works, because a signature has several
properties:

• The signature can’t be forged. No one than the signer can produce the
same signature.

• The signature can’t be re-used. The same signature can only be used
for the signed document, it can’t be attached to another without being
noticed.

• The signed document can’t be altered. It is not possible to later change
a signed document without noticing the mismatch with the attached
signature.

• The signature can’t be repudiated. The signer can’t claim later, he
didn’t sign the document.

In the “real world,” none of the properties are absolute. But the scheme is
practical, because there exist norms and regulations for proper signature use,
and punishment for fraud.

Within the “electronic world,” it is tried to re-model these properties to
exchanged data using digital signatures. A digital signature is used to achieve
similar properties.

Unforgeability is attained by requiring secret material by the signer. It is
assumed, that the signer takes care keeping the needed material confidential.
Then, only the keeper of the secret material is able to provide the signature.

3.7 Security Systems 63

The same digital signature can’t be reused for another document, because it
depends on the contents of the document, and signing different documents
yields different electronic signatures. The inverse is, if the signed document
is altered after signing, the signature no longer conforms to the document:
the alteration is evident.

Non-repudiation, meaning the impossibility for the signer to later deny, that
he signed the document, is harder to achieve. The signer can always claim
later, his key got lost or compromised, and deny having signed a message.
To achieve a limited non-repudiation of older material, a trusted arbitrator
Trent is included: upon Alice signing a message M and sending the signa-
ture and the message to the recipient Bob, she instead sends (M, SA(M))
to Trent. Trent affixes a timestamp t to the message, and signs the combi-
nation himself, forwarding ((M, SA(M)), t, ST ((M, SA(M), t))) to Bob. Bob
can check, that Trent signed the message and timestamp, and he can check
Alice’s signature. If Alice later claims, her key got lost, still all timestamped
communications before that event will be regarded to be valid and signed by
Alice, not an attacker. Having a timestamp in the communication has the
additional advantage, that all recipients can recognize the same document
being sent either again, or newly sent and timestamped: for example, this
makes repeated presentation of the same electronic check to a bank impossi-
ble.

Figure 3.6: Digital Signature

64 Chapter 3, Security Technology

Signing a document using a public key pair is the inverted application of
encryption. (cf. Section 3.6) A message is first hashed and then encrypted by
the sending Alice with her private key and decrypted by the recipient with
Alice’s public key. (cf. Figure 3.6) [Net99] If the decryption works, it is the
proof, that the encryption has been performed by Alice with her secret key.
In fact, calling the signing process “encryption” and the verifying process
“decryption” is only valid, if RSA is used as the algorithm. (cf. Section 3.6)
[RSA93a] defines, how to do that, and defines common object identifiers.

The Digital Signature Standard (DSS) is a worldwide adopted standard for
digital signatures. [oST00] It provides two functions, one for signing and one
for verifying the signature. The corresponding Digital Signature Algorithm
(DSA) is based on the ElGamal scheme. (cf. Section 3.6)

[oST00] allows to use RSA or Elliptic Curves as alternatives for signing and
verification algorithms. Signature verification using DSA takes about half
as long as signing. DSA signing is up to 40 times slower than with RSA.
If used with a 1,204 bit key, it is assumed to be strong enough for long-
term security. [Sch96] A second keypair and a different algorithm is used for
encryption purposes.

Because the DSA has been developed by the National Security Agency (NSA)
of the USA, and weaknesses in the form of subliminal channels that can be
used to leak information about the secret key have been detected, DSA is
not applicable for deeply suspicious people.

3.7.5 Certificates

In all public-key systems, the danger of a man-in-the-middle attack lingers:
an attacker could substitute a public key chosen by him, of which he has
the corresponding secret key, and provide this to the sender to be used for
encryption.

To circumvent this issue, public-key certificates (only “certificates” for short)
have been introduced. A certificate (more precise: a user-certificate) is the
association between an identity and its public key, affirmed (i.e. signed) by
a trusted party. The identity of an entity is a recognizable and unique name
for the entity. There must be a syntax to express an identity.

A very common representation for identities is defined in the ISO standard
X.501 [ITU93] called a distinguished name (DN) and is effectively a sequence
of pairs of an attribute and a value. Each of these pairs is called a rela-
tive distinguished names (RDN), the structure is shown in Figure 3.7. A

3.7 Security Systems 65

DN uniquely identifies the corresponding entity. To exemplify the structure
imposed, and the conceptual integration of RDN and DN, Table 3.1 gives
an example for the construction of the DN out of several RDNs. The cer-
tificate itself is defined in the accompanying document X.509 [ITU97b] and
constructed as shown in Figure 3.8. The data type Name is a DN as above.

1 RelativeDistinguishedName ::=
2 SET SIZE (1..MAX) OF AttributeTypeAndValue
3

4 AttributeTypeAndValue ::= SEQUENCE
5 type ATTRIBUTE.&id ({SupportedAttributes}),
6 value ({ATTRIBUTE.&Type ({SupportedAttributes}{@type})}

Figure 3.7: Relative Distinguished Name

Hierarchical Level RDN DN
Root {}
Countries C = GB {C=GB}
Organizations O = Telecom {C=GB, O=Telecom}
Organizational Units (OU = Sales, {C=GB, O=Telecom,

L=Ipswich) (OU = Sales, L=Ipswich)}
People CN = Smith {C=GB, O=Telecom,

(OU = Sales, L=Ipswich),
CN=Smith}

Table 3.1: Determination of Distinguished Names

Attribute extensions as defined in Figure 3.9 can be used, to add other desir-
able information to the certificate. If the criticality flag is set to TRUE, and
the values can not be recognized upon parsing, the whole certificate shall be
deemed invalid. Any organization may define attribute extensions as needed
by using the extended key usage extension. [ITU97b]

As an example, the standardized extension in Figure 3.10 shows, how the
use of a certificate can be restricted by defining extension properties. Each
allowed use of a certificate has a specific property to be set, if that specific
certificate is allowed to be used for that purpose. The extKeyUsage type
allows to define own specific key usages not covered by [ITU97b].

Attribute certificates [ITU97b] are handled just as the above-mentioned user-
certificates. The only difference is, that an attribute certificate contains more
information about the user, for example date of birth, social security number,
etc. There is no conceptual difference to a user-certificate.

66 Chapter 3, Security Technology

1 Certificate ::= SIGNED { SEQUENCE {
2 version [0] Version DEFAULT v1,
3 serialNumber CertificateSerialNumber,
4 signature AlgorithmIdentifier,
5 issuer Name,
6 validity Validity,
7 subject Name,
8 subjectPublicKeyInfo SubjectPublicKeyInfo,
9 issuerUniqueIdentifier [1] IMPLICIT

10 UniqueIdentifier OPTIONAL,
11 -- if present, version must be v2 or v3
12 subjectUniqueIdentifier [2] IMPLICIT
13 UniqueIdentifier OPTIONAL
14 -- if present, version must be v2 or v3
15 extensions [3] Extensions OPTIONAL
16 -- If present, version must be v3
17 } }

Figure 3.8: X.509 Certificate

1 EXTENSION ::= CLASS {
2 &id OBJECT IDENTIFIER UNIQUE,
3 &ExtnType
4 } WITH SYNTAX {
5 SYNTAX &ExtnType
6 IDENTIFIED BY &id
7 }
8 Extensions ::= SEQUENCE OF Extension
9 Extension ::= SEQUENCE {

10 extnId EXTENSION.&id ({ExtensionSet}),
11 critical BOOLEAN DEFAULT FALSE,
12 extnValue OCTET STRING
13 -- contains a DER encoding of a value
14 -- of type &ExtnType for the extension
15 -- object identified by extnId
16 }
17 ExtensionSet EXTENSION ::= { ... }

Figure 3.9: X.509 Certificate Extensions

3.7 Security Systems 67

1 keyUsage EXTENSION ::= {
2 SYNTAX KeyUsage
3 IDENTIFIED BY id-ce-keyUsage
4 }
5 KeyUsage ::= BIT STRING {
6 digitalSignature (0),
7 nonRepudiation (1),
8 keyEncipherment (2),
9 dataEncipherment (3),

10 keyAgreement (4),
11 keyCertSign (5),
12 cRLSign (6),
13 encipherOnly (7),
14 decipherOnly (8)
15 }

Figure 3.10: KeyUsage Certificate Extensions

It is important to notice, that the signer of a certificate can, in principle, be
anyone with a distinguished name. That effectively means, that it is possible
to create chains of certificates, where the signer is to be verified by another
certificate, and so on.

In a centralized certification scheme, for all participating users there is exactly
one trusted third party, the Certification Authority (CA). The CA has the
task to issue certificates, to prove, that a certain public key is bound to a
certain identity. All players in the community trust the CA, that it is capable
of doing so, and does it reliably.

The CA does this by signing the association between the identity and the
public key with its own secret key. To test the signature of the CA on user’s
certificates, one has to have the public key of the CA. That public key is
distributed in the CA certificate, which is the association of the CA’s public
key to its identity, signed by itself, called the root certificate.

To get hold of a certificate, an entity generates a Certification Request, [RSA93b]
and sends this to the CA for further processing. The CA, after successfully
generating the certificate, propagates the certificate via key distribution cen-
ters. (see below)

In centralized certificate scheme, all chains of certificates must ultimatively
be traced back to the root certificate. Each player must have access to
the root certificate and all intermediate certificates to verify the last in a

68 Chapter 3, Security Technology

chain of certificates, the leaf. For better scaling of the installed architecture,
intermediate CAs might be installed, all tracing their certificate back to the
root certificate.

It is necessary, that the verifier has a reasonable level of confidence in the
correctness of the root certificate. This normally involves testing the root
certificate by some off-line means, like getting it from a CD-ROM, comparing
it with a print media, or checking it vis-à-vis with the issuing organization.

An advantage of centralized certificate creation is the ability to accompany it
with a centralized certificate distribution mechanism, called key distribution
center (KDC). Every user, who needs a certificate to verify a chain, may
contact the KDC to retrieve the needed key. The KDC’s database is filled
by the CA, that simply pushes all issued certificates.

To reduce the risk of secret key compromise, certificates are only valid in a
pre-defined interval. A certificate is automatically invalidated outside this
intervall. This is a particularly tricky and not yet resolved issue for the root
certificate itself.

1 certificateRevocationList ATTRIBUTE ::= {
2 WITH SYNTAX CertificateList
3 ID id-at-certificateRevocationList }
4 CertificateList ::= SIGNED { SEQUENCE {
5 signature AlgorithmIdentifier,
6 issuer Name,
7 thisUpdate UTCTime,
8 nextUpdate UTCTime OPTIONAL,
9 revokedCertificates SEQUENCE OF SEQUENCE {

10 userCertificate CertificateSerialNumber,
11 revocationDate UTCTime } OPTIONAL }}

Figure 3.11: Certificate Revocation List

Keys still can get compromised within the valid time period of its correspond-
ing certificate. If such a situation is detected, the user sends a certificate re-
vocation request to the CA. The CA then retracts the certificate. To enable
others to know of this invalidation, the CA provides a certificate revocation
list (CRL), which contains all revoked certificates. [ITU97b] (cf. Figure 3.11)
While checking any certificate, an entity has to check it against the CRL.

For different applications or communities different requirements for the qual-
ity of the certificate issuing process is required. The quality is defined by the

3.7 Security Systems 69

policy of the issuing organization, where each organization might issue sev-
eral different kinds of certificates. There exist low-quality certificates, that
bind a public key to an email-address without further identity checking, like
Class 1 certificates by Verisign, [Ver97] as well as certificates that are only
issued after presenting one’s government-issued identification documents in
person to a CA’s representative. [Hei99] Certificates to be used for legally
binding statements require a high quality, and the issuing CA has to take a
lot of technical and organizational measures and has to undergo a rigorous
process of getting certified therefore. [Reg97]

For different communities or application environments, different CAs might
be used. Each tree of issued certificates of one CA is disjunct to all certificate
trees of all other CAs. For interoperability, a policy mapping is desirable:
when a CA in one domain certifies a CA in another domain, a particular
certificate policy in the second domain may be considered to be equivalent
(but not necessarily identical in all respects) to a particular certificate policy
in the first domain by the authority of the first domain. [ITU97b]

There are two common interpretations of a CA: in the “loose” sense, any
entity creating a certificate is called a CA. More “strict,” only those entities
undergoing the abovementioned rigorous accreditation process and whose
certificates have a strong legal foundation are a CA.

3.7.6 Authentication

Authentication is the process of ensuring, that in a communication protocol
a presented identity is impersonated rightly by the presenting entity. Fur-
ther, an authenticated communication includes ensuring integrity of the data
exchanged.

[ITU97b] specifies, in addition to the certificate format as presented in Sec-
tion 3.7.5, a framework for mutual strong authentication based on crypto-
graphic techniques. Successful completion of the three-way authentication
protocol ensures, that both parties are asserted of the identity of the other
side. Further, the communication (so far) is known to be unalterated. In-
cluding a nonce assures liveness and prevents a replay attack.

70 Chapter 3, Security Technology

3.7.7 Authorization

Granting authorization is to allow an acting subject an operation on an
object. The subject is some kind of active entity, usually a program acting
on behalf of an user. The operation depends on the object, in the context
of data files this might be read, write, execute, delete, change, and similar
operations. The object is normally some kind of passive entity, e.g. a data
file or process being acted on.

In the context of service-based software agents as described in Chapter 2,
the operation is the call of a service, which is the only possible operation on
a service, and the object is the service itself.

3.8 Secure Socket Layer

The primary goal of the SSL protocol (SSL) [FKK96] is to provide privacy
and authenticity between two communicating applications. The protocol is
composed of two layers. At the lowest level, layered on top of some reliable
transport protocol (e.g., TCP), is the SSL Record Protocol. The SSL Record
Protocol is used for encapsulation of various higher level protocols. One such
encapsulated protocol, the SSL Handshake Protocol, allows the server and
client to authenticate each other and to negotiate an encryption algorithm
and cryptographic keys before the application protocol transmits or receives
its first byte of data. One advantage of SSL is that it is independent of the
transported application protocol. A higher level protocol can layer on top
of the SSL protocol transparently. The SSL protocol provides connection
security that has three basic properties:

• The connection is confidential. Encryption is used after an initial hand-
shake to define a secret key. Symmetric cryptography is used for data
encryption.

• The peer’s identity can be authenticated using asymmetric, or public
key, cryptography.

• The connection is reliable. Message transport includes a message in-
tegrity check using a keyed MAC.

SSL is a stateful protocol. All records are protected using the encryption
and MAC algorithms defined in the negotiated cipher specification. There

3.8 Secure Socket Layer 71

is always an active cipher specification, however initially it is a no-op, which
does not provide any security. Once the handshake is complete, the two
parties have shared secrets which are used to encrypt records and compute
keyed message authentication codes (MACs) on their contents. The tech-
niques used to perform the encryption and MAC operations are defined by
the cipher specification. Transmissions also include a sequence number so
that missing, altered, or extra messages are detectable.

The cryptographic parameters of the session state are produced by the SSL
Handshake Protocol, which operates on top of the SSL Record Layer. When
a SSL client and server first start communicating, they agree on a protocol
version, select cryptographic algorithms, optionally authenticate each other,
and use public-key encryption techniques to generate shared secrets. These
processes are performed in the handshake protocol, which is shown in Fig-
ure 3.12. [FKK96]

Figure 3.12: SSL Handshake Protocol

The client sends a client hello message to which the server must respond with
a server hello message, or else a fatal error will occur and the connection
will fail. The client hello and server hello are used to establish security
enhancement capabilities between client and server. The client hello and
server hello establish the following attributes: protocol version, session id,

72 Chapter 3, Security Technology

cipher suite, and compression method. Additionally, two random values are
generated and exchanged.

Following the hello messages, the server will send its certificate, if it is to
be authenticated. Additionally, a server key exchange message may be sent,
if it is required (e.g. if their server has no certificate, or if its certificate is
for signing only). If the server is authenticated, it may request a certificate
from the client, if that is appropriate to the cipher suite selected. Now the
server will send the server hello done message, indicating that the hello-
message phase of the handshake is complete. The server will then wait for
a client response. If the server has sent a certificate request message, the
client must send either the certificate message or an alert. The client key
exchange message is now sent, and the content of that message will depend
on the public key algorithm selected between the client hello and the server
hello. If the client has sent a certificate with signing ability, a digitally-signed
certificate verify message is sent to explicitly verify the certificate.

At this point, a change cipher spec message is sent by the client. The client
then immediately sends the finished message under the new algorithms, keys,
and secrets. In response, the server will send its own change cipher spec
message, and sends its finished message under the new Cipher Spec. The
handshake is now complete and the client and server may begin to exchange
application layer data.

Application data messages are carried by the Record Layer and are frag-
mented, compressed and encrypted based on the current connection state.
The messages are treated as transparent data to the record layer.

The security depends on the properties of the generated randomness for
keying material. (cf. Section 3.4.1) As the key is usually generated by the
client, a common PC, the quality of the keys will be disputable.

SSL itself does not cope with the validity of certificates. The target appli-
cations have to provide their own means of checking. This might involve
using a host library or, if certificate checking is skipped altogether, leads to
non-authenticated communication.

SSL is currently the standard for encrypted and authenticated communica-
tion on the connection layer.

3.9 System Security Requirements 73

3.9 System Security Requirements

The most fundamental requirement standard for computer security is defined
in the “Orange Book” [TCS85] of the “Rainbow Book” [NCS] Series. The
requirements for the writing were motivated by the need of the military and
government agencies to determine the level of trust to be put into computer
systems. Features of systems should be made measurable, acquisitions should
be better described, and manufacturers given a categorization of features.
The evaluation criteria, in the spirit of the time of its writing, pertained
primarily to host systems, networks are only implicitly covered and are not
explicitly dealt with. It defines four requirements:

Security Policy: The security policy of the system must be well-defined
and enforced by the system.

Marking: Objects must have access control labels, that describe the allowed
operations.

Identification: Subject accessing data must be identifiable, and the access
to the data is granted based on that information.

Accountability: The system must selectively collect security auditing data,
and protect that information against tampering.

The document defines criteria against that systems are to be measured for
fulfilling the above security requirements. It defines the four divisions A
through D, with some classes as lower structural levels in divisions B and C.
Division D provides only “minimal protection,” according to [TCS85], but
that name is misleading, because division D pertains to completly unsecured
systems as well, as long as they have been assessed against the standard.

Classes in division C provide for discretionary (need-to-know) protection and,
through the inclusion of audit capabilities, for accountability of subjects and
the actions they initiate. Systems in class C1 provide separation of users
and data. It incorporates some form of credible controls capable of enforcing
access limitations on an individual basis, it allows users to be able to protect
information and to keep other users from reading or destroying their data.

Allowed object sharing of class C1 is more restricted in class C2: the system
shall provide controls to limit propagation of access rights. The discretionary

74 Chapter 3, Security Technology

access control mechanism shall provide that objects are protected from unau-
thorized access. These access controls shall be capable of including or exclud-
ing access to the granularity of a single user. Access permission to an object
by users not already possessing access permission shall only be assigned by
authorized users.

Division B is a jump up in security requirements by demanding mandatory
protection: the notion of a Trusted Computing Base (TCB) that preserves
the integrity of sensitivity labels and uses them to enforce a set of mandatory
access control rules is a major requirement in this division. Systems in this
division must carry the sensitivity labels with major data structures in the
system. The system developer also provides the security policy model on
which the TCB is based and furnishes a specification of the TCB. Evidence
must be provided to demonstrate that the reference monitor concept has been
implemented. The reference monitor is the part of the TCB, that enforces
the authorized access relationships between subjects and objects of a system,
and must fulfill all of these requirements: [And72]

• The reference validation mechanism must be tamper proof.

• The reference validation mechanism must always be invoked.

• The reference validation mechanism must be small enough to be subject
to analysis and tests, the completeness of which can be assured.

Class B1 systems are said to have labeled security protection and require
all the features required for class C2. In addition, an informal statement of
the security policy model, data labeling, and mandatory access control over
named subjects and objects must be present. The capability must exist for
accurately labeling exported information. The TCB shall enforce a manda-
tory access control policy over all subjects and storage objects under its con-
trol. These subjects and objects shall be assigned sensitivity labels that are
a combination of hierarchical classification levels and non-hierarchical cate-
gories, and the labels shall be used as the basis for mandatory access control
decisions. The TCB shall be able to support two or more such security levels.

In class B2 systems, the TCB is based on a clearly defined and documented
formal security policy model that requires the discretionary and mandatory
access control enforcement found in class B1 systems be extended to all
subjects and objects in the system. In addition, covert channels are ad-
dressed. The TCB must be carefully structured into protection-critical and
non-protection-critical elements. The TCB interface is well-defined and the

3.10 Attacks 75

TCB design and implementation enable it to be subjected to more thor-
ough testing and more complete review. Authentication mechanisms are
strengthened, trusted facility management is provided in the form of support
for system administrator and operator functions, and stringent configuration
management controls are imposed.

The class B3 TCB must satisfy the reference monitor requirements that it
mediates all accesses of subjects to objects, be tamperproof, and be small
enough to be subjected to analysis and tests. To this end, the TCB is struc-
tured to exclude code not essential to security policy enforcement, with sig-
nificant system engineering during TCB design and implementation directed
toward minimizing its complexity. A security administrator is supported
by introducing security domains, audit mechanisms are expanded to signal
security-relevant events, and system recovery procedures are required.

Division A is characterized by the use of formal security verification methods
to assure that the mandatory and discretionary security controls employed
in the system can effectively protect classified or other sensitive information
stored or processed by the system. Extensive documentation is required to
demonstrate that the TCB meets the security requirements in all aspects of
design, development and implementation.

Systems in class A1 are functionally equivalent to those in class B3 in that
no additional architectural features or policy requirements are added. The
distinguishing feature of systems in this class is the analysis derived from
formal design specification and verification techniques and the resulting high
degree of assurance that the TCB is correctly implemented.

The Orange Book allows for classes better than A1 but states, that it is
beyond current technology. There are guidelines though, in which directions
that classes might delve. At the time of writing this thesis, there are no
operating systems listed as being of class A1 and only one, in several versions,
is classified as B3. [NCS00]

3.10 Attacks

There is a multitude of possibilites to undermine the security of a system.
Unfortunately, there can be no comprehensive list of possible attacks, because
every day a new one can be discovered or implemented. Research never stops,
ingenuity can’t be predicted.

76 Chapter 3, Security Technology

It is possible, though, to identify areas in which attacks can be classified, and
where standard approaches are known. A system should, as far as a technical
system can cope with some of the more obscure or solely social issues, at least
try to minimize the risks the attacks described in the following pose.

3.10.1 Attacks on Algorithms

The most fundamental attack form is to try to break the cryptographic algo-
rithm used. The categorization of the attacks is based on the available infor-
mation, an attacker has, and the possibilities for modification of data. [Sch96]

In a ciphtertext-only attack the attacker has the ciphertext of several mes-
sages all of which have been encrypted using the same encryption algorithm.
The attacker wants to recover the plaintext of as many messages as possible.
Better yet, he tries to find out the key used to encrypt the messages.

In a known-plaintext attack, in addition to the ciphertext, the attacker has
the plaintext messages thereof as well. A successful attack is conducted, if it
is possible to deduce the key used, or to be able to recover other plaintexts
encrypted with the same key, be it either known or not.

In a chosen-plaintext attack, in addition to the initial information as given in
the previous attack, an attacker has the possibility to inject plaintext chosen
by him and can get hold of the resulting ciphertext. Again, the keys are
sought, or an algorithm to recover plaintext from ciphertext.

In an adaptive-chosen-plaintext attack an attacker has the same information
and possibilities as in the previous attack. In addition, feedback of insights
achieved from injecting own plaintext can be used for further plaintext input.
This is the case, e.g., in an ongoing communication, where answer messages
can be observed and new injected messages can be constructed in reaction
to the received answers.

As a specific variant, using differential cryptanalysis the adversary tries to ex-
ploit differences in the ciphertext as generated by slightly different plaintexts.
The resulting ciphertext differences are used to conclude about weaknesses
of the algorithm by then being able to deduce about different probabilities
of keys. This reduces the key space to search for the correct key. (cf. Sec-
tion 3.4.2)

In a chosen-ciphertext attack an attacker is able to let the system decrypt
ciphertexts chosen by him, and evaluates the decryption output. This is a
“promising” attack against public key algorithms. [Sch96]

3.10 Attacks 77

A chosen-text attack is a combination of a chosen-plaintext attack with a
chosen-ciphertext attack: the attacker has both possibilities.

A chosen-key attack is a very sophisticated form of attack, where relation-
ships between different keys is alleviated, similar to differential cryptanalysis
for plaintexts. Another name of it is related-key attack.

In the known-plaintext version of a chosen-key attack, the attacker knows
the plaintext and the ciphertext and tries to deduce the keys used. In the
chosen-plaintext version, the attacker might inject plaintexts of his choosing.

In linear cryptanalysis, the inner working of a block cipher is approximated
by a linear equation. This gives probabilities for the correctness of parts of
the key used. The more material to test the resulting hypothesis on, the
more probable the success of the attack is.

3.10.2 Brute Force Attacks

A very simple form of attack is just to try out different keys. This is an
implementation of a ciphertext-only attack: the attacker tries each key of the
keyspace, decrypts the ciphertext, and tests the result for being a reasonable
plaintext. This attack is very effective in real-world situation due to the
following reasons.

Users often choose bad passwords used as keys or for key generation. They
use words easily found in a dictionary, even worse, the passwords might have
a personal connection to the user. This enables the attacker, after trying
obvious socially related passwords like the spouse’s name or the birthday of
the kid, to run a dictionary attack. All words of a language dictionary, with
variations, are tried, until the password or key is recovered.

A keyspace should be large enough, that only a very minor fraction of it can
be tested against in reasonable time. (cf. Section 3.4.2) Some algorithms only
use 40 or 56 bit, which is not enough for today’s standards. Thus, a small
keyspace of the algorithm leads to insecurity.

The system in use, like the login prompt of a computer system, restricts the
keyspace even further. Although an algorithm might allow a range of 256
values for each key byte, there are often restrictions on the values actually
possible due to the design of the cryptosystem: entering all 256 values at a
login prompt is normally not allowed or possible.

Increasing computing power make the computers of today more powerful
than designers might have expected upon inception of their algorithms. Dis-

78 Chapter 3, Security Technology

tributing the necessary computation over lots of nodes in a computer network
mobilize additional resources not available before. Brute force attacks be-
come feasible where they haven’t been some years ago.

It is easier to automatically recognize a recovered plaintext than one might
think. First, most computer data follows a specific format, e.g. a bank trans-
action might always comprise of two account numbers, two bank numbers,
an amount, etc., in a fixed order. Natural language is easy to discern as well,
because each language has a specific index of coincidence of all letters and
letter combinations. [otA90] gives a detailed account how to recognize the
English language algorithmically.

3.10.3 Attacks on Protocols

Another general form of attack is not to undermine the algorithm but instead
the protocol the algorithm is used in. These attacks can be categorized as
follows.

In a passive attack, the adversary has no possibility to manipulate the proto-
col exchange. Instead, he is only able to eavesdrop on the communication. It
is a protocol-related form of a ciphertext-only attack. Protocols can neither
prevent nor detect this form of attack, but have to provide for not falling
victim of it.

In an active attack, the adversary has the possibility to manipulate the ex-
changed data stream. This can take several forms that can be combined:
being a man in the middle, manipulating bits in a stream, replaying old com-
munication, inserting own data, substituting or reordering messages, cutting
off communication as wanted, etc.

Protocols can be disrupted on the semantical level by cheating attacks. An
otherwise legitimate participant of a protocol might give false data, withhold
important data, or disregard the protocol’s sequence. The latter is called
active cheating in contrast to the aforementioned types of passive cheating.

This kind of attack is very difficult to circumvent on the technical level,
because it involves the semantics of the data exchanged, which can’t be eval-
uated for the general case. Self-enforcing protocols, arbitrated, and adjucated
protocols might be used to prevent cheating.

3.10 Attacks 79

3.10.4 Attacks on Systems

Using a “secure” protocol only featuring well-accepted algorithms by itself
does not guarantee a secure system: “details matter.” [Sch96]

For example, it doesn’t do any good in SSL (cf. Section 3.8) to exchange
a strong symmetric cipher specification and associated key material if one
renounces authentication beforehand, because then any man in the middle
could act as the communication partner and be part of the key exchange
himself without being noticed as such. This is not the fault of SSL, because
strong authentication is supported. It is the fault of the system in use, that
doesn’t employ the features provided.

Even if each secure subpart of a system is used correctly doesn’t mean, the
resulting system is secure. Very popular design errors do use, e.g., SSL in a
secure manner, and the data afterwards is processed behind good firewalls.
Unfortunately, the interim data between receipt via SSL and further process-
ing is stored unprotected on the web server, making it available to any one
in the world, ironically protected by SSL as well (see e.g. the list at [Sec00]).

Connection high-jacking is another form of attacks on cryptosystems. In-
secure lower-layer protocols are used to subvert an established connection
between two peers by substituting for one of them. Because of the inherent
insecurity of TCP connections, this attack must be countered on the security
system level.

3.10.5 Attacks on Implementations

Implementation bugs of systems can be exploited by attackers. This is one
of the most practical attacks today. Faults in web browsers, specifically in
the subsystem of securing active content execution, are the prevalent cause
of danger for the client side. [Sec00] Server software is prone to common
programming errors, [Var00] gives a frightening list of vulnerabilities.

Because making errors is human, programs will have bugs. As discussed in
Section 3.3.2, security can be gained by peer review of the program’s source
code and reducing those bugs.

80 Chapter 3, Security Technology

3.10.6 The Human Factor

Another very practical way to attack a system involving people is to exploit
the human factor: “That sack of organs sitting in front of the monitor has
more security holes than all the Microsoft products put together, and its
much easier to write malicious scripts to exploit them.” [Hig00]

People can be deluded by misinformation in numerous ways. They might
be faked about the machine, they are “talking” to, they might be tricked to
enter sensitive information to an untrusted program, they can be deceived
by phone to give their passwords to the “administrator,” etc.

Installation of unverified software or from untrusted sources is another source
of compromize. The installed software might be a backdoor to the computer
or spying and sending information by various ways back to the attacker or
whatever else a local program might do on the machine.

Another factor to recon with is missing skills of the people using a cryptosys-
tem. They might not know, how to use it properly, or might be lacking con-
sciousness about their doing and the requirements thereof. Teaching might
help, but it requires capability and willfullness of the people. Being forced by
higher authorities in a company to do something very important now while
often being ignorant about the security issues very quickly leads to bypassing
or ignoring security concerns as well.

Carelessness of people using the system is another path to insecurity. Pass-
words are written on paper and stored under the keyboard, plain text files
contain sensitive information like keys, and so on. A security policy for the
system that defines the requirements of use and proper handling should be
in place to reduce the human factor of insecurity.

3.11 Summary

For realizing a secure system, there are a lot of algorithms, protocols, and
crypto systems to choose from. Because their applicability pertain to differ-
ent cicumstances, there is no single choice to be made available. Therefore,
the whole suite of solutions must be provided for a system.

This condition is even worsened for interoperability reasons. Because in an
open environment it can not be determined beforehand, or a global stan-
dard be established, which mechanisms to use for securing a system. For

3.11 Summary 81

maximum interoperability, flexibility, and applicability a vast range of sup-
ported mechanisms and parametrization must be supported. In addition,
depending on the circumstances, the mechanisms to use and to enforce must
be selectable and configurable. It is mandatory though, not to invent own
solutions but instead employ proven and well-analysed mechanisms must be
employed.

A comprehensive security solution must therefore provide for flexibility and
adaptivity to the local circumstances. Components and intelligent self-in-
spection of the software must be supported as well.

The next Chapter will give a technical overview of Java and its security-
related features, followed by a Chapter that delves into the agent domain.

Chapter 4

Java

“Drink your coffee.
Maybe it will warm your heart.”

Miss Brown, Birds of Passage

4.1 Synopsis

Since the inception of Java technology there has been strong and growing
interest around the security of the Java platform as well as new security
issues raised by the deployment of Java technology. Java is a registered
trademark of Sun Microsystems, Inc.

From its early days, Java was designed to be a framework “native” to the
network. There should be no conceptual difference between a “local” and
“remote” program, both should be executed likewise. The only difference,
as will be discussed below, is the difference in trust that is put into the
remote code. “Write once, run everywhere” is the related and widely known
slogan. [Sun99b]

Further, Java was designed to enable application execution at the client side
of a network connection, especially if transmitted over Web pages. For these
reasons, in addition to stand-alone applications the applet concept had been
introduced and implemented. An applet is a piece of code that can be trans-
mitted from a web server to a client web browser and be executed in the
browser, the execution is controlled by the browser.

http://us.imdb.com/Quotes?0194704

84 Chapter 4, Java

From the beginning of promoting the Java technology, Sun Microsystems has
released tools to develop programs written in Java. The fundamental toolkit
is the Java Development Kit (JDK). Because the JDK Version 1.2 [Sun00a]
introduced several new and powerfull security features, as will be discussed
in this Chapter, that version of the JDK was chosen to be the basis of the
concept and implementation as presented in Part III.

Java security includes the following aspects, that will be elaborated in the
remainder of this Chapter:

• A language concept with strong data typing and features for error-free
programming.

• The Java platform as a secure platform on which to run Java applica-
tions in a secure fashion.

• The standard API as a class library supporting security.

• Security tools and services implemented in the Java programming lan-
guage that enable security-sensitive applications.

4.2 Programming Language

The Java programming language (abbreviated in the following as only “Java”)
is a general-purpose concurrent class-based object-oriented programming lan-
guage, specifically designed to have as few implementation dependencies as
possible. It allows application developers to write a program once and then
be able to run it everywhere on the Internet. [GBS00]

The evolution of Java started with its identity as a subset of C++ with
slightly different syntax. This subset was designed to eliminate features of
the C++ language that were deemed to be error-prone or unsafe. In this
sense the term code safety refers to the property that Java allows to generate
bug-free code that doesn’t crash the program or the machine. This is an
aspect of robustness, because Java helps preventing writing programs that
are accidentally harmful. [Ins98]

Reducing the possibility for programming errors reduces the probability of
errorneous programs, that show unwanted and probably unsecure behavior.
Thus, Java as a programming language helps to write correct programs and

4.2 Programming Language 85

to provide reliable systems. This safety adds to the security of a system as
discussed in Section 3.10.5.

4.2.1 Invalid Memory Access

Java does not enable pointer arithmetic. This is perhaps the most important
language feature that contributes to the Java language’s safety, since it is
pointer arithmetic that leads to accessing inappropriate memory areas, which
leads to runtime crashes or access to otherwise protected or sensitive data.

In addition to removing pointer arithmetic the Java language specification
defines behavior of uninitialized variables. All heap-based memory is auto-
matically initialized, all stack-based memory isn’t. All class and instance
variables are always set to defined values, and all local variables must be
initialized before use or the source compiler generates an error.

4.2.2 Garbage Collection

Another feature of Java that contributes to safe code is automatic garbage
collection. The runtime environment is able to automatically release memory
no longer referenced.

Java also has a stack concept for memory allocation. There can be multiple
stacks within a program, one for each executing thread. The only memory
allocated on the stack is for local variables of a method. When the method
ends, the variable space is relinquished. Due to the Java garbage collector
concept, a programmer no longer needs to determine when to release memory.
The garbage collector will only release memory when it is safe and no longer
referenced.

4.2.3 Other Safety Features

Strong compile-time type-checking disallows illegal casts. It ensures, that a
programmer can’t interpret a block of memory as anything other than what
it is.

Java’s access modifiers public, package, protected, and private, con-
tribute to robustness by controlling visibility of class members. One can
restrict access to data instances, methods, and inner classes.

86 Chapter 4, Java

The Java programming language also provides the final modifier, which dis-
allows subclassing when applied to class definitions and disallows overriding
when applied to method definitions. This makes it impossible to overwrite
security-sensitive class members.

4.3 Execution Environment

Java is a byte-compiled language. This means, Java source code is compiled
by the source level compiler, after checking the correctness of the code against
the language definition, [GBS00] into an interim coding, the byte code. That
byte code is not directly executed on a target machine as it is the case with
other compiled languages.

Instead, the byte code is interpreted as the instruction set for a Java virtual
machine (JVM) as defined in the Java VM specification. [LY99] For each tar-
get platform that shall run Java Code there must exist a native implemen-
tation of the JVM, the Java Runtime Environment (JRE). That JRE then
interprets and executes the byte code. Because interpreting the byte code is
a performance bottleneck, a runtime compiler for on-demand generation of
native code is included in a standard Java distribution today.

4.3.1 Byte Code Verification

Before a class is loaded into the JVM, it verifies, that the byte code con-
forms to the Java language specification. [GBS00] This prevents executing
maliciously modified or unintentionally errorneous code before it gets into
the JVM.

4.3.2 Class Loading

Dynamic class loading is an important feature of the Java Virtual Machine
(JVM), because it provides the Java platform with the ability to install soft-
ware components at runtime. It has a number of unique characteristics.

Lazy loading means that classes are loaded on demand and at the last mo-
ment possible. Dynamic class loading maintains the type safety of the JVM
by adding linktime checks, which are performed only once. Programmers

4.3 Execution Environment 87

can define their own class loaders that, for example, specify the remote lo-
cation from which certain classes are loaded, or assign appropriate security
attributes to them. This way, programs to be loaded are not restricted to
be located on the local file system, but might equally reside on the net-
work. Class loaders can be used to provide separate name spaces for various
software components. (cf. Section 4.3.5)

The class loading mechanism is central to the dynamic nature of the Java
programming language. It also plays a critical role in providing security,
because the class loader is responsible for locating and fetching the class
file, consulting the security policy, and defining the class object with the
appropriate permissions.

4.3.3 Runtime Checking

After classes are loaded, the JVM’s next level of security performed is its run-
time checking. Because of the late binding provided by the JVM, additional
late type checking is done of assignments and array bounds at runtime. While
certain type-checking can be done at compile time, there are cases where the
specific type of an object is not determinable until runtime. In these cases,
the JVM ensures, that only properly assignable operations are performed.

While removal of pointer arithmetic is a compile-type operation, array bounds
checking is a runtime check. If an invalid array position is referenced, the
JVM throws an exception.

4.3.4 Sandbox

The original security model provided by the Java platform and implemented
in the JDK 1.0 is known as the sandbox model, which implemented a very
restricted environment in which to run untrusted code obtained from the
network. The essence of the sandbox model was, that local code is trusted
to have full access to vital system resources while downloaded remote code
is not trusted and can access only the limited resources provided inside the
sandbox. This sandbox model is illustrated in Figure 4.1. [Gon98]

JDK 1.1 introduced the concept of a signed applet, as illustrated by Fig-
ure 4.2. [Gon98] In that Java release, a correctly digitally signed applet is
treated as if it were trusted local code, if the signature key is recognized as
trusted by the end system that receives the applet. Signed applets, together

88 Chapter 4, Java

Figure 4.1: Java 1.0 Sandbox

with their signatures, are delivered in the JAR (Java Archive) format. In
JDK 1.1, unsigned applets still run in the sandbox.

Figure 4.2: Java 1.1 Sandbox

The security architecture in JDK 1.2, illustrated in Figure 4.3, [Gon98] in-
troduces several new features to the Java runtime environment, as will be
discussed in the following.

Fine-grained Access Control

This capability existed in the JDK from the beginning, but to use it, the
application writer had to do substantial programming. Such programming is
security-sensitive and requires sophisticated skills and in-depth knowledge of
computer security. The JDK 1.2 architecture makes this simpler and safer.

4.3 Execution Environment 89

Figure 4.3: Java 1.2 Sandbox

Configurable Security Policy

Again, this capability existed previously in the JDK, but was not easy to
use. Moreover, writing security code is not straightforward, so it is desirable
to allow application builders and users to configure security policies without
having to program.

Extensible Access Control Structure

Up to JDK 1.1, in order to create a new access permission, one had to add
a new check method to the SecurityManager class. The new architecture
allows typed permissions, each representing an access to a system resource,
and automatic handling of all permissions, including yet-to-be-defined per-
missions, of the correct type. No new method in the SecurityManager class
needs to be created in most cases.

90 Chapter 4, Java

Extension of security checks

In JDK 1.2, there is no longer a built-in concept, that all local code is trusted.
Instead, local code is subjected to the same security control as remote code,
although it is possible, if desired, to declare that the policy on local or re-
mote code be more liberal, thus enabling such code to effectively run as
totally trusted. The same principle applies to signed applets and any Java
application.

4.3.5 Protection Domains of Java 1.2

The fundamental concept of the Java execution environment and its im-
portant building block of system security is the protection domain. (cf. Sec-
tion 3.9) [SS75] A domain can be scoped by the set of objects that are cur-
rently directly accessible by a principal, where a principal is an entity in the
computer system to which permissions and, as a result, accountability are
granted. (cf. Section 3.9) The sandbox utilized in JDK 1.0 is one example of
a protection domain with a fixed boundary.

The protection domain concept serves as a mechanism for grouping and isola-
tion between units of protection. It is possible to separate protection domains
from interacting with each other, so that any permitted interaction must be
either through trusted system code or explicitly allowed by the domains con-
cerned.

Protection domains generally fall into two distinct categories: system domain
and application domain. It is important that all protected external resources,
such as the file system, the networking facility, and the screen and keyboard,
be accessible only via system domains.

A domain conceptually encloses a set of classes, whose instances are granted
the same set of permissions. Classes signed by the same keys and from the
same URL are placed in the same domain. A domain also encompasses the
permissions granted to code in the domain, as determined by the security
policy currently in effect. Classes that have the same permissions but are
from different code sources belong to different domains. A class belongs to
one and only one protection domain. In JDK 1.2 protection domains are
created on demand as a result of class loading. (cf. Section 4.3.2)

Each domain may also implement additional protection of its internal re-
sources within its own domain boundary. For example, a banking application
may need to support and protect internal concepts such as checking accounts,

4.4 Standard Class Library 91

deposits, and withdrawals. Because the semantics of such protection is un-
likely to be predictable or enforceable by the JDK, the protection system
at this level is best left to the system or application developers. The JDK
provides utility classes to this effect. (cf. Section 4.4)

A thread of execution may occur completely within a single protection do-
main or may involve an application domain and also the system domain. For
example, an application that prints a message out will have to interact with
the system domain that is the only access point to an output stream. In
this case, it is crucial that at any time the application domain does not gain
additional permissions by calling the system domain. Otherwise, there can
be serious security implications.

In the reverse situation where a system domain invokes a method from an
application domain it is again crucial that at any time the effective access
rights are the same as the current rights enabled in the application domain.
Thus, a less powerful domain cannot gain additional permissions as a result
of calling or being called by a more powerful domain.

4.3.6 Access Checking

Sensitive JDK system code invokes methods of the class SecurityManager

to check the policy currently in effect and perform access control checks.
There is typically a security manager installed whenever an applet is running.
A security manager is not automatically installed, when an application is
running.

Any code that controls access to system resources should invoke methods of
the class AccessController, if it wishes to use the specific security model
and access control algorithm utilized by these methods. If the application
wishes to defer the security model to that of the SecurityManager installed
at runtime, then it should instead invoke corresponding methods in the
SecurityManager class.

The SecurityManager represents the concept of a central point of access
control, while an AccessController implements a particular access control
algorithm with special features.

92 Chapter 4, Java

4.4 Standard Class Library

Some classes that very strongly interact with the runtime environment have
already been mentioned. There are some more security related mechanisms
distributed with every standard Java distribution.

The JDK Security API is a core API of the Java programming language.
This API is designed to allow developers to incorporate both low-level and
high-level security functionality into their programs.

The Java Cryptography Architecture (JCA) refers to a framework for ac-
cessing and developing cryptographic functionality for the Java platform.
It includes APIs for digital signatures and message digests. The certificate
management infrastructure supports X.509v3 certificates (cf. Section 3.7.5)
and realizes a Java Security Architecture for fine-grained, configurable, flex-
ible, and extensible access control. [Gon98] The JCA allows for multiple and
interoperable cryptography implementations.

The Java Cryptography Extension (JCE) [Sun00c] extends the JCA API
to include APIs for encryption, key exchange, and message authentication
codes. (cf. Chapter 3) Together, the JCE and the cryptography aspects of
the JDK provide the cryptography API. The JCE is released separately as
an extension to the JDK, in accordance with US export control regulations
at the time of its inception. (cf. Section 2.6)

4.5 Java Tools

Within the JDK, several security related tools are provided. These tools
realize only very basic functionalities.

4.6 Summary 93

4.5.1 Keytool

The keytool is a key and certificate management utility. It enables users
to administer their own public/private key pairs and associated certificates.
The authentication information includes both a sequence of X.509 certifi-
cates [ITU97b] and an associated private key. This tool also manages certifi-
cates that are trusted by the user, which are stored in the same database as
the authentication information.

The keytool stores the keys and certificates in a keystore. The default key-
store implementation implements the keystore as a file. It protects private
keys with a password. Each private key in the keystore can be protected
using its own individual password.

4.5.2 JAR Signing Tool

The jar signing and verification tool is used to digitally sign Java archives,
that are held in jar files, and to verify such signatures. This tool depends on
the keystore that is managed by the keytool.

4.5.3 Policy Tool

The policy tool is a small program with a graphical user interface that assists
an user in managing a security policy.

4.6 Summary

The Java programming language and runtime environment provides several
valuable aspects to use it for the realization of security-demanding applica-
tions. The language enforces robust and reliable programs, adding to secu-
rity. Libraries are readily provided that add important functionality in the
security domain. There exists a framework for the security of the runtime-
system. Even mobile code finds support in the Java system. Hence, Java is
chosen as the basis of the framework and implementation as discussed in this
work.

94 Chapter 4, Java

Especially due to the jurisdictional situation in the United States of Amer-
ica, (cf. Section 2.6) the provided mechanisms of Java are not fully dis-
tributed. Additional libraries have to be employed to fill the functionality
not provided with the Java system as distributed.

Chapter 5

Agents

“Never send a human
to do a machine’s job.”

Agent Smith, The Matrix

5.1 Synopsis

The notion of an agent has many roots, and its use is accordingly very di-
verse. Within this Chapter, more light shall be shed on “Agents.” The most
widespread notions of the agent term and definitions of what an agent is are
given.

Examination of the concepts of a single agent follows. Multiple agents can
be combined to form an agent community as discussed in the next Section.

A description of agent architectures defining the framework in which to re-
alize a concrete agent system follows. Platforms and toolkits are used to
form the model of an agent architecture into an executing software system.
This Chapter is closed with a discussion of common misunderstandings and
overexcitement in the software agent domain.

http://www.whatisthematrix.com/

96 Chapter 5, Agents

5.2 Notions of an Agent

“Although the term [Agent] is widely used by many people working in closely
related areas, it defies attempts to produce a single universally accepted
definition.” [WJ95]

The diversity of the term “Agent” is due to its many ancestors. One impor-
tant influence of Agent-oriented Technology (AOT) is the rise of Distributed
Artifical Intelligence (DAI) at the beginning of the 1980’s. The DAI branch
deals with emergent high-level properties of complex distributed systems. In-
teraction and cooperation are important research topics in these “intelligent”
systems. [BG88] Another root of AOT lies in parallel object-oriented pro-
gramming (OOP), combining conventional OO-techniques with distributed
systems. [Hew77]

There are a lot of other disciplines that influence AOT as well, due to the
wide range of anticipated or realized applications. Organizational research,
decision theory, psychology, theories of cognition, philosophy, and others all
play a role for the agent domain.

The main branches of the concept of an agent are:

The agent as an object with competence: Agents are seen as an exten-
sion to the OOP paradigm. Agents are recognized as complex objects
with a higher degree of autonomy and flexible interactions. [Sho93a]

The agent as a part of a multi-agent system: The interaktion between
agents are the focus of this conceptualization. Each agent is a spe-
cialized problem-solver, that communicates and cooperates with other
agents to solve a common and complex problem. [GK94]

The agent as an autonomous actor: An agent has a view of its environ-
ment. It decides for itself about the goals to pursue and actions to be
taken. Interactions with other agents are possible. [RN95, FG96]

The agent as a mental system: Following this idea, an agent is a logical
system for the description of a “mental state” including beliefs, capa-
blities, obligations, etc. This is problematic insofar, as those attributes
sometimes differ considerably from the common understanding of these
terms. [Sho93b, WJ95]

5.3 Definitions of Agents 97

The agent as personal presentation: The main motivation is to have
the agent acting on behalf of its user without continous control or
interference of the user. Further, the agent shall adapt to his prefer-
ences. [Gil96]

All of these views of an agent have some common aspects, but all are different
in some respect. There is no agreed-upon concise notion of an agent. Though,
for the remainder of this work it is sufficient to grasp the common intent of
the above notions of an agent.

Agent-Oriented Techniques (AOT) promise several advantages over tradi-
tional approaches, especially in the area of complex and highly distributed
computing. Using agents as basic building blocks for modeling and realiza-
tion is intuitive and helps grasping the tasks-to-be-solved easier.

As being highly parallel and multi-threaded entities, more efficient computing
can be achieved. Robustness and reliability are further factors that can be
achieved due to distribution and redundancy.

Despite their relatively strict closure against its environment, agents are in-
herently communication-oriented. In the normal case as implied in this work,
agents are composed of modules. These properties yield increased flexibility
and dynamics to the resulting overall system. Adding and removing agents
and/or their modules is possible without much hassle if provided for by the
realizing agent architecture.

5.3 Definitions of Agents

There are a lot of definitions of agents, differing in the underlying notion
of an agent resp. which implementation of an agent system is described. (cf.
Section 5.2) Some definitions are vague and reference intuitive associations.
Often, they described goals to be reached rather than possible realizations.

In the following, some important definitions are given. The result will be a
definition of an agent to be used in the remainder of the work and in the
realized architecture. A commented overview of definitions is given in [FG96].

In the definition of agents it is often mentioned, that they can be described
by mental attributes like “knowledge” and “goals.” [WJ95] Sometimes, this
is used as the sole criterion: “An agent is an entity whose state is viewed

98 Chapter 5, Agents

as consisting of mental components such as beliefs, capabilities, choices, and
commitments. [Sho93a]

Though, the question, if an entity is an agent or not, can’t be solved objec-
tively: “Agenthood is in the mind of the programmer.” [Sho93a] There is no
widely adopted theory about how to attribute mental states to programs,
which attributes to use, and what the relevant parameters are. Those attri-
butions today are based on the intuition and wishful thinking of the agent
system designer, or the user. A common understanding about an agent is
not present.

Another well-ambitioned approach to define an agent is based on the concept
of an autonomously acting entity: “An autonomous agent is a system situated
within and a part of an environment that senses that environment and acts
on it, over time, in pursuit of its own agenda and so as to effect what it senses
in the future.” [FG96]

Or a similar approach: “An agent is anything that can be viewed as per-
ceiving its environment through sensors and acting upon that environment
through effectors . . . A rational agent is one that does the right thing . . . the
right action is the one that will cause the agent to be most successful.” [RN95]

Unfortunately, as soon as perception is interpreted as data input, acting
is interpreted as data output, and the environment is seen as the execution
environment, this “definitions” transform every program into an agent. Even
adding attributes of goal orientation and rationality (“doing the right thing”)
doesn’t help much in this dilemma: each program serves a specific purpose,
and is intended to fulfill this as best as it can, namely by programming it so.
Intuition of the recipient rules the definition again.

The possibly most widely adopted definition of an agent tries to define an
agent by giving specific properties of a computer program to fulfill. According
to [WJ95], an agent is constituted by a program with the following attributes:

autonomy: agents operate without the direct intervention of humans or
others, and have some kind of control over their actions and internal
state; [Cas95]

social ability: agents interact with other agents (and possibly humans) via
some kind of agent communication language; [GK94]

reactivity: agents perceive their environment, which may be the physical
world, a user operating a graphical user interface, a collection of other

5.3 Definitions of Agents 99

agents, the Internet, or perhaps all of these combined, and respond in
a timely fashion to changes that occur in it;

pro-activeness: agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking the initiative.

[WJ95] gives other important attributes, that are often present, but optional:

mobility is the ability of an agent to move around in an electronic net-
work; [J.E94]

veracity is the assumption that an agent will not knowingly communicate
false information; [Gal88]

benevolence is the assumption that agents do not have conflicting goals
and that every agent will therefore always try to do what is asked of
it; [RG85] and

rationality is the assumption that an agent will act in order to achieve
its goals and will not act in such a way as to prevent its goals being
achieved — at least insofar as its beliefs permit. [Gal88]

These definitions, too, are intuitive and allow for ample interpretation space.
Other attributes like coordination, cooperation, adaptivity, planning ability,
being able to reflect its own behavior are often mentioned in addition. All
have in common, that there are neither widely agreed upon, nor are they in
themselves well-defined terms.

In recent years, the Foundation for Intelligent Physical Agents (FIPA), an
organization pursuing “the promotion of technologies and interoperability
specifications that facilitate the end-to-end interworking of intelligent agent
systems in modern commercial and industrial settings,” [Fou00] has become
an influencial part of the agent community. Their definition of an agent is
more practically oriented: “An Agent is the fundamental actor in a domain.
It combines one or more service capabilities into a unified and integrated
execu-tion model which can include access to external software, human users
and communication facilities.” [Fou97] Here, the agent is seen as a closed
entity providing services. Problematic is the differentiation from object ori-
ented programming.

The following definition of an agent, as it shall be applied for the remainder of
this work, is more oriented at practical concerns and feasibility: “An agent is
an autonomous specialist that, within a system of multiple agents, provides a

100 Chapter 5, Agents

specific functionality or works on a specific task. Therefore, it communicates
with other agents by an agent communication language.”

This definition restricts agents to software agents, limiting the environment
to other agents. Interaction is limited to employ a specialized language,
the agent communication language (ACL). Each agent hides its functionality
or task from the environment by only defining his relevance from its role.
The autonomy refers to the agent’s ability in the sense, that it is not directly
dependent on other agents or human users for providing its service or fulfilling
its task. It may, and normally does make use of the service provisioning of
other agents for his own working.

Single-agent systems, like expert shells or buying assistants, are excluded by
this definition from being an agent, because those agents don’t communicate
as extensively as is required.

On designing and analysing multi-agent systems there are two important
levels to discern: the single agent level (micro level) and the agent community
(macro level) as discuessed now.

5.4 The Single Agent

The modeling of a single agent is defined by an architecture. That archi-
tecture equips an agent with basic features and the necessary integration
mechanisms. The most important functionalities are artifical intelligence
(AI) capabilities to endow the agent with autonomy. Other basic functional-
ity according to the above agent definition is capability for interactions with
other agents.

5.4.1 Knowledge Representation and Reasoning

A lot of agent systems are knowledge based systems that operate on symbolic
representations. Those systems have a long tradition in the area of AI, they
are well-researched and widely employed. [Bib93]

The environment is modeled by symbolic formalisms, often based on pred-
icate logics. Knowledge is notated as objects, classes, attributes, relations,
and so on. The advantages of symbolic representation lies in the precise
syntax and semantics, and in the enabled reasoning mechanisms.

5.4 The Single Agent 101

5.4.2 Planning and Deciding

This heading subsumes all processes that select actions for execution based on
the available knowledge. The most simple form is a pure reactive approach.
If defined patterns become true, a specific action is triggered. [Bro86] Nor-
mally, mechanisms are present that coordinate multiple possible actions, that
sequentialize or parallelize actions, and those that can abort actions.

Good efficiency and high speeds are advantages of this approach, as well
as flexibility upon changes in the environment. These makes the approach
suitable for mechanical robot systems. On the bad side, a pure reactive
approach isn’t very well suited for complex or pro-active actions, because all
possible actions are pre-programmed

The opposite of the pure reactive architecture is the deliberative planning ap-
proach for creation of sequences of actions. [FN71] There is ongoing research
in this AI-domain, and new practical approaches are being persued. [RN95]

Complex tasks can be solved with deliberative planning, consisting of large
amounts of single interdependent steps. For each specific problem the steps
can be combined anew. However, those plans don’t adapt easily to changes
in the environment, new plans have to be generated often, and the ongoing
execution of a plan has to be modified.

Hybrid architectures merge both approaches to get the advantages of both.
There is a deliberative planning for plan generation, but rules enable dynamic
reactions to a changing environment. For this, the deliberative and reactive
modules of an agent act in parallel, but there emerge new problems dealing
with the coordination of that modules and their results.

5.4.3 BDI

A widely-known method for modeling a single agent is the belief-desire-
intention theory (BDI). That three attributes describe the state of a sin-
gle agent. The beliefs include the agent’s knowledge about its environment,
goals are general top-level and abstract items, whereas intentions are short-
term action triggers. Possible actions are structured in plans that consist of
simple actions, sequences, or whole trees of actions, sub-intentions, or sub-
plans. Figure 5.1 shows a representation of the inner workings of a typical
BDI agent.

This modeling approach is attractive due to the formalism of the relations
between the attributes. The rationality of the intentions can be formally

102 Chapter 5, Agents

Figure 5.1: BDI Agent

deduced from the given beliefs and desires. [CL90] There is a close relationship
to classical AI terms of knowledge, goals, plans, etc.

If, in the following, an agent is termed to “know,” to “want,” to “decide,” to
“delegate,” i.e. it is described as an active entity with cognitive capabilities,
that attribution is done according to the principles layed out in this Section.

5.4.4 Learning and Adaptivity

For optimization of an agent, it is desirable to have learning algorithms within
an agent. This can be as simple as accumulating knowledge about its en-
vironment. That accumulation can even be persued actively by the agent.
This knowledge is normally restricted to “pure” facts, and excludes complex
items like rules or intentions or desires of other agents. More subtle meth-
ods, e.g. to deduce categories or heuristics, can be imagined but are not well
elaborated yet.

The agent could optimize its own actions. This depends heavily on the
internal structure and its AI-methods. For example, the agent could reuse
plans, change rules, or optimize its search algorithms.

Especially agents representing a user should adapt to the personal prefer-
ences, interests, and habits of its owner. This could be done either by spying
on the user’s action, or by interaction with him by questioning and rating of
responses. [ELG99]

5.5 Agent Community 103

5.4.5 Mobility

Agents are per definition distributed systems, and it is sometimes desirable
for an agent to change its physical position in the network. Such an agent
can optimize its communication with an other agent by migrating to the
vicinity of that other agent, which might reduce costs and speed up interac-
tion. [HCK95]

5.5 Agent Community

Whereas techniques of computer science and artifical intelligence are used for
dealing with single agents, the organizations of multiple agents as a whole
system is coped with by applying social science theories. The areas of com-
munication, coordination, and cooperation are looked into more detail now.

5.5.1 Communication and Speech Act Theory

Communication is the fundamental, and normally sole, mechanism for inter-
action between agents in a multi-agent system. In contrast to traditional data
exchanges, software agents employ a specific language, the “Agent Commu-
nication Language” (ACL). That language abstracts from data types, and
shall enable a communication between different systems easily. ACLs are
based on speech act theory. [Sea69]

According to the speech act theory, there lies a fundamental dualism in hu-
man communication: Communication is exchange of information, as well as
each communication has an underlying intention of issuing it. That dualism
manifests itself in speech acts, which has three aspects: [Aus62]

Locutionary act: The act of speaking itself, including articulation and
grammar.

Illocutionary act: The communicative function, e.g. if it is a question, a
proposition, etc. It encompasses the propositional content.

Perlocutionary act: The intended effect on the recipient.

As an example: “I want water” has the locutionary act of uttering the syl-
lables. The illocutionary act depends on the context: in a bar, it is the

104 Chapter 5, Agents

request to the bar keeper for a drink; starving in a desert it is a wish for
heavenly intervention. The perlocutionary act in the bar is to effect the bar
keeper in such a way, that he will serve a glass of water; in the desert, the
perlocutionary act is void.

There are two important implementations of speech act theory in the agent
domain, KQML and FIPA, which will be described in the following.

KQML

The “Knowledge Query and Manipulation Language” (KQML) is part of the
“Knowledge Sharing Effort” (KSE) project of DARPA. It defines syntax and
semantics of speech acts for inter-agent communication. [DAR, LF97] The
KQML-specification only covers the speech acts and their communicative
role, but doesn’t define the contents.

A KQML-speech act consists of a performative describing the illocutionary
act, and a list of parameters being a set of 2-tuples (tag, value). Those
parameters contain the sender, the receiver, the content language used and
the ontology (see below) needed for interpretation, and the propositional
content.

A set of pre-defined performatives exist for the areas of information exchange,
conversation, and networks. Extending the set of performatives is possible.
Examples are TELL for sending facts to the receiver, ASK-ONE for an informa-
tion request, or REPLY as an answer to a request.

The meaning of the performatives is defined by a virtual knowledge base
(VKB). Each agent acts as if his communication references an internal VKB
of facts and goals that can be requested, validated, or modified. A formal
approach for a definition of semantic based on knowledge and goals of an
agent exists. [LF94]

FIPA ACL

The FIPA ACL is Part 2 of [Fou97]. Similar to KQML it does not define
the content aspect of the speech act. The syntactical structure consists of a
speech act type and is similar to the KQML performative. A list of param-
eters follows, the important parameters are the same as in KQML: sender,
receiver, content language, content, ontology.

5.5 Agent Community 105

The set of speech act types has similar functionality to KQML, though
the syntax more closely resembles actions than information exchange as in
KQML. Examples are INFORM for sending facts, QUERY-REF is a question for
information, REQUEST is a demand for action.

The semantics of FIPA speech act types is defined by a formal logic called
“Semantic Language” (SL). It is a multi-modal logic, based on first order
predicate logic and has modal operators for beliefs, uncertainty, and inten-
tions, extended for actions. The representation of that states within the
agent is not specified.

KIF

Because both, KQML and FIPA ACL, don’t specify a formalism for the
content of a speech act, a corresponding language is needed. The most widely
known is the “Knowledge Interchange Format” (KIF), stemming from the
KSE project as well. [GF]

KIF is specifically designed for communication between agents, and not suit-
able for internal representation or interaction with the user. Instead, it is
very encompassing, so that as much knowledge representations can be trans-
formed into and from KIF.

The syntax is like LISP, the semantics is derived from predicate logic. KIF
specifies four types of expressions: terms, sentences, rules, and definitions.
Terms declare objects of the world and are composed of constants, variables,
functions, and relations. Sentences are logic formulas expresing facts of the
world. Rules define inferences to be used on sentences. Definitions give
semantics to constants, partial definitions are allowed.

106 Chapter 5, Agents

Ontologies

Ontologies are used to define a common vocabulary. An ontology is a set
of definitions for basic expressions in a domain. It comprises of categories,
objects, attributes, relations, and constraints.

5.5.2 Coordination

Coordination is the effective organization and control of activities of a group
of agents. It is important for resource allocation or synchronization, it re-
duces redundancies and overload situations.

Coordination can be achieved on different levels and with different mech-
anisms. The mechanisms are standardization for pre-defining patterns of
interactions, centralization of control, where one agent supervises the rest of
the multi-agent community, and mutual agreement of agents in a flat orga-
nization. The different levels of coordination are described in the following.

Organizational Structures

One needs organizational structures that constitutes the multi-agent system.
They define the comprising agents and the communication channels. This
requires services for agent registration and deregistration, a defined address
space, and location services.

The FIPA defines three agent management services needed for an agent plat-
form (AP): [Fou97]

Directory Facilitator (DF): The DF is an information agent sharing in-
formation about registered services.

Agent Communication Channel (ACC): It is the standard communi-
cation channel between agents on an AP and between APs.

Agent Management System (AMS): The AMS is the actively manag-
ing entity on an AP. It controls the life cycle of agents and resource
usage, including the ACC.

On a higher abstraction level, agents can be grouped according to their role
in the team-based solving of a specific problem. (cf. Section 5.5.3)

5.5 Agent Community 107

Communication Protocols

Communication is more than a chaotic sequence of speech acts. Instead, it
is structured according to the task to be solved. The communication process
is regulated in a communication protocol that governs the sequence of steps.

A typical representation of a communication protocol is depicted graphically
as state diagrams or sequence diagrams. Logically it can be notated as a set
of rules that govern the message exchange.

A simple protocol is a question, responded to with an answer. It can be seen
in this simple example that the initiative in an ongoing conversation changes
between the partners. Further, speech acts refer to other speech acts.

An important factor in the conversation in a multi-agent system is task de-
legation, if an agent is not capable of solving the problem at hand itself, or
doesn’t want to.

The traditional master-slave, resp. client-server communication is a hierar-
chical conversation pattern. The master has a task to solve, and delegates
the task to the slave to solve. There is no initiative for the slave. This pro-
tocol is efficient, but doesn’t adapt well to a changing environment, because
the slave entities must be known beforehand, and solving the task relies on
them.

The “Contract Net Protocol” (CNP) solves the distribution of roles in the
process of solving a task dynamically. [Smi80] There is no need for definition
or configuration of delegations beforehand. It is an important protocol within
the agent domain. It defines the solving process in four phases:

Task Announcement: The managing agent, that wants a task to be solved,
broadcasts its need for solving a specific sub-task to all known and re-
levant other agents.

Bidding: Each agent that wants to take part in the problem solving process
responds with a bidding message. It includes the part of the problem
that can be solved by the respective bidder. Furthermore, it contains
information for the managing agent to select from the set of bidders.

Awarding: The managing agent selects from the bidding agents and awards
the task to the selected one by a respective message. The target agent
responds with a contract establishment notification and works on the
awarded task. This might include sub-delegation with an own iteration
of the CNP.

108 Chapter 5, Agents

Controlling: The managing agent supervises its contracted agents, includ-
ing receiving result messages, or aborting the sub-task.

There exist several variants of the CNP. For example, if the capabilities
and availability of agents are known, one might drop the announcement and
bidding phases and instead ask the relevant agents directly. That approach
adds to speed and efficiency in the simple case, but reduces adaptivity or, if
the standard CNP is used as a fallback mechanism, incurs a communication
overhead on the cooperation.

Multi-agent Planning

One way of coordination of multi agents is the generation of plans encom-
passing multiple agents. The available algorithms differ in how the planning
process itself is distributed:

Central Planning: One agent generates the plan for all involved agents.

Joint Planning: Several agents work together on a single plan, often on a
shared communication media, typically a blackboard.

Decentralized Planning: Each agent generates its own plan, and then in-
tegrates it with all other.

Distributed planning reduces complexity and probabilities of errors for each
of the participants, but leads to increased communication overhead and po-
tential for conflicts. With decentralized planning, the local environment can
be regarded more dynamically, but centralized planning gives better control
of the process. The choice depends on the specific case.

Coordination without Communication

There are concepts that allow for coordination without communication:

Conventions, Rules, Laws: These can govern standard situations for re-
source allocation, although deadlocks can’t be prevented.

Roles, Power: According to human organization structures, the same can
be implemented for agents, e.g. authority due to a dedicated role.

5.5 Agent Community 109

Deductions about Rationality: Game theory gives the theoretical fun-
dament for coping with situations, where there is no communication
between parties. [vNM44] An agent can reason about the expected be-
havior of another agent and act accordingly.

5.5.3 Cooperation

Cooperation is the shared effort of agents for solving a common goal. There
are several classes of cooperation tasks. Some of the tasks are shown now.

Handling of Conflicts

Conflicts can emerge in several variants: conflicting goals, conflicting plans,
conflicting actions, resource allocation, deadlocks, etc.

One instance of a conflict handling protocol is the “Speech Act based Negoti-
ation Protocol” (SANP). [CW92] Two agents have different opinions and try
to convince the other party by arguments. The protocol has six phases for
thesis proposal, iterative argumentation, compromise finding, and acceptance
of an agreement resp. call of an arbitor.

Avoidance of Redundancy

The “Partial Global Planning” (PGP, not to be confused with Pretty Good
Privacy) algorithm is used for avoiding redundancy in problem solving. [DL91]
Agents generate, manage, and communicate generated plans describing their
views and reactions to their specific and local environment. These plans re-
flect only a partial view on the environment due to the restricted perception
capabilities of each agent, the view might even be incorrect. The goal is to
construct an integrating global plan, that establishes a consistent and correct
view on the environment.

Therefore, the agents communicate their partial plans to agents in the neigh-
borhood. While integrating, inconsistencies and redundancies are discovered
and synergies are made use of. The successor of PGP, the “Generalized
PGP,” makes explicit use of generic relations in coordinated plans, specifi-
cally subsumptions, causality, temporal constraints, and blocking. [DL91]

110 Chapter 5, Agents

Other Methods of Cooperation

Other cooperations between agents exist as well, demonstrating the interdis-
ciplinary character of AOT.

There are a lot more cooperation protocols for resolving conflicts between
agents. Those protocols are based on the exchange of hypotheses or propos-
als and subsequently discovering conflicts. [CML86, DM90, BF95] Weighting
and balancing information, finding compromises, and inclusion of arbiters in
multiple iterations is sometimes covered as well. [Syc88]

If conflicts arise about resources that can be quantified, general market mech-
anisms can be employed. A “price” can be found based on available and
requested resources. Decision theory or game theory often apply as well.
Cooperation protocols exist that are modelled after auction procedures, tra-
ditional and dutch auctions being prevalent. [Fou97]

5.6 Agent Architectures

An agent architecture defines the principal construction of an agent and agent
communities in several dimensions. The description and construction of an
agent within an architecture is either done by its functional components, or
by the involved layers of information processing.

5.6.1 Component View

Figure 5.2: Agent Component Plugging

On the structural level, an architecture defines the generic building blocks of
an agent. The magnitude of operations of an agent can be implemented by

5.6 Agent Architectures 111

dedicated modules that fit together by role-specific interfaces, as is depicted
in Figure 5.2. [Ses02]

Agents have an aspect of information processing. This includes information
filtering, storage, and processing. The components of an architecture defines
how this is done within an agent.

The architecture defines the Application Programmers Interface (API), i.e.
how the functionality of an agent can be employed by a developer. An agent
architecture should provide a rich set of functionalities in libraries or compo-
nents, all of them being reusable, for easy agent creation. Applications can
then be constructed simply by appropriately combining agent funcitonali-
ties and, if necessary, adding application specific components individually.
One must take care, though, that enriching the architecture with context-
dependent information might overload it and either adds unnecessary burden
or restricts the architecture to a specific problem domain, making it less use-
ful in the general case.

Agents are widely classified according to their information processing model:

Reactive Architecture: Signals of the environment are directly put into
action, without any cognitive ability. No explicit representation of the
environment is necessary here. These architectures are well suited for
real-time applications, as is necessary in robotics. Actions, though, are
simple and there are no long-term plans.

Cognitive Architecture: Those enable an agent to learn, plan, reason,
etc. Local intelligence is an aspect of these agents. Because of the
complexity of processing response-time is problematic.

Hybrid Architecture: These combine reactive and cognitive aspects into
one architecture. They enable fast responses and allow for complex
planning. They are prevalent in the DAI domain.

BDI Architectures

BDI architectures, i.e. architectures, where the single agent is modelled after
the BDI model, (cf. Section 5.4.3) are subject to a puzzling contradiction. In
theory, those architectures rely heavily on cognitive abilities, thus the result-
ing architecture should be termed a cognitive one. The reality is different,
though. The normal BDI architecture today is rather rule-based, and the way
from “perception” to action is very short. Hence, they can be considered as
a reactive architecture.

112 Chapter 5, Agents

There exist several instantiations of BDI architectures. They differ in several
aspects, like the mode of communication, being simple data exchange up to
complex speech acts. Management of their belief databases ranges from sim-
ple addition of new facts over consistency ensuring mechanisms to complex
learning. The structure of plans is another distinguishing factor, they can be
simple action secquences, or they might support sub-goals, or even “active”
communication between plans. The logic of knowledge processing, i.e. the
inference and reasoning mechanisms, aren’t fixed.

5.6.2 Layered View

As an alternative to the modul-oriented view of an agent as described above,
an agent can be described by its layered hierarchies. An agent then composes
of several layers. On each layer there are mechanisms for processing the
knowledge on that layer. The structure of an agent is less component-oriented
as is for those architectures, but instead a conceptual differentiation is done.

With increasing abstractions, the mechanisms get more and more powerful,
but more complex as well. On the lowest layer information is restricted to
pure sensoric in- and output, hence is fast. This enables such an agent to react
quickly to well-known situations. On a higher level, knowledge is represented
and processed. Long-term goals are persued by creating plans and following
intentions. On an even more complex layer, global activities take place: A
comprehensive world view is persued, actions and plans of other agents are
derived, starting of and participation in cooperation is realized.

Figure 5.3: Layered Agent Architecture View

Figure 5.3 show two different approaches to the concept of layered agents. On

5.7 Agent Platforms and Toolkits 113

the left side, each layer has direct access to the sensors and actors of the agent.
The layers work in parallel, control is achieved by agent-global control rules.
In the depiction to the right, information is transported vertically up between
the layers, each with a layer-local knowledge base and specific mechanisms
thereon. Control is exercised in the downward direction to implement the
consequences of the actions of each layer by using the functionality of the
lower layer.

Layered architectures have the advantage of a comprehensive approach for
solving a wide range of tasks, ranging from pure reflex-like reactivity to
cooperative problem-solving in a complex agent community.

5.7 Agent Platforms and Toolkits

An agent platform is an implementation of an agent architecture, which
is merily a concept. A platform comprises of all necessary components or
libraries to build a simple agent, mechanisms to add application specific
funtionality, and an execution environment, often called agent place.

If a platform is enriched with supporting tools that enable easy and rapid de-
velopment as well as sophisticated and interactive management capabilities,
one speaks of an agent toolkit.

Specific platforms and toolkits are more closely dealed with in Section 6.2,
where they are analysed according to their security functionality.

5.8 Pitfalls of Agents

The mentioned notions of agents are often based on the specific interests
and intentions of the declaring party. Today, the stated attributes are rather
reasearch goals than results.

Sometimes, reading statements about agents today sound overwhelming: “In-
telligent agents represent the next generation beyond object oriented soft-
ware: objects that think. Intelligent agents are task-oriented software com-
ponents that have the ability to act intelligently.” [GW94]

114 Chapter 5, Agents

Due to those exorbitant claims and anthromorphisms, the term “agent” is
often reduced to marketing hype. The tagging of agents as having intelli-
gence, emotions, and/or social competence are effectively used to further the
sale of a product.

It is important to keep a clear head about agents in the face of euphoric
statements. In [WJ98], the authors give common pitfalls for employing multi-
agent based systems. That article can be used as a checklist, when and if
to employ agents for solving the problem at hand. It can also be used to
analyse a presented agent-based system for its reasonability, similar to the
Snake Oil FAQ [Cur98] in security issues. (cf. Section 3.3.4)

5.9 Summary

Though there is no common notion of the term “agent” in general, there
should be an informal agreement about the underlying and represented idea.
Agents have several properties that seem to make them a valuable addition
to the service provisioning infrastructure of the future.

As a single agent, they feature autonomy, can be used to create open systems,
allow mobile code natively, amonst others advantages. The power of a single
agent can be multiplied by the creation of agencies containing places where
several agents are located that solve problems together, making modeling
and realizing solutions for several real-world problems easier.

It should be kept in mind, that agents doesn’t solve everything just because
there are agents. Specifically, the introduction of autonomy and mobile code,
opens up challenges in the security domain that must be provided for, before
systems that will be trusted by users can be created. This challenge will be
tackled in the following Part of this thesis.

5.9 Summary 115

Part III

Security Infrastructure for
Agents

Chapter 6

Analysis and Design

“The situation is extremly hostile!”
Carmen Ibanez, Starship Troopers

6.1 Synopsis

Within this Part of the work an analysis of existing approaches and technical
demands is given. In several Chapters an encompassing security infrastruc-
ture will be developed and described. The Part closes with conclusions about
the presented ideas and an outlook into further work.

This particular Chapter will look closer into other concepts and products.
Different aspects of the architecture will be laid out to be refined in later
Chapters of this Part.

6.2 Existing Agent Architectures

In this Section, several agent architectures will be analysed to find, where
deficiencies exist and where existing concepts can be leveraged. For analysis
of agent architectures, several approaches can be taken: one can focus on
the architecture as providing basic services; another approach is to view on
the intended application domain of the architecture; the methodology how

http://us.imdb.com/Title?0120201

120 Chapter 6, Analysis and Design

to reach an application can be analysed; or the supporting tools can be
considered. For this work though, the focus lies on the security aspects of
the platforms, which mechanisms they provide.

Not considered are one-shot applications focused on and written for a singular
task and never re-used again. Simulation testbeds aren’t analysed either, for
they are no real agent-system but instead simulations thereof. Cognitive
architectures, comparable to expert system, often are limited to being one-
agent systems and lack communication features, they are left out of this
work as well. Finally, robotic systems and other sub-symbolic architectures
are conceived for signal processing and machine control, they are left out,
too.

This work focusses on multi-agent architectures, that are re-usable for sev-
eral applications, and make heavy use of communication. For the proposed
infrastructure it is important, that the agent architecture supports compo-
nents in agents. For communication, it is assumed that the global internet
infrastructure is used, based on TCP/IP communication. [Inf81a, Inf81b]

6.2.1 FIPA-OS

The FIPA-OS agent platform [Nor00] is a reference implementation of the
FIPA agent standardization effort, originally from Nortel Networks and avail-
able for free. [Fou97] FIPA’s agent reference model provides the normative
framework that governs FIPA-OS agents. Combined with the agent life cycle
it establishes the logical and temporal contexts for the creation, operation,
and retirement of agents.

The implementation of the FIPA reference model includes a Directory Faci-
litator (DF), an Agent Management System (AMS), and an Agent Commu-
nication Channel (ACC). An Internal Message Transport System (MTS) is
used to pass messages within the platform.

A FIPA-OS agent consists of an Agent Shell, a Task Manager, a Conversa-
tion Manager, and a Message Transport Service as mandatory components.
The Message Transport Protocols and Planner Scheduler components can be
substituted. Interfaces to databases are offered as well, as is the rule engine
JESS [San01] as an optional component.

With respect to security, FIPA-OS optionally supports use of the Java Secure
Socket Extension, [Sun01] which has to be downloaded separatly. It can
then transparently be used to provide Remote Method Invocation over an

6.2 Existing Agent Architectures 121

SSL connection, the certificates are stored in Java keystores. The passwords
needed for accessing the keystores are set globally within the Java VM, so
every process and agent might access them.

All agents of the agent place share the same SSL external Message Transport
Protocol (MTP) resource, managed by the ACC, hence strong authentication
within a Java VM between agents is not possible. Further, this requires the
existence of an appropriate SecurityManager object to prevent e.g. mobile
agents migrating to the platform from reading private data including the
private keys stored in the keystores, that is, if the FIPA-OS platform would
have supported mobile agents at all.

6.2.2 Grasshopper

That platform emerged from a research project of GMD to a freely available
product by VKI++. It is written in Java, and several extensions to the core
platform for compliance to FIPA or OMG MASIF standards are available.
There is no provision for any reasoning or planning capability, the platform
is a pure runtime environment supporting the life-cycle, communication, and
mobility of agents.

In Grasshopper, security is differentiated between internal and external se-
curity. External security here means supporting RMI and plain socket com-
munication over SSL with the usual properties. Internal security protects
agency resources from unauthorized access and agents against each other by
user authentication and access control, based on Java mechanisms.

Confidentiality is provided by using an encrypted link, no agent-internal
encryption is used. As in FIPA-OS, one certificate and private key is shared
per agency, hence all agents are authenticated as belonging to the same user
with the same privileges.

Requirements for using SSL is configured globally in the communication pref-
erences, it is not possible to discriminate between secure and insecure ser-
vices, or different levels of security. It isn’t possible either to allow resp.
require authenticated communication for some peers, and not for others. A
considerable problem is, the agent platforms authenticate each other by the
certificates of their owners. Hence, if an Agent A from Alice migrates to
Bob’s platform, at Bob’s platform Agent A would be authenticated as stem-
ming from Bob! “Different agents from different owners and creators can
travel through the same authenticated secure socket. However, in typical
applications this can be considered as a minor drawback.” [IKV] In the en-

122 Chapter 6, Analysis and Design

visaged typical applications as layed out in Chapter 2, this can be considered
as a major drawback. There is no support for certificate revocation.

For internal security, the AccessController object of Java is used. Permissions
for method calls are based on the code-base of the program, which is mapped
to the subject’s identity and checked against permissions. The concept of
Java’s protection domains and class loaders is employed. (cf. Chapter 4)

6.2.3 Voyager

Voyager from ObjectSpace Inc. used to be called an agent platform but has
been rebranded as a product suite comprising of an application server with
Enterprise Java Beans, an Object Request Broker, and value extensions.
Such an extension is SSL for secured communication. It is only available as
a paid-for commercial product.

Internally, Voyager extends the Java core security functionality of class load-
ing and security domains by offering privilege delegation. Further, it sup-
ports multiple policies to be existent at the same time for one Java virtual
machine. [Obj00] Access control lists for internal operations, based on sim-
ple username/password authentication, are stored at and retrieved from a
remote directory server. Policies can be changed during runtime.

Voyager doesn’t qualify for an agent system as outlined in Chapter 5. It
merely provides for a communication and runtime framework for objects,
incidentally allowing remote execution without true migration. There is no
expressed life-cycle support or any conformance to agent standards. Merely
none of the typical agent’s attributes are fulfilled. It is discussed here for its
enhanced Java-based security features and due to it being well-known.

6.2.4 Ajanta

Ajanta is a Java-based agent architecture. Its main focus is on security as-
pects. It offers security for agent migration, RMI, and TCP communication.
The Java Security Manager objet has been extended. They have read-only
containers and append-only objects for logging purposes. Resources are pro-
tected by proxy objects. [Kar]

With respect to the formerly mentioned architectures, Ajanta puts the most
emphasis on security. Unfortunately, it lacks in other aspects like an extensive
supporting class library or tools for development and platform management.

6.2 Existing Agent Architectures 123

6.2.5 CASA

The agent architecture CASA uses a complex agent model and integrates
agent mobility. [Ses02] Agent gather on “electronic market places,” not to
be confused with the common recognition in the area of electronic com-
merce, (cf. Section 2.4) but rather modelling FIPA agent places. [Fou97] These
places hold service provider agents and potential service user agents migrat-
ing thereto. Dedicated agents provided by the architecture handle agent
place management and assist in communication.

Figure 6.1: CASA Agent Kernel Default Architecture

The CASA architecture, [Ses02] depicted in Figure 6.1, is a modular one;
the components are realized as Java Beans. Components can be exchanged,
added, or removed at runtime. This is achieved by internal message broker-
ing based on roles fulfilled by the components. That concepts easily allows
to add new roles and components to the basic architecture and makes it very
extensible, adaptable, and scalable. Capabilities of agents are represented in
scripts, with pre- and postconditions allowing for basic reasoning and plan-
ning mechanisms. Agents offer services to other agents. Their knowledge and
capabilities is represented in ontologies by the descriptive language “CAL.”
A brief introduction to CAL is given in Section A.1.

CASA is a reactive and BDI architecture in one, as can be seen in Fig-
ure 6.2. [Ses02] It reacts on incoming speech acts, but can have long-term

124 Chapter 6, Analysis and Design

Figure 6.2: CASA Knowledge-based Behaviour

goals worked on by a planner component as well. An implementation of
CASA is the JIAC IV agent system. [FBK+01]

6.2.6 Others

There are other agent architectures spuriously heard of. Telescript from
General Magic is one popular example and has been, at the time of the
inception of Java, a serious competitor to it for remote code execution. [Jos95]
Today, it doesn’t play any role anymore and even can’t be found at General
Magic’s Web page, neither can its successor Odyssey. [Mag]

Other once-important and often mentioned architectures in the literature,
though without putting much emphasis on security, have been discontinued
from any serious further development efforts and aren’t discussed here. This
pertains particularly to Aglets from IBM, [Tok00] Zeus from British Tele-
com, [plc99] D’Agents (formerly known as AgentTcl) from the Dartmouth
College, [Geo00] and Mole from Universität Stuttgart.

6.3 Certificates 125

6.3 Certificates

Central to most of the security mechanisms proposed in the following is the
handling of certitficates. They will be used for message authentication, for
authorization, for class loading, for signing contracts, accountability, non-
repudiation, etc.

The security infrastructure therefore will have to have mechanisms for dealing
with certificates. Each agent will have a component able to deal with them.
There must be an infrastructure that supports creation, distribution, valida-
tion, and revocation of certificates. Based on the current state of technology,
X.509 certificates will be used.

The functionality will be realized by a dedicated certificate management
component. It is responsible for storing, receiving, sending, validating, and
checking certificates and certificate revocation lists.

6.4 Communication

Communication between agents and agent platforms should allow for all cur-
rent security attributes. This is in particular authentication, confidentiality,
and integrity including protection against packet re-insertion. (cf. Section 3.8)
Figure 6.3 gives an overall view of the communication security features of the
proposed infrastructure, showing the way an incoming message has to pass
before its agent-internal processing commences.

Hence, the security architecture must provide for appropriate means. This
will be done on several levels. On the ISO/OSI communication layer 4, stan-
dard mechansisms will be employed, namely a Secure Socket Layer (SSL) [FKK96]
library will be provided. That standardized protocol allows for authentica-
tion, confidentiality, and integrity. It is restricted to peer-to-peer communi-
cation.

To allow for advanced message processing of encrypted packets between agent
platforms on the ISO/OSI application layer SSL is not usable because it
encrypts everything in the packet making processing even by platform agents
impossible. Instead, a specfic agent component will be provided that enables
an agent to employ security mechanisms on the speech act layer. Leaving

126 Chapter 6, Analysis and Design

Figure 6.3: Communication Security

information like the sender and receiver of the speech act visible allows the
AMS and ACC agents to process the speech acts according to the specific
needs at that time without opening the content.

The “interface” of an agent to other agents is the set of services it provides.
Therefore, all use of services must be restrictable to only authorized enti-
ties. (cf. Section 8.6) SSL alone doesn’t give means for authorization. The
new agent security infrastructure therefore will provide a specific agent com-
ponent for access control to services.

6.5 Mobile Agents

Special considerations have to be taken for supporting mobile agents. Upon
there migration to remote agent places, it must be cared, that they don’t leak
information, neither on the communication path nor upon remote execution.

Securing the migration of mobile agents can be provided by means already
described: it is treated as a service, hence all mechanisms shown for securing
services can be applied to roaming agents. (cf. Section 6.4)

It is very hard though to secure the mobile agent against malicious executing
host systems. There are currently no known ways of totally securing a soft-
ware against its executing environment. The best results in this topic today
enable to securely compute a polynom. [ST98] That expressive power is not
sufficient for the application domain discussed here.

Rather, the proposed architecture will enable agents to use trust relation-

6.6 Intra-Agent Security 127

ships between agent platforms. Further, selected knowledge of agents will be
protected against misuse.

The notion of short-time certificates will be introduced to allow for only a
short interval for compromize of the respective private key. By using ex-
tensions of the X.509v3 certificate format, the length of a certificate chain
will be restricted to reduce the amount of possible damage that can be done
with a hijacked certificate respectively its private key; this guards against
mobile agents running havoc as well. Further, each agent will be enabled to
cryptographically sign and encrypt selected knowledge elements.

6.6 Intra-Agent Security

Agents are recognized and modelled as one homogenous entity. There is no
competition or maliciousness within an agent against itself. Therefore, the
proposed infrastructure will not explicitly provide mechanisms for securing
parts of the agent against other parts of itself. The platform as will be
chosen below for the design and realization of the system, though, supports
screening the components within an agent against each other. There is even
a rudimentary access control for internal message passing, but that is rather
motivated by programmatic reasons than for security.

This especially means that from the security point of view the knowledge
base of an agent is one non-partitioned data pool. Further, each component
within an agent has equal rights, there are all in the same security domain. (cf.
Section 3.9)

An agent must have means to determine, which security components are
available, further which algorithms and parameters are supported, and which
configuration to use for a specific communication. Mechanisms will be pro-
vided by the proposed security infrastructure.

128 Chapter 6, Analysis and Design

6.7 Platform Security

As has been defined in Chapter 1, this work does not deal with securing the
executing host itself, except for threads by agents. There are two different
environment situations though, that must be brought to awareness as a basis
for the further discussion. (cf. Chapter 2)

In the first environment, the execution platform is based on a host system at
a service provider, retailer, etc. It is assumed, that the agent platform there
is a part of the complex information technology infrastructure of that party.
Therefore, the platform is governed by the usual policies of that institutions
and is assumed to be running in a secured environment against low-layered
attacks like network stack bug exploitation, tampering of local code, etc.

The second scenario which is to be mentioned is the use of the agent platform
at an end user’s machine, either on a desktop, a laptop, or an arbitrary mobile
execution platform. There can be no preassumption about the security of
that systems, which are commonly regarded as completly insecure.

Due to these two circumstances, it is valid to neglect some security mecha-
nisms like protecting the communication of components of the agent platform
against each other. In the case of the provider-based execution host, the ma-
chine is assumed to be secure by corporate means. In the case of the user’s
machine, security mechanisms wouldn’t be any good due to the inherent
insecurity of the rest of the machine.

Figure 6.4: Protection Layers

On the other hand, there must be protection mechanisms for the agents

6.8 Implementation Specifics 129

against each other running on the same platform. Further, the executing
host itself must be guarded against the agents. All this is provided by a Java
execution environment and specific extensions to it as will be developed. (cf.
Chapter 4) The layered protection approach is depicted in Figure 6.4.

6.8 Implementation Specifics

For the prototypical implementation of the proposed security infrastructure,
some practical aspects have to be regarded.

One must choose a programming language and execution environment. As
can be deduced from Chapter 4, the Java environment will be used. This is
for several reasons. The programming language itself already has some fea-
tures to make the code execution safe, if not secure. The library is powerful
and provides for all necessary means. Having an already existing crypto-
graphic library is very helpful as well. The execution environment provides
for good ways of protecting the host against the executing programs. The
security domain execution model helps as well protecting the agents within a
Java machine against each other. Java code as being portable over different
machine architectures enables implementing agent mobility easily.

To have a complete Java runtime and development environment though,
an implementation of the JCE is needed. (cf. Section 4.4) Due to its com-
pleteness and availability without charge for educational purposes, the IAIK
library has been chosen. [Ins99a] It is a complete re-implementation of the
Java JCE API, available outside the United States of America, and has some
more functionality: the library offers X.509v3 certificates and extensions, cer-
tificate revocation lists, ASN.1 parsing, PKCS data types, several message
digest, encryption, and signature algorithms.

Another product put into use for a prototypical implementation of the CASA
architecture as enhanced by the security mechanisms of this work by the same
provider is the ISASILK library. [Ins99b] It is a Java implementation of the
SSL protocol, which will be used for secured communication on the transport
layer.

130 Chapter 6, Analysis and Design

6.9 Summary

As an implicit reference model, the FIPA notion of an agent system is
used. [Fou97] For the platform to enhance, the CASA system is chosen due
to its flexibility and possibilities. [Ses02] Code excerpts and implementa-
tion details are given for enhancing the implementation of CASA called
JIAC IV. [FBK+01] The specification language on the agent level is CAL,
the “CASA Agent Description Language.” In the following ontologies are
given in that description language.

Figure 6.5: Security Components

The next Chapters will, in a bottom-up manner, build up a comprehensive
security architecture for agents in the telematic domain. The proposed secu-
rity infrastructure will consist of security mechanisms on several layers. The
lowest layer is the Java implementation language, where thread and execution
security will be provided. Agents will be enriched by specific components as
shown in Figure 6.5, they can be found within the agent as was depicted in
Figure 6.1. Those components help to ensure the security of communication
on different abstraction layers and authorization will be provided. The Man-
ager Agent will have trust mechanisms to help in keeping the agent place
secure against threats due to agent migration. A dedicated Security Agent

6.9 Summary 131

will be given, that provides services to assist the agents on the agent place
or in the domain. Value-added services in a dedicated agent will be realized
as an exemplary implementation of e-commerce supporting functionality. A
certificate authority will be shown, that supports the advanced certificate
features which are used in this work.

Chapter 7

Basic Security

“How can an eight year-old boy
who can barely multiply
be a threat to national security?
And people call me paranoid!”

Fox Mulder, The X-Files

7.1 Synopsis

This Chapter deals with very basic mechanisms to be employed. The first
is the security of the executing host platform itself. It is shown, how the
system can be protected against malicious code executing on the platform,
based on the design decision to use Java as the execution environment.

A second important point for all agent systems is communication. This Chap-
ter names a basic way to provide all agents on an agent place with a secured
point-to-point communication channel on the transport layer (ISO/OSI layer
4), based on the standard SSL as was introduced in Section 3.8.

Central to all questions pertaining to authentication are certificates. Appro-
priate mechanisms for handling of them are shown.

Components are used to separate between the functionalities. They are pro-
vided for SSL communication and certificate handling. (cf. Chapter 6)

This Chapter does not deal with agents in particular but shows mechanisms

http://us.imdb.com/Quotes?0106179

134 Chapter 7, Basic Security

common to all respective systems dealing with mobile code, communication,
and securing those.

7.2 Platform Security

The platform in the architecture under discussion is the Java runtime en-
vironment (JRE). The system executing the Java runtime environment can
be protected against malicious code in the virtual machines as has been in-
troduced in Chapter 4. The exact mechanisms according to this work are
described in the following.

The first step towards a secured Java execution environment is to instanti-
ate an object of the class SecurityManager. That object is responsible for
checking compliance of running code against a pre-defined security policy.
The definition of the permissions granted to code is based on either the code
base, where the program was loaded from, or by whom the code was signed,
or by both attributes.

To easily distinguish between the Manager Agent (MA) and other agents
put onto the agent place, the MA should be loaded from its own code base.
This eases configuration of the policies and has another advantage: if the
deployed base software package has potentially malicious or errorneous classes
in components used in the manager agent or other system-related code, and
that components are re-used in other user-land agents, than the latter can
do no harm despite the faulty code, if they are loaded from a different code
base that isn’t given the permissions the Manager Agent code base has.

7.2.1 Local Permissions

The class files of the CASA architecture, extended by the ASITA framework,
implemented in the JIAC IV toolkit, are to be signed by the issuing entity,
which is assumed in the following. In general, the agent platform doesn’t
have to have any special privileges on the local platform.

The list of permissions in the JDK 1.2 that are checked by the security
manager object is given in [Sun98a]. Which of these permissions are granted
to what classes in the ASITA framework is given in Table 7.1. A more detailed
differentiation according to the target names of the permissions is given in
Table 7.2 and Table 7.3 for permissions of the Java type RuntimePermission

7.2 Platform Security 135

Permission Type Grant
AWTPermission this is only needed for local classes, that

use a GUI
FilePermission only needed for storage-related classes,

e.g. for persistence, logging, configuration
retrieval

NetPermission should not be set
PropertyPermission read and write for the Manager Agent,

other components only for properties re-
stricted to their own name and signed by
a trustworthy software supplier

ReflectPermission isn’t needed
RuntimePermission for individual target names see Table 7.2
SecurityPermission for individual target names see Table 7.3
SerializablePermission only needed, if in a particular implemen-

tation of the ASITA framework the fea-
tures available through subclassing the
Object*Stream is used

SocketPermission needed to allow for autonomous commu-
nication between agents

Table 7.1: Granted Permissions

136 Chapter 7, Basic Security

Target Name Grant
createClassLoader the Manager Agent needs this
getClassLoader the Manager Agent needs this
setContextClassLoader the Manager Agent needs this
setSecurityManager is not needed by any agent, because the

SecurityManager is set before the Man-
ager Agent starts to put the latter under
the control of the former

createSecurityManager dto.
exitVM needed only for the Manger Agent to

gracefully shutdown the agent place
setFactory not needed for any component including

MA
setIO reasonable for the MA
Thread not needed (cf. Section 7.2.2)
getProtectionDomain needed for the MA
*FileDescriptor needed for the MA
queuePrintJob possibly needed by any logging facility

Table 7.2: Granted Runtime Permissions

Target Name Grant
*Provider useful for dynamic aspects of Security

Agent (introduced in Chapter 9); poten-
tially harmful due to introduction of in-
secure (cf. Section 3.10) or unlawful algo-
rithms (cf. Section 2.6)

Identity useful for MA to support inherent Java
functionality, but that is not used in the
ASITA framework

Table 7.3: Granted Security Permissions

7.2 Platform Security 137

and SecurityPermission, respectively. No permissions are needed for the
system for all Java permission targets not shown.

With the current implementations of the JVM the execution environment
loads the policy definition files only once. Afterwards, the policy definition
can not be changed. To be more precise, the policy for instantiated objects
can not be changed. Hence it is not possible to exchange the policy during
runtime of the agent place. This would either call for a completely separate
implementation of the security mechanisms for the agent system implementa-
tion and then having to attend both security architectures in parallel, leading
to an overly complex and very hard to maintain system.

Alternatively, one could modify the Java Virtual Machine implementation,
but that would make the security system incompatible to the rest of the JVMs
in the world, rendering the overall goal of communication of open systems
based on the all-available lowest common denominator pointless. This deficit
has to be overcome in future iterations of the ASITA infrastructure, or the
Java security architecture. [Gon98]

7.2.2 Thread Group Separation

For securing the host system against the agent system, and the Manager
Agent of the CASA architecture against the running agents, the Java mech-
anism of thread groups is employed. Each object runs in a thread, where
threads can be grouped together in a thread group. By enforcing relation-
ships between threads they can be secured against tampering between each
other.

Figure 7.1: Thread Group Hierarchy

138 Chapter 7, Basic Security

Specifically, upon creation of the JVM, the thread group system is initialized.
That thread group creates as a decendent the thread group main, in which
the main method of an application is run. That method will then create the
thread group manager, that runs all threads of the Manager Agent. Each
agent newly instantiated by the MA will be put into its own thread group
decending from the manager thread group. (cf. Figure 7.1)

Putting the MA into an own group below the main group allows for restrict-
ing the CASA marketplace to less power on the local machine than the main
application itself. This is of no concern at the moment, where one JVM runs
exactly one MA with exactly one agent place, but is a provision for future
scenarios or extensions to the CASA framework resp. the JIAC implementa-
tion.

Unfortunately, in the default SecurityManager class as distributed with the
JVM, the access check between threads is very weak. An executed object is
allowed to modify any thread group not being the system thread group, and
any thread that is not in that group. This includes the main thread!

Instead, each executing thread should be bound by the limits of the thread
group it is running in. No object should be able to modify any thread or
thread group above its own in the hierarchy. The corresponding code ex-
cerpt from a derived SecurityManager class called AgentSecurityManager

is given in Figure 7.2. Using that code, each object has only access to all
objects running in its own thread group or below, but not upwards in the
tree as seen in Figure 7.1.

For very special cases not envisaged at the moment, and for being compliant
to the Java Security Manager guide, [Sun98b] objects holding the runtime
permissions modifyThread or modifyThreadGroup are allowed to modify
any thread or thread group, respectively. For the usual case of a CASA
system, neither of these permissions have to be granted. Handling of the
case of an object holding the omnipotent AllPermission is performed in the
checkPermission call.

The setMaxPriority method of the class ThreadGroup does not allow to set
a thread group priority higher than it currently is, it can only be lowered.
Setting a thread priority via call of setPriority is upper bound to the thread
priority of the thread group it belongs to. Hence a newly started agent is
not able to raise its priority to a higher value than set to by the manager or
other classes in the upstream thread group tree. (cf. Figure 7.1) Because the
methods are both declared final by the standard Java Runtime Environment
it is ensured, that no class can override this behaviour. The default thread

7.2 Platform Security 139

1 public class AgentSecurityManager
2 extends SecurityManager {
3

4 public void checkAccess(ThreadGroup tg) {
5 // allow parent access
6 if (Thread.currentThread()
7 .getThreadGroup().parentOf(tg))
8 return;
9 // otherwise require permission

10 checkPermission(new
11 RuntimePermission("modifyThreadGroup"));
12 }
13

14 public void checkAccess(Thread t) {
15 // allow parent access
16 if (Thread.currentThread().getThreadGroup()
17 .parentOf(t.getThreadGroup()))
18 return;
19 // otherwise require permission
20 checkPermission(new
21 RuntimePermission("modifyThread"));
22 }
23 }

Figure 7.2: Security Manager Code for Checking Thread Access

140 Chapter 7, Basic Security

group, and therefore thread priority, is set to the maximum. The Manager
Agent should set it to appropriately lowered values upon creating new thread
groups for instantiated agents to run in.

This work does not provide for securing the components of an agent against
each other, though this could have been achieved with the thread model as
well. It is assumed, that the agent is a homogenous entity with respect to the
mutual trust of its inner state. This design decision is backed by the strong
migration concept of CASA, where complete agents with all state information
and classes are transported, instead of only parts of an agent from different
sources.

7.2.3 Class Loading

Class loading in Java is handled by subclasses of the ClassLoader class. The
SecureClassLoader as provided by the standard Java Runtime Environment
already enforces security as described for threads above: modifications and
creation of a class loader is only permitted by classes “up” the tree hierarchy
of loaded classes.

Created classes and their instance objects are by default separated into pro-
tection domains. A protection domain is all code loaded from the same code
source, which encompasses the location of the classes and the associated per-
missions. The permissions are defined in the system policy as seen above.
The authentication of the code is based on certificates that were used to sign
the respective classes and objects in the Jar Archive File from which the
objects were loaded.

The class loading mechanism of Java is extended by providing for integration
of the certificate mechansims as described in Section 7.4 and Section 9.3.
Certificates are now more thoroughly checked than in the basic Java Runtime
Environment. Specifically, they are checked against CRLs, if being without
its validity interval, if the certificate has critical extensions and if they are
all known and valid. Classes are only instantiated if the corresponding class
object was successfully verified.

7.3 Transport Layer Communication Security 141

7.3 Transport Layer Communication Se-
curity

As has been motivated in Section 6.4, allowing for secured communication
with non-agent systems is rather straightforward. It is necessary to provide
an SSL communication component. These components are readily available
on the software market and can be integrated. For the prototypical imple-
mentation of the framework the ISASILK library has been chosen. [Ins99b]

The library can easily be added to the runtime platform by adding its JAR
file to the CLASSPATH of the Java machine. Its use in a Java program is
documented on the web page of the provider and is common practise and
shall not be described here.

By requesting the specific features, authentication, confidentiality, and in-
tegrity will be provided. The integration of SSL on the agent level instead
on the Java programming level is described in more depth in Section 8.4.

7.4 Certificates

Certificates are an essential basic security mechanism. They are used to
attribute an identifier to a public key, commonly used for authentication. (cf.
Section 3.7.5)

If an agent is to be designed as autonomous as possible, the functionalities as
described in the following Subsections are to be fulfilled by the agent itself.
As an alternative to gain a smaller agent and possible speed advantages due
to caching, the complex process of certificate checking can be delegated to a
dedicated agent. In the ASITA framework this is the security agent present
at agent places. (cf. Section 9.3) If the communication to that security agent
can not be trusted, at least the minimal knowledge base information for
securing the socket to the security agent must be present.

142 Chapter 7, Basic Security

7.4.1 X.509 Certificates and Extensions

In the proposed ASITA security infrastructure, the commonly used and stan-
dardized X.509 certificates are used. [ITU97b, HFPS99] For the enhanced fea-
tures that will be described shortly, the extensions of version three certificates
are needed.

1 // X509v3 certificate
2 (cat X509Certificate (ext Certificate)
3 // X.509 version according to standard
4 (version int fixed)
5 // id per issuer
6 (serialNumber CertificateSerialNumber fixed)
7 // algorithms and parameters for this
8 // certificate
9 (signature AlgorithmIdentifier fixed)

10 // issuer of this certificate
11 (issuer DistinguishedName fixed)
12 // contains notBefore and notAfter
13 // category objects
14 (validity Validity fixed)
15 // identity of entity to whom the certificate
16 // was issued according to X.500
17 (subject DistinguishedName fixed)
18 // certified algorithm identifier and public key
19 (subjectPublicKeyInfo SubjectPublicKeyInfo fixed)
20 // for directory access control out of X.500 namespace
21 (issuerUniqueIdentifier UniqueIdentifier) //version=2|3
22 // for directory access control out of X.500 namespace
23 (subjectUniqueIdentifier UniqueIdentifier) //version=2|3
24 // X.509v3 extensions, described later
25 (extensions X509Extension[]) //version=3
26 // the DER encoding of the certificate object
27 (encoded byte[]))

Figure 7.3: Certificate Category

The mapping of an X.509v3 certificate onto the CASA ontology language
is straightforward and given in Figure 7.3. The extensions to add more
semantics as introduced in version three of the relevant standard [ITU97b]
are given as an CAL ontology in Figure 7.4. (see Section A.1 for a brief
overview of CAL) To make use of the extensions, specific certificate extension

7.4 Certificates 143

1 // X509v3 Extensions
2 (cat X509Extension
3 // which extension
4 (extnId x500.ObjectId needed)
5 // invalid if unrecognized
6 (critical bool (default false))
7 // DER encoded value
8 (extnValue byte[])))

Figure 7.4: Certificate Extension Category

fields have to be defined. In CAL this can be expressed as an inheritance
relationship. The relevant extension fields will be described in the following
Subsections.

The validity period of certificates is of special importance for mobile agents.
As a measure against malicious hosts subverting a received agent, the agent
will carry only short term certificates. These certificates will be created by
the spawning static agent with a very limited lifetime. The period of the
certificate must be sufficiently large enough to allow the mobile agent to
complete its task, but not longer. This duration to decide beforehand is an
unsolved problem yet. In the ASITA framework it is encouraged to have this
value configurable, either by general user preferences or application-specific
ones. A reasonable amount seems to be at around a few minutes to perhaps
ten to twenty. If this time is not sufficient, the mobile agent has to signal
back this exceptional case, probably with the information gathered so far.

It is strongly discouraged to then automatically generate a new agent with the
same task and a longer lasting certificate, because the agent might have been
subverted and be tricked into sending this exception message to get hold of a
new certificate. Instead, this situation should be brought to the attention of
the user to decide what to do. If this situation persists in several domains, the
timeout period should be carefully raised. If only the current problem solving
application is persistently affected, out-of-band communication means should
be employed to check for the correctness of the situation.

Exactly which of the potentially multiple certificates an agent holds is to be
presented or used in a given situation is not pre-defined. Instead, the agent
must make an educated guess on using the right one. The keyUsage extension
can be employed for this guess, (see below) as well as the security require-
ments which are defined for the prospected service usage. (cf. Section 8.2.2)
A try-and-error approach is feasible as well in this context. Previous expe-

144 Chapter 7, Basic Security

rience of the agent with the same communication partner or situation might
help as well. For a long-term history covering several instances of a specific
agent this requires some persistency mechanisms of the agent architecture.

For verifying a certificate in a chain several certificates must be checked. If
one is not present in the konwledge base of the agent, it must be retrieved
from a Key Distribution Center. (cf. Section 3.7.5) In the ASITA infrastruc-
ture, this role is fulfilled by the security agent, present at the agent commu-
nity level, and is described in Section 9.3.1.

The security agent will usually provide only those certificates created and
distributed by a CA. Agent-related and short-term certificates will normally
not be available at the KDC, because the management and communication
overhead would be too large. Therefore, if any certificate that is not available
at the security agent is needed, the agent holding that certificate has to
distribute it to the recipient by itself. This is easily achieved by using a list
of certificates as an object type wherever a single certificate seems intuitive
at first glance. This approach is often used and can be seen in the SSL
protocol as well. (cf. Section 3.8) The list is filled with all certificates in a
chain leading to the first certificate that can be retrieved from the KDC.

BasicConstraint Extension

1 (cat BasicConstraints (ext X509Extension)
2 // critical for ASITA
3 (X509Extension.critical bool
4 (constr ?X509Extension.critical))
5 // if new certificates may be created
6 (cA bool (default true))
7 // if yes, length of certificate chain
8 (pathLenConstraint int (default 1)))

Figure 7.5: BasicConstraint Extension Field Category

A BasicConstraint certificate extension field as given in Figure 7.5 is used
to denote the use of the certificate as either being a CA certificate or not.
If a certificate is denoted with this extension as being a CA certificate, i.e.
the attribute cA is set to true, the certificate can be used to verify the
correctness of other certificates. Vice versa, it can be used to sign certificates
for public keys. A certificate not having this attribute set can only be used
for authenticating the subject itself, but no derived CA certificates of a chain.

7.4 Certificates 145

The path length constraint reduces the usefulness of the certificate: for each
length count, one further level of CA certificate chain nesting is allowed.

In the ASITA framework, this extension is considered critical. A user cer-
tificate will have the path length set to 1. This allows to generate a new CA
certificate with path length 0 for static agents. Static agents will generate
therefrom new short term certificates with cA set to FALSE and give that
certificates to newly spawned mobile agents. The mobile agent will then not
be able to generate further certificates in the chain, either voluntarily, due
to bogus code, or by an attacker spying out the relevant data.

SubjectAltName Extension

1 (cat SubjectAltName (ext X509Extension)
2 // unique identifier of using agent
3 (agentName string needed))

Figure 7.6: SubjectAltName Extension Field Category

This extension field is used to bind alternate names to the certificate in
addition to those given in the subject attribute.

For the ASITA infrastructure, this field is used to bind the certificate to
a specific agent. When the user issues new certificates to its agents, the
new certificates still have the original subject attribute, i.e. an identifier
of the responsible user on whose behalf the agent is acting. To be able
to identify the autonomously acting agent, its unique name is implanted in
this extension field. The exact syntax and semantics of that name depends
on the agent architecture. In the exemplary implementation JIAC IV of
the CASA system, this name is formed as Name@protocol://dns.name.of.
host:port[/facility].

Name@protocol://dns.name.of.host:port[/facility]
Name@protocol://dns.name.of.host:port[/facility]

146 Chapter 7, Basic Security

KeyUsage Extension

1 (cat KeyUsage (ext X509Extension)
2 // allowed use for the corresponding
3 // private key, defined in X.509v3,
4 // 12.2.2.3
5 (usage int[] needed))

Figure 7.7: KeyUsage Extension Field Category

The keyUsage X.509v3 extension is an important way for an agent to figure
out, which certificate resp. corresponding private key to use in a given situa-
tion. It can be used to distinguished between various different uses. [ITU97b]

In the ASITA framework, it is encouraged to not set this extension to being
critical, because this field is aimed at being a hint to the using agent, instead
of being a constraint. On the other hand, an agent must be prepared to
receive a failure notice and take fallback measures because of the presented
certificate misses the critical flag and has been used in a non-conformant
action due to differing security policies in other domains.

7.4.2 Certificate Revocation

Certificate revocation is an important mechanism for invalidating certifi-
cates. It is inherent to the relevant standards. [ITU97b, HFPS99] Aston-
ishing enough, this essential part of the standard and crucial component of a
functioning certificate infrastructure is usually neglected, even in the largest
and most popular software distributions and systems. [Gue01] The ASITA
framework, though, does provide for CRL mechanisms.

Figure 7.8 gives the category objects defined in the CAL language used for
providing the certificate revocation management mechanism, it is a literal
translation of the standard. The attribute crlEntryExtensions is provided
to accomodate for further enhancements of the ASITA framework and is
unused in the exemplary implementation. It might contain extensions as
defined in [ITU97b] resp. [HFPS99], especially the issuerAltName extension
might come in handy.

CRLs are distributed the same as certificates by security agents fulfilling the
role of a KDC. (cf. Section 9.3.1) In contrast to the certificate case, “normal”
agents themselves don’t distribute CRLs, so they don’t have to provide a

7.4 Certificates 147

1 // signed certificate revocation list
2 // per X.509 resp. RFC 2459
3 (cat X509CRL
4 (tbsCertList TBSCertList needed)
5 // how this CRL was signed
6 (algorithm AlgorithmIdentifier needed)
7 // binary signature object over
8 // DER-encoding of tbsCertList
9 (signature byte[]))

10

11 // list with revoked certificates
12 (cat TBSCertList
13 (version int (default 2) fixed)
14 // contents is the same as above!
15 (algorithm AlgorithmIdentifier needed)
16 // who issued this CRL
17 (issuer DistinguishedName needed)
18 // begin of validity period
19 (thisUpdate DateTime needed)
20 // end of validity period
21 (nextUpdate DateTime needed)
22 // those certificates are invalid
23 (revokedCertificates RevokedCertificate[] needed))
24

25 // a single revoked certificate
26 (cat RevokedCertificate
27 // as issued by the CA in the cert to be revoked
28 (userCertificate CertificateSerialNumber needed)
29 // timestamp as of when the cert was invalidated
30 (revocationDate DateTime needed)
31 // extensions for further applications
32 (crlEntryExtensions X509Extension[]))

Figure 7.8: Certificate Revocation Categories

148 Chapter 7, Basic Security

means of distributing them. If an agent caches CRLs for the duration of
its validity, communication overhead can be reduced, but this increases the
knowledge base of the agent.

7.5 Summary

This Chapter has given low-level mechanisms to secure the executing Java
Runtime Environment against malicious code. Further, it propagates us-
ing SSL on a Java layer. Certificates are introduced as central aspects for
authentication.

The next Chapter will raise the discussion of security aspects onto the agent
level.

Chapter 8

Agent Security

“But even the man who has made his own
plans,
when he comes to see things with his own
eyes
will often think he has done wrong.
Firm reliance on self must make him proof
against the seeming pressure of the moment.”

Karl von Clausewitz, On War

8.1 Synopsis

Chapter 8 discusses security features to be found on the agent level and
for the communication between agents. As a first measure, the agent must
be endowed with self-inspection functionalities. Therefore, an ontology is
introduced to describe security-related functionalities and attributes.

Then, means to secure an agent against hosts is shown, particularly a com-
ponent for securing its knowledge base is introduced. As has been forseen in
the last Chapter, (cf. Section 7.3) the SSL protocol is made available on the
“conscious” level of the agent.

Because using the SSL protocol has some limitations on its applicability, an-
other component is given that allows to secure communication on the speech
acts level, corresponding to the ISO/OSI layer 7, the application layer.

http://www.sonshi.com/clausewitz1-6.html

150 Chapter 8, Agent Security

The Chapter finishes with the introduction of an encompassing and service-
related authentication mechanism.

8.2 Agent’s Security Awareness

The mechanisms of the following Sections will depend on the availability
of several components and realized abilities in the agent. To ensure the
consistency of the dependencies and to enable an agent to reason about
its own composition, thus enabling it to load other components as needed
and enforcing security policies, a way for specifiying dependencies between
components and abilities will have to be defined.

8.2.1 Object Naming

1 (ont SecurityObjects:V_1
2 (cat SecurityComponent
3 // identity tag
4 (identifier string needed unique)
5 // descriptive name
6 (name string)
7 // class name of the implementation
8 (className string))
9 (cat AgentAbility

10 // id tag of the ability
11 (name string needed unique)
12 // which component implements that ability
13 (component SecurityComponent needed)))

Figure 8.1: Security Object Naming Ontology

As a first step, the elements comprising the security aspects within an agent
have to be named. This is achieved by the ontology as given in Figure 8.1 Ex-
amples of instantiated objects of that categories can be found in Section A.3.

The className attribute enables an agent to dynamically load other Java
classes as needed to fulfill the dependencies.

8.2 Agent’s Security Awareness 151

8.2.2 Security Dependencies

1 (ont SecurityDependencies:V_1
2 (cat PerAbilityRequirement
3 // for which ability the dependencies are described
4 (ability AgentAbility needed)
5 // one of these other abilities must be fulfilled to
6 // enable the ability. the order of the abilities
7 // gives the preference
8 (requiresOneOf AgentAbility[])))

Figure 8.2: Security Dependencies Ontology

As a second step for allowing the agent to manage its own composition of
components consistently with security requirements, relationships between
the categories of security objects have to be defined. The ontology therefore
can be seen in Figure 8.2, examples can be found in Section A.4. The spec-
ification is realized as rather canonical mappings of the functionalities onto
objects of the fact base of the agent, described by the ontology definition.

An agent’s knowledge base is initialized only with objects that represent its
loaded abilitites. Upon loading a component that component’s initialization
function is responsible for adding instances of the security objects and de-
pendencies to the knowledge base of the agent that describe its abilities and
dependencies.

There can be more than one PerAbilityRequirement object per described
ability in the knowledge base of the agent. For each of the objects, at least
one of the requirements in the requiresOneOf attribute must be fulfilled.

It is not necessary to define specific component dependencies, because each
component provides abilities. That abilities are dependent on other abilities
that are realized by components. So to check the dependency of a compo-
nent upon other components it is sufficient to check the dependencies of its
provided attributes.

After loading a component into the agent, the agent kernel has to re-check the
dependencies and load more components as defined by its updated knowledge
base.

152 Chapter 8, Agent Security

8.2.3 Service Security Requirements

1 (ont ServiceSecurityRequirements:V_1
2 (cat ServiceSecurityRequirements
3 // all abilities must be present within
4 // the providing agent
5 (requires AgentAbility{} needed)))

Figure 8.3: Service Security Requirements Ontology

1 (ont Services:V_1
2 (cat Service
3 (name string (constr
4 (not (comp Strings.equal ?name "")))
5 fixed needed unique)
6 (keywords string{})
7 (language string (default "CAL") fixed)
8 (protocols Protocol[] fixed needed)
9 (ontologies string{} fixed needed)

10 (requires ServiceSecurityRequirements)
11 (gui GUIServiceDescr)
12 (scl ServiceControlList))
13 (cat ServiceInst
14 (protocol Protocol)
15 (conversation string fixed needed unique)
16 (requires ServiceSecurityRequirements)
17 (certificate Certificate)))

Figure 8.4: Service Ontology

For use of communication security, the wanted attributes have to be specified
in the communication interface of an agent: the description of its services.
This is achieved as another dependency relation by the ontology as given in
Figure 8.3. All of the abilities named in the attribute set requires have to
be present in the agent and will be tested against upon service use to allow
access the service this requirement is attached to.

This requirement is bi-directional: it defines the requirements for being a
service user as well as being a service provider.

In Figure 8.4 it is depicted how the security requirements are hooked into
the remainder of the service use and provisioning infrastructure of the agent

8.3 Knowledge Base Protection 153

system JIAC IV.

8.3 Knowledge Base Protection

The knowledge base of an agent representing its view of the world and hold-
ing not only the data to be acted upon in its life time, but holding the results
of its work as well is critically endangered, if the agent leaves its home plat-
form. As soon as it is migrating to remote agent places, the integrity of the
whole agent is in question, its declarative as well as its procedural knowledge.
That implies, that no remote host can be initally sure about the information
provided by a mobile agent, nor may the agent’s owner know if the data
returned by “his” agent to its home platform is to be trusted.

In the base CASA system, the agent provides a management interface to the
platform, respectively to the Manager Agent. No other regular access from
the Manager Agent onto the managed agent is possible. This is not only a
problem in the event of an errorneous agent running rampant, but also from
a purely technical viewpoint: an executing host system has complete control
over any agent it has received from the network.

If information retrieval or fraudulent behaviour is performed by the malicious
host, it has two conceptually different points of attacks at the mobile agent,
in ignoring the “standardized” access interface as provided in the CASA
architecture framework. The host can either directly modify the data the
mobile agent is working with, as well as for input as for output, or it can
modify the execution logic (or both).

It was shown in [ST98], that for the general case the result of a polynom
calculation on the ring Z/NZ of a mobile agent can be protected against
malicious hosts. Unfortunately, this case isn’t very applicable to real-world
problems. Even worse, the host system isn’t required by any means to execute
the code of the mobile agent at all, it can very well exchange code and act
on its own behalf. For this reason, there is no real protection for the code of
a mobile agent against a malicious host.

In contrast, it is decidable for a benevolent hosts if an agent’s code has been
tampered with on its journey. That will be described in Section 9.2.3 and is
not further elaborated upon here in the Section dealing with the protected
information in the agent itself, because the agent hasn’t any possible way to
reason about its own integrity without executing code that’s very integrity

154 Chapter 8, Agent Security

is in question.

On the other hand, where an evil host in the telematic domain might be
interested in is not the processing logic of an agent, but the data it acts
upon and receives from third parties. So practical mechanisms to enhance
the confidence in the data of a mobile agent are introduced in this Section.

They will be realized by a dedicated agent compontent named KBP, according
to its function of knowledge base protection. A stationary agent doesn’t
need the mechanisms as shown and consequently doesn’t have to have the
respective agent component.

8.3.1 Standards and Ontologies

1 ContentInfo ::= SEQUENCE {
2 contentType ContentType,
3 content
4 [0] EXPLICIT ANY
5 DEFINED BY contentType OPTIONAL }
6 ContentType ::= OBJECT IDENTIFIER

Figure 8.5: ContentInfo Type of PKCS#7

1 (ont ProtectedContent:V_1
2 (cat ContentInfo
3 (contentType string
4 (constr (comp isElement
5 ?contentType { "data" "signedData"
6 "envelopedData" "signedAndEnvelopedData"
7 "digestedData" "encryptedData"))))
8 // opaque BER encoding of corresponding
9 // PKCS#7 object

10 (encoding byte[]))
11 (cat AuthenticatedSafe
12 (content ContentInfo[])))

Figure 8.6: Protected Content Ontology

The ContentInfo type is defined in [RSA93e], Figure 8.6 gives the corre-
sponding agent ontology for the CAL language. The fields of type ContentInfo
have the following meanings:

8.3 Knowledge Base Protection 155

contentType indicates the type of content. It is an object identifier, which
means it is a unique string of integers assigned by the authority that
defines the content type.

content is the content. The field is optional and if it is not present its
intended value must be supplied by other means. Its type is defined
along with the object identifier for contentType. [RSA93e]

The standard [RSA93e] defines the six content types data, signedData,
envelopedData, signedAndEnvelopedData, digestedData, and encryptedData.

1 (ont CriticalData:V_1
2 (cat LocalData
3 // may contain any CAL object
4 (data any needed)))

Figure 8.7: Critical Data Ontology

1 (matt expires int (ktype fact object goal)
2 (constr (>= ? 0)) // 0: doesn’t expire
3 (default 0)
4)
5 (obj CD CriticalData
6 (data "something important")
7):(meta (expires 4321834567890))

Figure 8.8: Critical Data Object with Meta-Attribute

Objects of the category LocalData may be used to wrap any data object in
the dynamic knowledge base of an agent. As shown in Figure 8.8, a meta-
attribute declaration might be used to expire the data and direct the agent
to remove the knowledge element, if the end of its life time as given in the
expires meta-attribute is reached. In the given example, that is Monday
October 11, 2004, CEST, 06:15:14.

156 Chapter 8, Agent Security

8.3.2 Knowledge Base Division

For securing the knowledge of a mobile agent on its migration path against
tampering as much as possible must be cryptographically signed by the
sender. Unfortunately, with respect to security, the knowledge base of an
agent is ever changing due to its work done. To protect as much of the
agent’s data as possible, it is proposed to divide the knowledge base of a
mobile agent into a static and a dynamic part.

The static knowledge base contains data that will never change for the dura-
tion of the agent’s travel. This especially includes data about the originating
home platform and the certificate of the owner of the agent. This allows host
systems on its way to ensure some integrity of the agent’s data and to retain
accountability of its work. (cf. Section 9.2.2)

The dynamic part of the agent’s knowledge base will hold all changeable data
the mobile agent starts with, and all data collected on its way.

Especially due to the autonomy of agents it might not be possible to deter-
mine beforehand, which part of its knowledge base will change and which
will not. From a practical point of view it might very well be the case, that
almost all data of an agent will be held in the dynamic part.

The CASA architecture has, in its language definition called CAL, the meta-
attribute fixed, which inhibits changing of an attribute. The meta-attribute
MetaFixed disallows changing anything of the object. This is restricted to
non-owning objects, those that have object references to it can manipulate
the “protected” objects at will. Certificate-based immutability is not sup-
ported. The next Sections deal with how to provide cryptographically secured
data objects based upon the data types just introduced.

8.3.3 Outgoing Data

For purpose of authentically transporting and sending data to service provi-
ders, the sensitive information is distributed in AuthenticatedSafe objects,
derived directly from [RSA97]. This pertains to static and dynamic know-
ledge alike, because the receiving system isn’t aware of out of which part of
the agent’s knowledge base the data passed on is derived from.

Such an AuthenticatedSafe object is then cryptographically signed and put
into a ContentInfo object as signed data. [RSA97]

The inner ContentInfo objects in the AuthenticatedSafe will contain pro-

8.3 Knowledge Base Protection 157

tected data, as the application sees fit. For sending data from the home
platform to a remote host to be processed there, the inner data will either
be plain text, if the remote system doesn’t support receiving encrypted data
as input for its provided service.

Or, if the receiving system is able to process encrypted data, the inner layer
of ContentInfo objects will be of the data type envelopedData containing
symmetrically encrypted content, and the symmetric key encrypted with the
public key of the recipient. The PKCS#7 standard defining this data type
allows to encrypt the same symmetric key with several different certificate-
derived public keys allowing to receive several recipients the same encrypted
data without having to re-encrypt it once for each component. [RSA93e]

8.3.4 Incoming Data

For a mobile agent to receive authenticated or private data from another
agent in the context of a service usage, the data already has to reach the
agent in a protected way. The receiving agent itself would not be able to act
on the data, because it neither can trust its own data on its current executing
system, nor might the respective functions be executed anyway due to code
manipulation by the platform.

The sending provider has to act upon the data before it supplies the infor-
mation to the mobile agent. The treatment of the data is as specified in the
previous Subsection. If the data shall reach the destination secured against
prying electronic eyes, it has to be encrypted. This is done with the public
key of the recipient. In the usual case, the information is to be authenticated
as well, so that the service user has the confidence of getting the information
from the right source.

For the information provider to have the confidence that it provides the ser-
vice to the intended recipient, the certificate describing to whose public key
the result shall be encrypted must be contained in the service request and
must be signed by the requesting user as well. Else, the chain of accountabil-
ity would be vulnerable by a man-in-the-middle attack by a malicious host
exchanging the receiver’s certificate in the mobile agent by its own and thus
would get the information.

158 Chapter 8, Agent Security

8.3.5 Short Term Certificates

For certain operations like contract signing, the mobile agent needs account-
ability and hence has to sign data with private key material. This is an
obvious problem, because private data isn’t private at all on a malicious sys-
tem. Further, long-term key material is not permitted to leave the home
platform of the agent.

For the cases, where despite these security issues an agent shall be empowered
to have private data and a corresponding certificate, short-term certificates
are introduced. Technically they don’t differ from standard long-term certifi-
cates and hence don’t require further elaboration on the structure here. (cf.
Section 7.4)

These certificates are created and signed by the holder of a long-term cer-
tificate. The creator of the new asymmetric key pair ensures, that the new
certificate can not be used to create further certificates, i.e. in the X.509v3
BasicConstraints certificate extension, the value of cA is set to TRUE, and
the attribute of pathLenConstraint to 0. That extension must be marked
as critical. [ITU97b, HFPS99] The validity period of the certificate should be
set as short as possible, but long enough so that the mobile agent can fulfill
its expected task with it.

Each corresponding short-term private key should be protected by being
wrapped in a LocalData object as shown in Figure 8.7, with an attached
meta-attribute expires as depicted in Figure 8.8. The timer component of
the agent will trigger the removal of the object out of the agent’s dynamic
knowledge base.

Within the validity interval of the short term certificate it is vulnerable to
espionage attacks. If an attacker is able to extract the certificate and cor-
responding private data out of the agent, within the time window given in
the certificate it is vulnerable to abuse. Therefore, short-term certificates
and their corresponding private keys should be used in very rare and well-
controlled circumstances.

8.3 Knowledge Base Protection 159

8.3.6 Sensitive Information Removal

It is mandatory, that no private data used to generate any secured content,
meaning keys for either signed or encrypted data, leaves the home platform.
This is especially important for the user’s long term secret keys used for
electronic signatures, they are required by law to never leave his machine or
are being disclosed in any way. (cf. Section 2.6) Except by using dedicated
hardware like chip cards this can be achieved within the agent platform in
two ways.

The first is to inject the protected data into the mobile agent upon its incep-
tion by the creating entity. This would relieve the mobile agent from handling
any sensitive data by its own. The security of the data then depends solely
on the protecting home platform and the communication partners on the
way.

The second possibility is to flag the knowledge base information within
an agent to be removed by itself before it migrates. The ontology object
LocalData as shown in Figure 8.7 may be used to wrap any such data.
Before migration, the KBP agent component will remove all objects out of
the knowledge base of the agent referenced by this data type. On the Java
language level this can be achieved by tagging a variable with the modifier
transient which prevents the contained data from being serialized.

Immediately before migration, the KBP should remove itself out of the agent
as well, because it isn’t needed on remote agent places due to its inherent
unreliability there. In Section 7.2 and Section 9.2.3 it is specified, that an
agent should only be started by a benevolent host if its code integrity has
been verified. Unfortunately, the mobile agent itself has no reliable way to
determine, if its code has been tampered with, because it might have been
started by an evil host after modification. As a side note, modifiying the code
of an agent before executions doesn’t prevent a malicious host from sending
the agent to the next host system unmodified.

For the second alternative, special care must be taken within the implementa-
tion not to accidentally leave any data around, for example by not removing
any references to the objects before serialization. This is an aspect of security
by robustness and safety as introduced in Chapter 4 and Section 3.10.5. In
this sense, the former way of injecting sensitive data into the mobile agent
without it having to process it itself is to be preferred, if applicable.

160 Chapter 8, Agent Security

8.3.7 Limitations

A disadvantage of encrypting input for remote systems is, that the set of re-
mote communication partners must be known before the mobile agent starts
its journey. Because the list of visited agent places is normally not known
beforehand but instead being calculated on its journey, this secured way of
information dissemination is in certain circumstances not practical.

Alternatives are either to forfeit encryption and send the information in plain,
or to distribute the symmetric key needed to decrypt the information on a
different channel directly from the home platform to the receiving platform.
The former way leaves sensitive information open but at least provides au-
thenticated information to the remote system. The latter alternative has
the disadvantage that the home platform must be reachable by the remote
system at information processing time. As mobile agents are often used in a
scenario for mobility support and offline processing to reduce bandwith usage
this might not be feasible.

Another problem of returned data is, that it is hard to determine if it is the
complete set of data received by the agent on its path. Nothing hinders a
malicious host from removing selected information out of the knowledge base
of a mobile agent. This can only be detected, if there is a reproducable chain
of migration and communication of the agent over its life time.

Therefore, at each remote agent place, the host system would have to link
its output to all previous outputs at other marketplaces and sign that out-
put and the link with its private key, verifyable by a certificate. The re-
ceiving entity can then test, if the chain of linked result sets is unbroken.
This is only possible though, if there is only one complete result set instead
of a multitude of answers. Further, the linking of the results to previous
ones must be performed by the host, not the agent. This is similar to the
AppendOnlyContainer mechanism of Ajanta. [Kar]

8.4 Transport Layer Communication Se-
curity

To provide communication security on the transport layer of the ISO/OSI
reference model (layer 4), an SSL component will be added to the agent.
Because the more obvious name “Transport Layer Security” is already in use

8.4 Transport Layer Communication Security 161

by the security protocol with the same name, the new component is instead
called “Low Level Security.”

Cipher Suite Name Key Exchange Encryption Hash
SSL_NULL_WITH_NULL_NULL NULL NULL NULL

SSL_RSA_WITH_NULL_MD5 RSA NULL MD5

SSL_RSA_WITH_NULL_SHA RSA NULL SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA_EXPORT RC4_40 MD5

SSL_RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5

SSL_RSA_WITH_RC4_128_SHA RSA RC4_128 SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA_EXPORT RC2_CBC_40 MD5

SSL_RSA_WITH_IDEA_CBC_SHA RSA IDEA_CBC SHA

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA_EXPORT DES40_CBC SHA

SSL_RSA_WITH_DES_CBC_SHA RSA DES_CBC SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA DH_DSS_EXPORT DES40_CBC SHA

SSL_DH_DSS_WITH_DES_CBC_SHA DH_DSS DES_CBC SHA

SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA DH_DSS 3DES_EDE_CBC SHA

SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA DH_RSA_EXPORT DES40_CBC SHA

SSL_DH_RSA_WITH_DES_CBC_SHA DH_RSA DES_CBC SHA

SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA DH_RSA 3DES_EDE_CBC SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA DHE_DSS_EXPORT DES40_CBC SHA

Table 8.1: Cipher Suites of IAIK

Table 8.1 lists the cipher suites supported by the IAIK SSL library used. [Ins99b]
A cipher suite is a combination of algorithms for different properties plus the
mode the algorithm is used in. The first column of Table 8.1 lists the name
given to the following combination, it is canonically derived from the follow-
ing parameters, this name is to be used in later configuration. The column
“key exchange algorithm” is a symbolic name for the public key algorithm
used for certificate-based authenticated key exchange. To support all cipher
suites, an agent has to have at least three differnet certificate types, namely
for the RSA, the Diffie-Hellman, and DSA algorithm. (cf. Chapter 3) Exem-
plary object instance are given in Section A.2.

The next column lists the symmetric encryption algorithm to be used within
the communication, (cf. Section 3.5) the key length, (cf. Section 3.4.2) and
the mode the algorithm is to be used in, if the specification of the algorithm
supports different modes. (cf. Section 3.5.3) The last column is the symbolic
name of the algorithm to be used as a hash for providing integrity. (cf. Sec-
tion 3.4.3)

162 Chapter 8, Agent Security

Property Meaning
jiac40.ssl.

requireClientCertificate

Allowed values are true and false.
If it is set to true, the client has to
send at least one certficiate chain to
the server.

jiac40.ssl.

requireServerCertificate

Allowed values are true and false.
If it is set to true, the server has to
send at least one certficiate chain to
the client.

jiac40.ssl.

requireTrustedRoot

Allowed values are true and false. If
it is set to true, the root certificate of
the certificate chain has to be known
as a root CA to the agent or must be
in the list of trusted signers.

jiac40.ssl.server.port The port, the component listens on for
incoming connections.

jiac40.pregenerateRSA Allowed values are true and false. If
it is set to true, the component pre-
generates an ephemeral RSA key upon
startup. This slows agent startup but
speeds up the first connection.

jiac40.tempRSAKeyLength The key length of the temporary RSA
key.

jiac40.ssl.pregenerateDH The same as for RSA, but with the
Diffie-Hellman algorithm.

Table 8.2: Mandatory Properties of the SSL component

8.4 Transport Layer Communication Security 163

Property Meaning
jiac40.ssl.session-

management.client

Allowed values are true and false. If
it is set to true, client SSL sessions
will be added to the session manage-
ment part of the library.

jiac40.ssl.session-

management.server

Allowed values are true and false. If
it is set to true, server SSL sessions
will be added to the session manage-
ment part of the library.

jiac40.ssl.socket.timeout Defines the number of seconds to wait
for closing a socket after the last data
transfer. The default is 300 (five min-
utes).

jiac40.ssl.dh.param.

basegenerator

Externally determined base for Diffie-
Hellman.

jiac40.ssl.dh.param.

primemodulus

Externally determined modulus for
Diffie-Hellman.

jiac40.ssl.protocol.name Name of the SSL protocol as the pro-
tocol part of an agent address. Default
is ssl.

Table 8.3: Optional Properties of the SSL component

164 Chapter 8, Agent Security

The configuration of the SSL component is done by a Java property file loaded
into the agent upon its startup. For reasonable use of the SSL component,
the agent must have at least one certificate as well. The comprehensive list
of properties to use for configuration is given in Table 8.2 and Table 8.3.

According to [Fou97], agent addresses are formed similar to URLs: [BLFM98]

<protocol>://<protocol-address>:<port>/<target>

To use the SSL component in agent communication it is sufficient to use
the string ssl as the communication protocol. The configuration of both
communication partners then determine which exact parameters will be used
in the SSL session, transparently to the agents. (cf. Section 8.2.3)

How the agents know about the transport addresses of their peers is covered
by the agent management system and is not part of this work. [Fou97]

8.5 Application Layer Communication Se-
curity

The use of SSL as a transport component for the agent architecture, as
elegant and simple as it is, has some disadvantages as well. The first problem
with that approach is that for use of a different transport layer, the agent
needs to open another TCP socket. That increases resource consumption
and might lead to bottle-necks in low-capability devices like small PCs or
hand-held machines.

Using SSL isn’t optimal either, if one wants to send only sporadic speech acts
not being part of a larger session, like inform acts are designed for. SSL has
to establish a session involving several communications in both directions.
After using the session for a single speech act, it has to be closed down
again. This is undesirable communication overhead.

Due to its direct mapping as a peer-to-peer communication protocol, SSL
isn’t capable of supporting multi-point communication. Instead, each com-
munication partner has to establish a secure session to each partner it wants
to communicate with. The order of complexity of communication paths is
exponential.

8.5 Application Layer Communication Security 165

The strength and purpose of SSL, protecting the contents of raw data, is
probably the most important disadvantage in the agent world as well: be-
tween agents it is very common, that speech acts are brokered by respective
entities, e.g. the ACC in the FIPA reference model [Fou97] or in the CASA
model. [Ses02] Protecting the routing information against eavesdropping dis-
ables this feature. The simple approach of using SSL from the agent to the
ACC, where the speech act is dismantled and re-packaged again for another
SSL connection to the next hop isn’t feasible, because that would disclose
the entire contents of the speech act to each routing entity.

Therefore, a new communication component is provided, that enables au-
thentication, confidentiality, and integrity on an end-to-end channel between
the involved peers, but still allows for message routing by protecting only the
contents of a speech act, and leaving its relay information open. The com-
ponent is called “Speech Act Security” and definitions of objects are shown
in Section A.2.

If in the following the terms “server” and “client” are used, this is not to be
confused with information provisioning and consumption. Instead, it purely
defines, which side of the communication initiates the secured communication
(the client), and which side will respond to that request (the server). The
naming stems from [FKK96] and is continued here for easier reference and
understanding.

8.5.1 Speech Act Realization

The embedding of security into the speech act layer makes use of the letter
wrapper object of [Fou97]. Similar to a mail envelope, by using a letter

object a speech act is divided into an envelope, called exactly so, and a
message body tagged :message, containing the communicative act. The en-
velope contains all information necessary for in-transit processing. The letter
object itself may be wrapped further, however the ACC deems necessary for
transit.

166 Chapter 8, Agent Security

8.5.2 Connection-less SAS

This component offers two distinct message transport mechanisms. The first
mechanism of the SAS component sends speech acts without employing ses-
sions.

Content Type Authentication Encryption
signedData yes no
envelopedData no yes
signedAndEnvelopedData yes yes

Table 8.4: Protection by PKCS#7 Content Type

For sending protected speech acts out of a session, PKCS#7 objects are
employed. [RSA93e] Table 8.4 shows which data type offers which kind of
protection, reduced to the content types reasonable for SAS protection; au-
thentication includes integrity and replay protection. Other data types of
[RSA93e] are of no use for communication purposes or are only utility types
used within other types.

The :content of the :message part of the letter object to be sent con-
sists of an object of the category ContentInfo as depicted in Figure 8.6 in
accordance with Figure 8.5. The opaque octet string encoding is the BER
encoding [CCI88c] of an ASN.1 [CCI88b] object of the type ContentInfo as
defined in [RSA93e]. (cf. Figure 8.5) depending on the nature of the content,
the inner encodings of the PKCS#7 object might be restricted to being either
DER encoding [ITU97b] or definite-length BER encoding. [RSA93e]

The :language message parameter is set to cal, the :ontology parameter
is ProtectedContent denoting its interpretation by the component with the
identifier SAS and is shown in Section A.2.

Because there is no established session with determined and associated ca-
pabilities of the communication path, the sender must take care only to use
algorithms that can be understood by the recipient. The exact way to deter-
mine the capabilities of remote agents out of communication sessions resp.
service usage is not part of this work, but the objects as defined in Section A.3
can be used in a dedicated protocol for feature detection.

To use the connection-less SAS for sending speech acts, the :message content
must be generated by the application component sending the message. It
uses the APIs as provided by the IAIK JCE library, [Ins99a] based on the
knowledge the application component has about the receiver of the speech
act. This ensures a maximum of flexibility.

8.5 Application Layer Communication Security 167

Upon receipt of a speech act of the ontology ProtectedContent, the agent-
internal message dispatcher will forward the speech act to the decoding part
of the SAS component. The component then creates an internal representa-
tion of the speech act in the :message part of the envelope, decoding and
authenticating it. If a content type was used that should ensure authenti-
cation, the authenticity of the message is tested. If it is authentic, a flag is
added to the speech act representation tagging it as successfully authenti-
cated.

If during the process of receiving a speech act of the ontology ProtectedContent

a processing error occurs, e.g. authenticity could not be guaranteed or the en-
cryption was unknown, a not-understood response is generated, if possible,
depending on the attributes in the message :envelope. The speech act is
then dropped and not internally rescheduled to the dispatching component.

8.5.3 Connection-oriented SAS

The second way of protecting speech acts is modelled according to the SSL
layer and provides a connection-oriented transport capability. Not only is
this more secure than connection-less speech act security, (cf. Section 8.5.4)
but because of the availability of the service concept of CASA, it eases use
for the application programmer as well.

Figure 8.9: SAS Handshake Protocol

The protocol used resembles the SSL handshake protocol very closely, with

168 Chapter 8, Agent Security

some simplifications, it is depicted in Figure 8.9. There is no explicit notifi-
cation of cipher change as specified in [FKK96], (cf. Figure 3.12) instead that
is performed implicitly with the accept-proposal message.

Re-keying within an ongoing communication is not supported in the proposed
model. It is assumed, that service usage is rather short-lived and there is no
need to re-key while actively using the service. If a long-term service is to
be supported, e.g. an information push-service, this can be realized by using
independent service accesses.

1 (ont SSLforSAS:V_1
2 (cat ClientHello
3 // random value used for shared secret generation
4 (random byte[] needed)
5 // the cipher suites supported
6 // for this service use
7 (requirements AgentAbility[] needed))
8 (cat ServerHello
9 // random value used for shared secret generation

10 (random byte[] needed)
11 // the chosen AgentAbility
12 (chosen AgentAbility needed)
13

14 // certificate chain of the server
15 (certs Certificate[])
16 // server key exchange data
17 (keyexchange ServerKeyExchangeData))
18 (cat ClientFinished
19 // certificate chain of the client
20 (certs Certificate[])
21 // client key exchange data
22 (keyexchange ClientKeyExchangeData needed))
23 (cat ProtectedData
24 (protected byte[])))

Figure 8.10: SSL for Speech Act Security Ontology

For all following speech acts, the parameter :language is set to cal, whereas
the parameter :ontology is set to SSLforSAS. In some communicated cate-
gory objects of the handshake protocol (cf. Figure 8.10) an array of certificates
is used. According to the SSL standard, this should be a chain of certificates,
where each certificate’s private key was used to sign the former, ultimately
leading to a root certificate. Due to the proposed certificate infrastructure

8.5 Application Layer Communication Security 169

agents will be able to test the validity of certificates even if the complete
chain is not given. (cf. Chapter 10)

The communicative act of the first speech act is a call for proposal, defined as
cfp in [Fou97], with an object of the category ClientHello as its :content
attribute. The object’s attribute requirements lists the cipher suites as
understood by the client. (cf. Section A.3.4) If a certificate selection is part
of the cipher suite specification, the client must be able to authenticate the
server by that algorithm.

One of these cipher suites sent by the client must be chosen by the server for
the service use. The certificate used by the server for authentication and sent
in the attribute certs must correspond to the chosen cipher suite and can be
missing, if the server may remain anonymous. The type ServerKeyEchangeData
is to be defined similar to [FKK96] and defines the parameters for the se-
lected key exchange algorithm as named in chosen. It may be missing, if not
appropriate due to the chosen cipher suite.

The communicative act of the response is a propose [Fou97], containing a
ServerHello object as the :message. If the server can’t or won’t accept a
communication, a refuse is sent back.

In contrast to the SSL handshake protocol, the server doesn’t have to send
back a certificate request to the client. Instead, the client has to respond
with a certificate of the same type as sent by the server in the ServerHello

message object. This eases implementation, as dealing with different kinds
of certificates for the same connection becomes obsolete. By reasoning on
the application domain level it is assumed, that if information being so im-
portant, that the server has to authenticate for it, then that service will be
offered only to registered consumers. So in this model and with connection-
oriented speech act security, if agents want authenticated data, they have to
authenticate themselves. This enhances trust between both communication
parties, because it facilitates a quit pro quo attitude.

The initiator of the communication, if the proposal of the server is acceptable,
answers with an accept-proposal communicative act,[Fou97] containing a
ClientFinished object as the :message. The type ClientKeyExchangeData
is to be defined according to [FKK96]. A certificate chain might be missing,
if mutual authentication was not negotiated. If the initiator choses not to
accept the proposal, a reject communicative act should be sent back. If
internal computations depending on the server-provided information failed,
a failure should be sent back.

After the three-way exchange of messages both parties share a common se-

170 Chapter 8, Agent Security

cret. The exact way of deriving that pre-master secret depends on the key
exchange algorithm used. From that, a key block is generated, that gives in-
put for computing the message authentication code, the symmetric key, and
the initialization vector. (cf. Chapter 3) The exact way of generating these
material can be found in [FKK96].

After successful completion of the handshake protocol, the service object in-
stance as seen in Figure 8.4 of the ongoing conversation is updated according
to the negotiated modus vivendi. If authentication was demanded, the cer-
tificate object that was used for authentication is added to the ServiceInst

object that describes an instantiated service use. (cf. Figure 8.4) Each further
message of that conversation will be checked against the service needs and
the remembered certificate. A missing certificate object in an ServiceInst

object denotes anonymous use. Only after an incoming speech act is accepted
as correct against the specification, it will be processed within an agent. Each
speech act sent in the conversation will be transparently processed by the SAS
agent component before sending it onto the network.

All further messages will be wrapped as letter objects. For compatibil-
ity reasons to [Fou97], the :message part of a letter has to be an ACL
message. Unfortunately, the FIPA standard doesn’t provide an adequate
communicative act as needed here. The evaluate from KQML would be
was is needed. [LF97] Instead, an inform will be used for all speech acts.

The :conversation-id has to be set in the message to reference the service
object defining the negotiated parameters. The :content of the message of
the letter is an opaque octet string, represented by an object of the type
ProtectedData. After decryption, the result will be the protected speech
act or another letter object.

In the context of the CASA architecture the session establishment has to be
done as the first step of the service meta-protocol, before other parameters
are negotiated, to already protect that other negotiation.

To enable multi-point communication, an agent has to perform different
handshake protocols with each peer. The content to be protected will then
processed according to the service parameters negotiated with each partner.

The configuration of the SAS component is done by its own initialization
function. It has to load the appropriate facts into the knowledge base of the
using agent. (cf. Section 8.2.2)

8.6 Service Authorization 171

8.5.4 Comparison of SAS to SSL

The security of the session-oriented speech act security is the same as the
SSL protocol, because the former resembles the latter.

Using the connection-less way of communication is prone to several different
attacks, though. If the needed certificates are not known beforehand, the
data is prone to man-in-the-middle attacks, because it can’t be ensured, that
the public key of the intended recipient is received. This can be overcome
with the use of a certficiate infrastructure as is provided by this work. (cf.
Section 10.2)

Another danger of non-session communication is message replay. To detect
this, the sender must try to ensure liveness of the communication by sending
fresh nonces in each communication. Without a handshake protocol though,
it is hard for the recipient to decide about the validity of the nonce. Replay
can only be detected, if the recipient stores older nonces. This leads to several
different problems: The size of the database at the receiving side grows with
each message, so there must be a heuristic to purge it regularly. On the other
hand, the more nonces are stored, the more likely is a collision of nonces of
different communications. In every case, an attacker can exploit the database
heuristic to send messages with nonces not in the database.

Message insertion is another viable attack form. It becomes more likely the
more predictable the variable contents of the speech act is. E.g., if nonces
are chosen consecutively, the attacker can predict valid numbers and even
hijack a session.

Leaving the sender and receiver part of the speech act open to be read by
any party allows for traffic analysis attacks. These are neither part of this
work, nor a serious concern today anyway, so they will not be elaborated
upon further.

In summary, if possible and viable, transport layer security via SSL should be
chosen in peer-to-peer communication. It is most performant in comparison
and the less vulnerable to attack. If message routing and on-way inspection
is needed, speech act layer security with a session should be used. Only
if optimization requirements enforce serious restrictions on communication
overhead and delay connection-less security should be chosen. Even then,
application-specific data should ensure further liveness.

172 Chapter 8, Agent Security

8.6 Service Authorization

As a significant security enhancement over other architectures, the proposed
infrastructure has means to ensure authorization control over the access to
provided services.

1 (ont ServiceControlMechanisms:V_1
2 (cat ServiceControlList
3 // if missing or empty -> deny
4 (entries ServiceControlEntry[]))
5 (cat ServiceControlEntry
6 // all have to match
7 (checkAttributes CheckAttributes[])
8 (logging bool)
9 (result string needed

10 (constr (comp isElement
11 ?result { "accept" "deny" "reject" }))))
12 (cat CheckAttributes
13 (attribute string needed)
14 // if missing, fulfilled by default
15 (pattern string)))

Figure 8.11: Service Control Ontology

Figure 8.11 shows the ontology for the attributes attached to the service
description, simplified by stripping of management data.

If a service is to be protected from unauthorized access, a service control list
(SCL) is to be attached. A missing SCL grants access to all entities. For an
existing non-empty SCL, a successful authentication of the service user must
have been performed in a previous step.

If there is an SCL attached to the service, all service control entries (SCE),
also called rules, of the SCL of that service are sequentially checked. A
check of an SCE means to check all contained checkAttributes. For each
of these, the attribute of the certificate as described by attribute in its
string representation is matched against the regular expression as contained
in pattern. A certificate attribute is any of the parts a certificate consists
of, including extensions. If the patterns of all attributes to be checked match
the rule is activated, i.e. the pattern are combined by an AND operation. If
at least one pattern doesn’t match, the next SCE is checked, i.e. the SCEs

8.6 Service Authorization 173

within an SCL are OR-combined. If no SCE matches, the default action of
the SCL is to function as a deny rule. This is particularly true for the special
case of an SCL without any SCE.

If a rule is activated, the result string describes the action to be performed.
To accept the incoming speech act means to grant service access. It is to
be flagged at the service instance object describing the conversation, that all
subsequent speech acts in that conversation id have to be authenticated by
the certificate presented to the service access check. This is done by adding
the certificate object granted access to the ServiceInst object as seen in
Figure 8.4. If the certificate attribute object in the ServiceInst object
is missing for an ongoing conversation, anonymous access to the service is
granted.

If the logging boolean flag is set to true, the firing of the rule is appropriately
logged by the respective facilities of the architecture. (cf. Section 9.2.3)

If the result of the use check is a reject, a results failure speech act is sent
back to the requestor, informing it that access restrictions applied. The deny
result forfeits an answer in the attempt not to give away any information to a
possible attacker and even trying to hide the very existence of the requested
service. In the CASA system, a deny result isn’t feasible due to the meta-
service protocol which doesn’t provide for a suppressed answer to a service
request.

The initialization of the service entries is done by the specific initialization
function of the service to be protected upon loading the service into the
agent. It is the obligation of an administrative service management team to
appropriately define the service control policy for a service.

If an agent’s authorization settings are to be modified remotely, the agent
can offer the following services:

GetSCL: The agent receives a service identification and returns the SCL
that is attached to the service.

SetSCL: The agent receives a service identification and an SCL and attaches
the SCL to the service.

RemoveSCL: The agent receives a service identification and removes the
associated SCL, effectively opening up the service use to anyone.

The service control management services themselves are governed by the
service control mechanisms, so that they might be offered only to authorized
agents, e.g. the configuration tool of the agent’s home platform.

174 Chapter 8, Agent Security

Using SCLs allows for flexible access permissions with positive and negative
rules. As an enhancement over pure Java based access control mechanisms
it enables dynamic policy definition during runtime. Further, due to the
pattern matching capability, not each identity has to be entered into the
policy database before communication takes places, thus making dynamic,
spontaneous, and instanteous service usage possible.

8.7 Summary

This Chapter has provided an agent with the ability to reason about its own
security functionality and to adapt according to the needs. SSL was made
available on the semantical level, and its restrictions in elaborated situations
pertaining to agents have been overcome by introducing another component
related to communication, this one on a higher abstraction layer.

The service protection mechanisms as shown in this Section are an elegant
solution for the whole of CASA architecture: all communication-based func-
tionalities of CASA, including management functions like starting or mi-
grating agents, are services in the CASA sense. That enables them to be
implicitly protected by the means as described in this thesis. The service
protection facilities apply unchanged, providing for consistent security fea-
tures over the whole platform, without making the architecture over-complex
with redundant functionality.

Chapter 9

Agent Community Security

“Speak friend and enter.”
Inscription on the Doors of Moria

9.1 Synopsis

The security mechanisms to be developed in this thesis are extended onto
the agent place level in this Chapter. Several infrastructure features are
introduced to provide more security on the level of an agent community.

The Manager Agent (MA) as a system agent managing a platform is extended
in several ways. It becomes a valuable role in preventing malicous code to
get onto the platform and running. In the event of an incident, the MA will
have mechanisms to deal with the situation.

A new system is introduced, the Security Agent (SA). That agent is respon-
sible for all tasks pertaining to security on an agent place, as far as it exceeds
basic platform management functionality as fulfilled by the MA. This espe-
cially includes distribution of certificates and their revocation lists, as well
as gathering and providing information about remote agent places.

176 Chapter 9, Agent Community Security

9.2 Manager Agent

In the CASA framework, there is one dedicated agent per agent place, the
Manager Agent (MA for short). That agent constitutes the agent place and
is the first agent thereon. It creates all further initial agents upon inception
of the agent place. The Manager Agent handles agent migration from and
to the place.

Because of the inherent autonomy of agents, the MA is not responsible for
the agent’s communication, which is handled by the agents themselves. (cf.
Chapter 8) The protection of agents against each other is handled by the
underlying platform, in the case of CASA that is the Java runtime environ-
ment. (cf. Chapter 7)

Instead, the manager has responsibility for protecting its managed agent
place, especially against mobile agent intruders, and it plays a role in back-
tracing incidents after subversion of mobile agents has been detected.

9.2.1 Platform Management

Upon creation of a Java runtime environment, after initializing the class
loading and security management internal functionality, the first agent in-
stantiated is the CASA Manager Agent.

The MA then loads further agents as specified in the CASA framework. This
agent loading is subject to the mechanisms as layed out in Chapter 7.

After initial loading of agents and starting the agent place, further agents
are created by the respective management service. [Ses02] As well, this agent
creation process is governed by the basic security features as described in
Chapter 7.

The agents’ communication on the local agent place is subject to the same
rules as if communicating with remote agents. The only difference is the use
of a VM-internal message passing mechanism instead of full-fledged TCP/IP
communication, thus speeding the communication up. There is no differ-
ence in the security mechanisms though, and as provided by the mechanisms
of Chapter 7 the agents are not enabled to access each other in any other
way except their well-defined service interfaces, irrespective of their virtual
proximity.

9.2 Manager Agent 177

9.2.2 Migration Restrictions

The Security Agent (abbreviated SA) of an agent place holds information
to determine, if incoming or outgoing migration to or from remote places is
allowed. (cf. Section 9.3.2)

Within the migration protocol of the CASA platform as enhanced by this
work, there is a distinct phase, where the Manager Agents of both sides con-
sult their respective Security Agent and ask it for permission to migrate. (cf.
Figure 9.1)

It is important to recognize, that the migration of an agent by its Manager
Agent is a CASA service usage. That enables the use of communication
security mechanisms as shown in Chapter 8. In the further proceeding of this
Section it is implied, that those mechanisms are employed and migration of
agents is secured against eavesdropping and tampering with.

For the source platform, in the case of a disallowing entry in the access list,
it provides some confidentiality, that a mobile agent will not be sent to a
malicious remote platform. In the case of an allowing entry for the remote
platform, the sending Manager Agent has some notable trust, that the remote
agent place is not hostile to the mobile agent.

For the receiving Manager Agent, if it is allowed to receive the mobile agent,
the MA will have some confidence, that the agent comes from a benevolent
platform. In the case of a denying entry, the agent place is protected against
a mobile agent from a hostile remote platform.

If in either case there is no entry regarding the remote platform, or the entry
is Unknown, there is no confidence for the Manager Agent whatsoever with
respect to the benevolence of the other platform.

In the pro-active case, a mobile agent might consult the SA itself before
running into the fallback case of an unsuccessful migration by the MA.

If the Manager Agent does not employ the capabilities of the Security Agent
the CASA architecture provides the configuration property migration which
might disallow agents migrating to the local managed place. Without the
SA, there is no way for the platform to disallow outgoing migrations.

178 Chapter 9, Agent Community Security

Figure 9.1: Enhanced Migration Protocol

9.2 Manager Agent 179

9.2.3 Backtracing Mobile Agent Incidents

Section 7.2 shows the mechanisms in place to secure the agent platform
against intruders, specifically mobile agents from various sources. As has
been discussed in Section 8.3, mobile agents may have been tampered with
on their journey. If not to protect these tampering, but at least make them
detectable and backtracable, benevolent host platforms shall have means to
support this.

There are several distinct parts of the mobile agent, that can be identified.
Pertaining to the code, it is the class definitions and the class instances that
are transported. With respect to the data part, the knowledge base is of
special importance, and it is divided into a static and a dynamic part. (cf.
Section 8.3)

Due to the strong migration concept of CASA, where the state of the agent
is transported along with its code, the class instances of the components the
agent consists of might change between invocations on different platforms
and thus the code classes must be treated as dynamic data. Therefore, of
the agent’s code only the class definitions are immutable. They can be signed
by the home platform and must be checked against integrity by each receiv-
ing agent place’s manager before starting it. The receiving Manager Agent
should log the successful or non-successful receiving of the class definitions
of a mobile agent. For limiting the misuse potential, short-term certificates
should be used for signing. (cf. Section 8.3.5)

The code class instances might change between runs of the agent. There-
fore, the correctness of the code can not be deduced by a Manager Agent.
Instead, the Manager Agent has to calculate and log a cryptographically
strong checksum over the code part upon receipt and again before sending
the mobile agent to its next execution place. (cf. Section 3.4.3) That informa-
tion might help if an incident of misuse has been detected and it is tried to
determine, where the agent were still intact and where it has been modified.
The same actions are applied to the dynamic knowledge base of the agent.

Similar to the immutable code part of the agent, the static knowledge base
can be signed by the mobile agent’s owner upon creation, and is then checked
for integrity upon receiving the agent at each place. The respective Manager
Agent logs the result of the check. The same treatment is applied to the
static knowledge base data of the mobile agent.

Alongside with each of the above information, the remote agent place, either
the sender or the receiver, depending on the use case, must be logged too, so

180 Chapter 9, Agent Community Security

that the itinerary of the mobile agent is reconstructable. For later reference
to the data, the global unique identifier of the agent as defined in the CASA
framework is to be put into the log as well.

If a receiving Manager Agent detects an agent as being tampered with, the
MA neither reconstructs nor starts it. The sending Manager Agent is in-
formed and the migration is aborted. Further, the owner of the mobile agent
as can be deduced from the signed static knowledge base content is informed
about the corrupted agent.

The sending Manager Agent will save the serialized agent for later analysis in
a dedicated area as well and not re-start it again. Both sides log the incident.
The saved agents’ data should expire after a reasonable amount of time so
that the storage area doesn’t clutter and denial of service attacks by flooding
the area with intentionally broken agents is less likely.

For these functionalities it is advised, that a secure logging facility will be
employed. Exactly how that is achieved is out of the scope of this document,
but there are several options to examine. For example, in the context of a
Unix system, the standard syslogd can be used, potentially over a secured
network on a remote machine for enhanced tamper resistance. On a Windows
NT server machine, the logging facility of the operating system could be
used. In an SNMP environment, those event mechanisms can be employed.
As another option, the management framework of the CASA architecture
provides for logging functionality.

It is noteworthy, that a malicious host can still exchange the signed data
with its own and sign that, so that the modification isn’t noticed at first, but
the change gets accountable, because the host has to sign with its one of its
own valid and distributed certificate. That effectively changes ownership of
the data.

The performed tests and their results can be used for a dynamic trust es-
tablishment scheme. Though the basics thereof are laid out in this work, a
concrete scheme will not be given. (cf. Section 9.3.2)

9.3 Security Agent 181

9.3 Security Agent

To assist the Manager Agent of an agent place in the management of security
related relationships to other places, the Security Agent (abbreviated as SA)
is introduced as a standard architecture agent to the CASA framework.

The employment of another dedicated agent for management of the trust lists
has several benefits: the platform becomes more resistent against attacks,
because even if one of the agents, either the Manager Agent or the Security
Agent, have been tampered with the other is still operational. The platform
can be secured even better, if the Security Agent is placed on another agent
platform and potentially on another executing host that is more secure than
the other places.

Another benefit lies in the applicability of the agent feature “autonomy.”
Partition of the functionality leaves for the Manager Agent the possibility
of disregarding the hints of the Security Agent and decide about migration
attempts irrepective of the Security Agent. Further, in this way not only
the Manager Agent has access to migration-related security information, but
other agents might employ the services of the Security Agent as well, thus
allowing them to work more autonomous than without.

Not the least, introducing a dedicated security agent provides for a further
means to scale the service provisioning domain: one SA can offer its services
to several agent places, or the load can be shared by multiple SAs for only
one domain.

The Security Agent has two main tasks: certificate distribution and trust
management, each realized in a dedicated agent application component.

9.3.1 Certificate Distribution

For a complete certificate infrastructure a key distribution center (KDC) is
needed. [ITU97b] The KDC accepts keys from a certificate authority (CA)
and makes them available to requesting entities, in this case, all agents on
places in the domain that the SA serves. Certificates are thoroughly discussed
in Section 3.7.5 and are defined for use in the CASA framework in Section 7.4.

The SA provides the following certificate-related services to the domain:

AddCertificates: The SA receives a list of certificates. After validation

182 Chapter 9, Agent Community Security

of each certificate and check against any CRLs they are added to its
knowledge base and can furtheron be retrieved by other agents. If only
a single certificate is to be communicated the list contains only the one
certificate.

RemoveCertificates: The SA receives a list of certificates. Each certifi-
cate is removed from its knowledge base, if it exists there. If only a
single certificate is to be communicated the list contains only the one
certificate.

GetCertificates: The SA receives a list of certificate or subject identifiers.
For each identifier, the SA sends back all known valid certificates.

NewCRL: The SA receives a new certificate revocation list. That list su-
persedes an already known CRL from the same CA, if it is newer than
the existing list. After the CRL has been successfully validated, the SA
checks its knowledge base of certificates and removes those, that have
become invalid due to the specifications of the new list.

GetCRLs: The SA receives a list of subject identifiers, that are interpreted
as certificate authorities. For each of these identifiers, the SA returns
the CRL of that CA, if known.

Supplying these services to its domain, the agents in that domain are now
able to perform actions upon certificates they don’t know beforehand. The
services potentially leading to a modification of the SA’s knowledge base
should be restricted to only very few and trusted entities.

Due to the potentially high bandwidth need and processing overhead in-
curred, and not to compromise the security of the SA, the SA does not
receive or distribute agent-related or short term certificates. (cf. Section 7.4)
Instead, each agent itself is responsible for distributing its applicable short
term certificates along with any authenticated data, e.g. the SSL protocol
handles this.

9.3 Security Agent 183

9.3.2 Agentplace Trust Lists

The Security Agent manages trust relationships to other agent places and
provides this information to the agents of its domain, especially the Manager
Agent.

1 (ont ATL:V_1 (incl SecurityRequirements:V_1)
2 (cat AgentplaceTrustList
3 // the ATL managing agent
4 (owner agentname needed)
5 // the entries
6 (mtes ATLEntry[] needed))
7 (cat ATLEntry
8 // target for the relationship
9 (forAgentplace agentname needed)

10 // kind of relationship
11 (values TrustEntry[] needed))
12 // possible relationships
13 (cat TrustEntry
14 (value string (constr (comp element ?value {
15 "Unknown"
16 "MigrateTo"
17 "AcceptMigration"
18 "SignCommunication"
19 "EncryptCommunication"
20 "DontCommunicate"
21 }))
22 (default "Unknown") needed)
23 // optionally needed parameters for
24 // secured communication
25 (param AgentAbility[])))

Figure 9.2: Agentplace Trust Lists Ontology

Each Security Agent manages its own distinct relationship list. The list holds
several entries of the type ATLEntry. Each entry defines the relationship to
one remote agent place. The relationship might consist of several values.
Unknown symbolizes no information about the remote place and is semanti-
cally equivalent to no entry at all. MigrateTo allows migration to the remote
agent place, whereas AcceptMigration accepts incoming mobile agents from
there. With SignCommunication the need for authenticated communication
is described, EncryptCommunication specifies to encrypt all communication

184 Chapter 9, Agent Community Security

to that place. DontCommunicate is mutually exclusive to all of the above en-
tries and urges every agent that cares, not to communicate with any agent on
the remote agent place at all. The identification of an agent place is achieved
by the global unique identifier of its Manager Agent.

1 (matt confidence real (ktype fact)
2 (constr (and (>= ? 0.0) (<= ? 1.0)))
3 (default 1.0)
4 (match (>= ? 0.5)))
5 (matt source agentname
6 (ktype fact object goal))

Figure 9.3: Meta-Attribute Declarations

The CASA ontology language allows for meta-attributes. That feature makes
it possible to put some finer granularity on the managed relationship, most
prominently to add a confidence value. A typical confidence declaration in
CASA is shown in Figure 9.3. As an exemplary side-effect, it defines, that
a match by the platform-internal algorithm is only achieved with the fact, if
the confidence level is at least 50%. Further, the meta-ontology declarations
provide for a source agent of a fact.

1 (obj OAP TrustEntry
2 (value "MigrateTo"):(meta
3 (confidence 0.72)
4 (source "Manager@iiop://192.168.117.35:5201")))

Figure 9.4: TrustEntry Object

A TrustEntry object can then be instantiated as shown in Figure 9.4, which
reduces the confidence of the Security Agent in the relationship to the re-
mote system to 72%. This enables the Security Agent and other agents, that
are responsible for evaluating relationships to remote agent places, most im-
portantly the Manager Agent of the agent place, to adapt the relationships
according to the experience with remote systems.

For providing the gathered information and to manage the relationships, the
Security Agent offers the following services to its domain:

GetTrust: The SA receives the identifier for a remote system and returns
the ATLEntry thereof. This service should be restricted to agents of
the supported domain.

9.4 Summary 185

SetTrust: The SA receives a TrustEntry object. It sets the source meta-
attribute to the sender and inserts the object into its trust list, possibly
overriding any previous value. This service must be restricted to only
very trusted agents, like the Manager Agents of the supported domain.

RemoveTrust: The SA receives the identifier for a remote system and re-
moves the corresponding ATLEntry out of its knowledge base.

ChangeTrust: The SA receives the identifier for a remote system and a
floating-point value and changes the confidence value by the given
amount. The source meta-attribute of the knowledge entry is updated
accordingly.

For all communication and migration to or from an agent place, the respec-
tive agent, be it the Manager Agent or any other on the local system, is
now enabled with knowledge gathered and evaluated by the local commu-
nity about the remote system. The agent might now autonomously decide
to honor the hints as given by the SA, or to defy it and take the risk it was
warned against. (cf. Section 9.2.2)

9.4 Summary

This section extends the standard Manager Agent of an agent place by
security-related mechanisms, allowing it to protect its managed place to fall
victim to malicious code and behaviour. If security-sensitive incidents hap-
pen, the situation can be reconstructed and appropriate measures be taken.

Due to the introduction of the Security Agent, an agent place will hold
information about its environment of other places and the MA is enabled to
pro-actively prevent code exchange with malicous systems.

Figure 9.5 shows two agent places. The left has all agents playing a role
in securing the place. The Security Service Agent on the left place and the
Certificate Authority Agent on the right-hand agent place are introduced in
the next Chapter as providing security on a global scale, across borders of
agent places.

186 Chapter 9, Agent Community Security

Figure 9.5: Community Security

Chapter 10

Global Security

“One who is not acquainted
with the designs of his neighbors
should not enter into alliances with them.”

Sun Tzu, The Art of War

10.1 Synopsis

After providing basic mechanisms on the execution level, then raising the
abstractness over the agent level to a community of agents, now mechanisms
will be introduced to provide security on a domain or even global level.

The certificates as has been dealed with so far in Part III are hierarchic and
thus have to be traced back via a chain to a root. This Chapter introduces
the Certificate Authority Agent to provide that root, issuing certificates and
certificate revocation lists to users.

A Security Service Agent offers value-added services that allow agents to
give up own functionality for reasons of speed and size. Further, means to
conduct automated e-business as close to legal requirements as possible are
enabled. All those services might be offered by providers charging for the
provisioning.

http://www.ccs.neu.edu/home/thigpen/html/art_of_war.html#Manuevering

188 Chapter 10, Global Security

10.2 Certificate Authority Agent

For building a complete certificate infrastructure, all certificates have to be
traced back to an ultimate root certificate. That is used by the Certificate
Authority (CA) to derive all other certificates from. The distinct property of
the root certificate is, that it is signed by the secret key belongig to itself. (cf.
Section 3.7.5)

Currently, there are already established commercial certificate authorities
available, e.g. [Ver97], [T-T01], or [Hei99]. There are several reasons though,
why those CAs might not be sufficient or not applicable to the situation at
hand: First, commercial CAs don’t offer or support the certificate extensions
as introduced and proposed in Section 7.4. Those extensions are very helpful
for the security of agent communities.

Another reason not to use commercial certificate services is the non-availabi-
lity of standardized online ways to retrieve or check certificates. All rely on
proprietary “protocols,” commonly that means manual access of plain web
pages by humans, if any online access mechanisms exist at all; certificate
revocation lists are even less supported. These mechanisms are clearly not
appropriate for automated retrieval. There are standadization efforts for
online protocols on the way, but a wider adoption is not to be expected
anytime soon. [AF99, MAM+99]

Neither the latency time for issuing a new certificate nor the price for one
certificate request should be neglected. Unfortunately, with increasing secu-
rity of the issued certificate, the time until one receives the certificate and
the price go up. If one nevertheless accepts the dependability on third party
certificates, that introduces new points of failures in the business process. If
the CA is not available for any reason, there won’t be new certificates either,
hampering sales numbers.

The most security-relevant consideration is, how trusted the third party is
to issue reliable certificates in a well defined and secured process, to only
entities with appropriately and thoroughly proven identities, and how stable
do they stick to their policy, and how well-defined, concise, and applicable
to the situation at hand is that policy?

On the very pragmatic side of software development it is very helpful neither
to depend on outside services nor to play around with “real world” data,
instead some “play ground” certificates come in handy to work with.

10.2 Certificate Authority Agent 189

For all those reasons, an agent-based Certificate Authority Agent (CAA) will
be introduced. That CAA supports standard mechanisms of certificate man-
agement, including certificate revocation list management, and uncommon
extended attributes. It should be considered as applicable in several envi-
ronments, and its actual use depends on the policy to be implemented. For
agent-based communication, it is “nice” to have the CA online and available
by services, though from the security point of view that is undesirable.

The certificate management functionalities of the CAA include issue, distri-
bution, and revocation of certificates; certificate revocation lists (CRLs) are
distributed as well.

For simplicity, the added complexity and abstraction entity of a separate Reg-
istration Authority (RA) as introduced in [AF99] is not used. It is assumed,
that the tasks of the RA are handled by the CA itself, which is compliant to
[AF99] that notes the RA as being optional. This does not constitute a re-
striction on the overall security infrastructure, because all issued certificates
are fully interoperational with standardized X.509v3 certificates. [ITU97b]
Merely, it is an assumption about policy and the use of own tools, instead of
deployed ones.

The CAA is only concerned with long term certificates issued on the identities
of users. The corresponding secret keys never leave the user’s platform. The
generation and handling of short term keys for the use in mobile agents was
described in Section 7.4.

The implementation of the running prototype code is based on the IAIK
libraries and references their classes at some points. [Ins99a, Ins99b]

10.2.1 Certificate Issuing

Because confirming the validity of the association between the key and the
identity can’t reliably be automated, human involvement in the process is
assumed.

The certificate request is generated by an arbitrary agent, in the common
case this is an user agent, based on the explicit interactive trigger by a user;
a prototypical interactive application GUI can be seen in Figure 10.2. The
corresponding CAL category object definition as contained in an appropriate
ontology is given in Figure 10.1, they are direct mappings of the [RSA93b]
standard. For transporting the request to the CAA, it is signed and wrapped
in a PKCS#10 object.

190 Chapter 10, Global Security

1 (cat CertificateRequest
2 // the java object as provided by the IAIK library
3 (reqValue class:iaik.pkcs.pkcs10.CertificateRequest)
4

5 // the following values are all contained in the
6 // above object already but are used for the
7 // agent’s reasoning mechanisms
8

9 (certificationRequestInfo CertificationRequestInfo needed)
10 (signatureAlgorithm AlgorithmIdentifier needed))
11 (cat CertificationRequestInfo
12 (version int (default 0) needed)
13 (subject DomainName needed)
14 (subjectPublicKeyInfo SubjectPublicKeyInfo needed)
15 (attributes Attribute[]))
16 (cat Attribute
17 (AttrType ObjectId)
18 (value class{}:java.lang.Object))

Figure 10.1: Certificate Request Categories

Figure 10.2: Certificate Request GUI

10.2 Certificate Authority Agent 191

If instead, based on the policy definition, the CA is available online for accept-
ing certificate requests, it would have to offer a respective service to agents.
Although, again, the confirmation, that the key belongs to the identity can
reliably be achieved only by out-of-bands mechanisms between humans in a
different workflow.

Figure 10.3: Certificate Extensions GUI

Figure 10.4: Certificate Usage GUI

Figure 10.3 shows the GUI of the CAA defining the extensions of end-user
certificates. Clicking on the Value column in the KeyUsage line opens up a
window as can be seen inFigure 10.4. The certificate can now be restricted
to certain operations. With the interactive window as shown in Figure 10.5,
the BasicConstraint that defines the permissable certificate chain length
following the issued certificate can be set. (cf. Section 7.4)

192 Chapter 10, Global Security

Figure 10.5: Certificate Chain Length GUI

10.2.2 Certificate Distribution

After the certificate has been issued, it must be distributed to the requesting
person, and ultimately to its user agent. The exact process again depends on
the policy of the CA. A typical out-of-band way would be either to save the
certificate on a portable media like a floppy or a chipcard. In the prototype
implementation, this is done as a DER encoded X.509 certificate. [cci88a]

The new certificate has to be made publicly available as well, so that commu-
nication partners of the certificate’s subject are enabled to verify the com-
munication based on the public part of the key pair as contained in the
certificate. Therefore, the prototypical implementation of the CAA provides
for a means to distribute the certificates of the CAA to associated key dis-
tribution centers.

In the context of the prototype, the certificate management component of
security agents offer a service to receive certificates. The service has to be
protected with service control mechanisms, so that only trusted CAAs may
manipulate the certificate knowledge base of the SAs. It is important to
note, that it is not the CAA that provides the service, it just acts in the user
role of the service provided by the SA. The CAA still doesn’t offer a service
and can’t be reached online, depending on the above-mentioned certificate
issuing policy, of course.

10.2 Certificate Authority Agent 193

10.2.3 Certificate Revocation

A working certificate revocation mechanism plays an important part in a
certificate-based authentication framework as proposed in [ITU97b]. Certifi-
cate revocation becomes necessary, if the secret key belonging to the public
key as certified to be associated with a subject’s identity becomes compro-
mised, perhaps due to loss of the media holding the private key or eavesdrop-
ping on the storing system.

If a certificate is compromized, the owner informs the CA and requests it
to revoke the certificate. After successful authentication, that the rightful
owner of the certificate is trying to invalidate it, the request is processed and
the identifier of the certificate is added to a revocation list, that is managed
by the CA.

1 (cat RevocationRequest
2 // the encoded request
3 (encoded byte[])
4

5 // the following values are all contained in the
6 // above object already but are used for the
7 // agent’s reasoning mechanisms
8

9 // unique identifier for the certificate,
10 // in conjunction with...
11 (serialNumber CertificateSerialNumber needed)
12 // ...issuing CA
13 (issuer DomainName needed)
14 // since when it is known that the certificate
15 // is compromized
16 (badSinceDate DateTime))

Figure 10.6: Certificate Revocation Request Category

Figure 10.6 shows a simple category definition for the revocation of certifi-
cates. It must be directed to the CA that issued the certificate. Again, the
method of delivery to the CA depends on the policy. The CA might offer a
service for online access, or a dedicated revocation agent handles the requests
and forwards it to the CA; or, the CA has to import the revocation request
from a file that was moved to the CA’s system by an out-of-band mechanism.

Because no online protocol has found any wide-spread use yet, and the check
of the revocation request should involve manual authentication as well, for

194 Chapter 10, Global Security

Figure 10.7: Certificate Revocation GUI

10.3 Security Service Agent 195

the prototypical implementation it is assumed, that an operator uses a GUI
to invalidate certificates. Figure 10.7 shows the respective operator window
of the CAA.

The effect of using the GUI is to generate a certificate revocation list (CRL).
In that list each CA holds certificates that have been revoked prior to the
end of their validity lifetime. The certificate is uniquely identified with the
serial number of the certificate in conjunction with the CA subject name.
The corresponding ontology objects were given in Figure 7.8.

The CRL is propagated to the associated KDCs. In the context of the agent
architecture, Security Agents fulfill that role. For better scalability, the pro-
posed KDCs themselves may form a hierarchy, so that the CRLs get pushed
over several levels without involving the CA. That is purely a question of
deployment depending on the architectural analysis of the system to be re-
alized.

Each CRL might have a proposed time attached, when the next CRL will
be published by the CA. (cf. Figure 3.11) KDCs may use this value to pro-
actively seek for a newer CRL at their known CA(s). Again, depending on
the policy, the CA might either not be available online at all, or there is a
dedicated agent “near” the CA answering the service requests, or the CA
might answer itself.

10.3 Security Service Agent

To enable agents to take part in more complex and legally binding proto-
cols, as far as this is possible due to restrictions by law, (cf. Section 2.6) the
proposed infrastructure adds extended services to the environment.

To show the business potential of the infrastructure, these value-added ser-
vices are provided by a separate agent, the Security Service Agent (SSA).
The locality of the agent is not obligated to be somewhere “near” any of the
aforementioned agents, though it is advisable to have fair access to Certifi-
cate Revocation Lists. Each of the following services might be required to be
subscribed to, and can be offered on a pay-per-use basis. To reduce system
load, each of the services can be offered by several agents.

As examples for these value-added services, three prototypical ones are shown:
certificate check, time-stamping, and an arbitrated contract conlucion ser-
vice. These can be used for building e-commerce applications.

196 Chapter 10, Global Security

10.3.1 Check Certificate Service

If an agent has the appropriate component and functionality of certificate
checking, it could potentially check received certificates itself. (cf. Section 7.4)
This might be a lengthy process, though, because it involves retrieving sev-
eral certificates, until it ultimately leads to the certificate of a known CA.
This repeated certificate retrieval adds significant overhead to the commu-
nication of an agent. Even worse, afterwards the agent has to retrieve the
appropriate CRLs and has to test each of the certificates in the chain against
the respective CRL.

That overhead, latency, and need for data storage can be reduced and an
agent will get smaller by “outsourcing” the certificate verification process as
a separate service to a dedicated agent, in this case the SSA.

Then, if an agent gets presented an unknown certificate it would invoke the
respective Check Certificate Service at a well-known SSA. The SSA would
check the certificate and send the result back to the requesting agent. To
circumvent spoofing attacks, the communication with the SSA must be au-
thenticated. The requesting agent then has only one certificate to check,
namely that of the SSA, which can be done beforehand its potential journey,
if it is a mobile agent, and noted as being trusted in the agent’s knowledge-
base for the duration of its travel. On the SSA side, check results might
be cached and allow for much faster responses than agents would be able to
achieve if they’d work it out alone.

10.3.2 Time Stamp Service

Another valuable service in the context of mutual contract signing for e-
commerce settings is getting a time-stamp for some data. That can later be
used by an entity to prove that at a particular moment it was in possession
of certain information. Relevant applications include disputes over copyright
or patent issues, where it is important to reliably prove who was the first.

A typical timestamp service has the following properties: [Sch96] First, it
must be impossible to change a single bit of the document without that
change being apparent. Second, it must be impossible to timestamp a docu-
ment with a date and time different from the present one.

In a typical realization as presented in the prototype, a trusted third party
is involved, especially to ensure the second of the above properties.

10.3 Security Service Agent 197

Arbitrated Protocol

The näıve way of the user (also known as Alice) sending the whole document
to the arbitrator (named Trent) has some obvious disadvantages: it creates
a huge amount of transfer volume, the arbitrator has to store it and needs
an ever enlarging database, and the privacy of the document’s content gets
violated. The chance of a transmission error happening increases with the
transmitted volume as well.

Therefore, instead of sending the entire document, Alice only submits a se-
cure hash of the document. Due to the properties of a cryptographic hash
function, if she can later present a document that when hashed produces
the hash as signed by Trent, it can be deduced that she must have been in
possession of the document at the time of signing the hash. (cf. Section 3.4.3)

1 (cat ArbitratedTimeStampRequest
2 (hash byte[] needed))
3 (cat ArbitratedTimeStamp
4 (hash byte[] needed)
5 (timestamp DateTime needed)
6 (signer DomainName needed)
7 (signatureAlgorithmIdentifier
8 AlgorithmIdentifier needed)
9 // the signature itself

10 (encrypted byte[] needed))

Figure 10.8: Arbitrated Timestamp Categories

The service use-case is simple. The provider Trent offers a service for signing
arbitrary data called hash in the category objects as given in Figure 10.8.
The user agent sends the data and receives back a timestamp and a signature
with the subject identifier of the certificate that’s respective private key was
used to sign the data.

198 Chapter 10, Global Security

10.3.3 Contract Conclusion Service

One common situation in real-world business is mututal contract signing.
Neither party of a contract wants to sign it out of fear for be taken in by
the other party. The other part of the problem is to later prove the signing
process and to call for an independent witness. This is normally solved by
involving a notary as a trusted third party. Both signers meet there and sign
the contract under supervision of the notary who then testifies the correct
process and attests the validity of the contract.

In the context of an agent environment, this functionality can be realized
by providing a specialized service for mutual contract signing. Figure 10.9
is an UML sequence diagram showing the service usage, the CAL category
definitions are given in Figure 10.10.

The contract data to be signed has to be agreed upon between both parties
before this service use can begin; it is not part of the contract conclusion
protocol itself.

In the CASA framework, a service is between exactly two entities, the user
and the provider. Therefore, the service provisioning from the arbitrator
Trent is shown as two distinct service usages that are synchronized. The
synchronization is done by the mechanisms of the knowledge base in contrast
to the explicit communication as shown in Figure 10.9, plain UML lacks the
power to express the underlying mechanisms.

Again, not the contract itself is sent, but only a hash thereof. Both sides
send their signed hash over the contract data to the arbitrator Trent. That
agent checks each signature and compares the contract data. If all is well so
far, Trent informs both service using agents informally, that the other side
has signed. To circumvent race problems and cheating by denial of service
attacks at critical stages of the protocol, Trent waits for a confirmation from
both sides before creating the real signature. It then sends its signed data to
both parties and waits for their acceptance statement. If both sides confirm
the receipt of the correct signature, the contract is concluded. If one of
the sides do not confirm the correctness of the process, an immediate offline
escalation process has to be initiated.

A provider of the contract conclusion service might offer this as a value-
added service for e-business applications and charge money for it. For billing
purposes, and so that no third party might spoof the confirmation messages,
the service requirements should include authentication.

10.4 Summary 199

Figure 10.9: Simultaneous Contract Signing Protocol

200 Chapter 10, Global Security

1 (cat ContentWithSignature
2 (hash byte[] needed)
3 (signer DomainName needed)
4 (signatureAlgorithmIdentifier
5 AlgorithmIdentifier needed)
6 // the signature itself
7 (encrypted byte[] needed))
8 (cat SignedContract
9 (signatureA ContentWithSignature needed)

10 (signatureB ContentWithSignature needed)
11 (timestamp DateTime needed)
12 // the arbitrator
13 (signer DomainName needed)
14 (signatureAlgorithmIdentifier
15 AlgorithmIdentifier needed)
16 // the signature itself
17 (encrypted byte[] needed))

Figure 10.10: Simultaneous Contract Signing Categories

10.4 Summary

Introducing an agent-based certificate infrastructure enables to define cer-
tificates based on a known and trusted root. Companies are enabled to
provide their one internal or external certificate root without having to trust
an unknown third party. Further, implementing a certificate distribution ar-
chitecture based on agents allows for other agents to use their native commu-
nication language for accessing certificates and associated data. The agents
are enabled to pro-actively use the data of certificates and reason about the
content. No implementation of proprietary protocols for each specific CA is
needed.

Value-added services are given as examples for security- and e-commerce-
related features possible in an agent environment. They can be used as
building blocks for a more comprehensive market system out of the scope of
this work.

The thesis ends with the following Chapter 11, summarizing the work done,
comparing it to other works in the field, and giving an outlook into the future.

Chapter 11

Conclusions

“This is the end
Beautiful friend
This is the end
My only friend, the end
Of our elaborate plans, the end
Of everything that stands, the end.”

The Doors

11.1 Synopsis

This final Chapter will wrap up the whole thesis work. The results are
compared against the requirements determined previously. The paper is
set into relation to other works in the field and specific achievements are
highlighted. A look into the future shows, where more development can be
put into to provide for a even more sophisticated solution for agent-based
e-commerce application in the telecommunicaiton domain.

202 Chapter 11, Conclusions

11.2 Analysis

The presented work fulfills all of the domain demands of Part I and of the
technical requirements as analyzed in Chapter 6.

Specifically, data integrity, cryptographic entity authentication, and confi-
dentiality of communication is preserved by employing standardized proto-
cols for inter-agent communication. Authentication is based on hierarchical
certificates. Authorization of service use is enabled by providing service con-
trol mechanisms.

Code mobility is supported by securing the executing agent platform against
incoming code. Further, mobile code is protected as much as possible against
tampering with and spying upon by malicious systems. If a fraud attempt is
detected, agent place trust lists are given to react upon the incident.

The autonomy of agents and demands by regulations of cryptography by law
is accomodated for by giving agents a way to reason about its security-related
capabilities and to adjust its own composition accordingly. Its capabilities
can be parametrized. Users can specify a set of functionality that is required
for service usage or provisioning.

Agent places and domains of agents can be additionally secured by mech-
anisms on the community and global level. Not only is it possible for the
systems of an agent place to make assumptions about remote agent places,
but in addition services are provided to enable secure and legally binding
contracts as much as possible. Those mechanisms and service can be used in
other work to devise secured agent-based markets for real goods exchange.

11.3 Achievements and Related Work

The main achievement of this work is the introduction of a comprehensive
framework for secure agent systems. The architecture as proposed encom-
passes several levels of the resulting systems:

• The level of Java programming, basic runtime security, and raw com-
munication.

11.4 Further Work 203

• Security of the agent itself, its consciousness and ability to reason about
its own mechanisms, and of the communication with other agents, ex-
tending to service usage authorization.

• Agent places are enriched with features for securing against malicious
mobile code and other fraudulent places.

• The certificate infrastructure is rooted globally, certificate revocation
is supported, and value-added services are provided for the realization
of agent-based e-commerce solutions.

This sum of features and functionalities haven’t been found in other agent
systems yet. Typical means so far include using SSL for communication and
authentication of agents based on certificates, though the important aspect
of certificate revocation was no issue anywhere. Resource protection is a rare
commodity. None of the analyzed agent platforms provide for any agent-
specific features making use of agent’s typical properties like autonomy or
self-inspection. Especially the very important feature of authorization is
completly neglected by all other platforms. New in the ASITA framework is
the introduction of mechanisms on the community and global level as well.

The resulting system is a vastly expanded approach to security for agent
systems, supporting mobile agents and withstanding the typical set of at-
tacks on communicating systems. An accompanying first prototypical im-
plementation of an extension to the CASA platform in the form of the first
inception of JIAC IV developed at the DAI-Labor prove the feasibility of the
approach. [FBK+01]

11.4 Further Work

This work can be expanded on multiple tracks. On the technical level, there
is a new Java Development Kit on the Horizon, tagged 1.4. [Sun00b]. That
version will be delivered with the SSL component which has been added
in this work in the form of the ISASILK library. [Ins99b] Other crypto-
graphic functions, like an improved certificate handling, is included as well,
in this work it is built on the Java Cryptography Extension implementation
of IAIK. [Ins99a]

In addition to the SSL communication, the Internet Protocol based IPSec
communication mechanisms can be chosen to be able to communicate with

204 Chapter 11, Conclusions

system running that slowly deploying standard. [KA98] This might get mo-
mentum if the IP protocol in version 6 will roll-out widely. [DH98]

The hierarchical root of certificates has several problems in its trust associ-
ation and need for a central certifiying site. Certificate revocation is cum-
bersome as well. New ideas in the expressive power and management of
certificates led to the Simple Public Key Infrastructure. [Ell99a, Ell99b] Em-
ploying those certificates might reduce the workload for certificate distribu-
tion and validation. Further, they support credentials, authority delegation,
and anonymity, adding to the possibilities available to future service access
and management. Another certificate-related track is the introduction of
Registration Authorities as suggested by [AF99].

The trust relationship as introduced in this work is not too elaborated. There
are at several helpful ways for enhancements. One could be to extend the
agent place trust lists as developed in Section 9.3.2 to include communication
allowance with other places so that agents can decide not only if they should
migrate to remote places as it is now, but they might even refuse communi-
cation altogether with a malicious remote site. The level of trust itself could
be quantified instead of a dual choice as presented here. Trust engines could
be used to evaluate trust decisions more formally and automated. [BFIK99]
Evenmore, the trust relationships should be more discriminating.

To support development and management of a running agent-based system,
tools have to be developed. This is especially true the more complex a
system gets. Specifically, a tool should allow to define service security re-
quirements (cf. Section 8.2.3) and service authorization (cf. Section 8.6) and
to assign them to agents.

For added value for real-world goods exchange inclusion of payment methods
must be promoted and a reliable and accountable framework for electronic
goods delivery is needed, building on the means provided here.

11.5 Summary

This work provided an encompassing and advanced security infrastructure
for multi-agent-applications in the telematic area. The summary can best
be shown by key pictures of the work. Figure 11.1 depicts the introduced
security-related components of an agent. In Figure 11.2 it is seen, how a
communication is processed and which measures are taken before it is acted

11.5 Summary 205

Figure 11.1: Security Components (again)

Figure 11.2: Communication Security (again)

206 Chapter 11, Conclusions

Figure 11.3: Community Security (again)

upon by the single agent. The graphic in Figure 11.3 shows agents with
security tasks on distributed agent places.

“Ich habe fertig!”
Giovanni Trapattoni

11.5 Summary 207

Part IV

Appendices

Appendix A

CAL

The Appendix starts with a brief introduction to the CASA Agent Descrip-
tion Language (CAL). The exhaustive definition is given in [Ses02]. Longer
CAL excerpts from the implementation follow. They are referenced and ex-
plained in the running text.

A.1 CAL Introduction

CAL is the agent description language of CASA. It is used to describe an
agent on the knowledge level, and is employed to define terminologic, declara-
tive, procedural, and communicative knowledge. The declarative part allows
the representation of world states, based on ontologies. It is a combination
of logic and object-oriented concepts. Values have types, categories are used
to group objects, functions and relations as operators, and meta-knowledge
types.

Ontologies in CAL are defined as follows:
Ontology = (ont OntoName1 (incl OntoName2+) OntoDecl*)
OntoDecl = CategoryDecl | FunctionDecl | ComparisonDecl

The ontology definition is preceeded by the literal ont. Then, the name of the
ontology is given as OntoName1. Optionally, an ontology may be derived from
other ontologies OntoName2,. . . This works as inheritance in object-oriented
languages. An ontology consists of declarations of categories, functions, and
comparisons.

Categories represent objects and are defined within ontologies as follows:

212 Appendix A, CAL

CategoryDecl = (cat CatName1 (ext CatName2+) AttributeDecl*)
AttributeDecl = (AttName Type Keyword*)

CategoryDecl defines the declaration of a category. cat is a literal. CatName1
is the arbitrary name of the category defined. (ext CatName2+) is optional
and allows to derive CatName1 from the categories CatName2,. . . This works
as inheritance in object-oriented languages. A category might consist of sev-
eral attributes, whose definition follow. An attribute has at least a given
name and a type. Optionally, an attribute might further be specified, e.g.
with constraints. Typical Keyword’s are needed to declare, that this at-
tribute must contain a known value, and default, which allows to initialize
an attribute instance upon inception to a pre-defined value. unique declares,
that no other object instance of the same category might contain the same
value in this attribute.

Functions and comparisons are defined as follows:
FunctionDecl = (fun Type1 FunName Type2*)
ComparisonDecl = (comp CompName Type3+)

Each declaration is preceeded by the respective literal, fun or comp. For a
function, the type Type1 of its value is given. It follows its name FunName. It
follows a possible empty enumeration of types for the positional parameters
of the function. For a comparison, at least one Type3 parameter must be
given.

In the JIAC reference realization of CASA, an object can be instantiated as
follows:
ObjInst = (obj Ident Categ AttribInst*)
AttribInst = (AttName Value)

The literal obj starts the declaration. Ident is an identifiert for the object,
which must be unique in the fact base. Categ is the category, of which this
object is an instance of. It follows a list of attribute initializations. The
list of initialized attributes must at least consist of all attributes marked as
needed in the category declaration.

A.2 Component Objects 213

A.2 Component Objects

1 // Objects representing Components
2 (obj CMC SecurityComponent
3 (identifier "CMC")
4 (name "CertificateManagement"))
5 (obj KBP SecurityComponent
6 (identifier "KBP")
7 (name "KnowledgeBaseProtection"))
8 (obj SAS SecurityComponent
9 (identifier "SAS")

10 (name "SpeechActSecurity"))
11 (obj LLS SecurityComponent
12 (identifier "LLS")
13 (name "LowLevelSecurity")
14 // not "transport layer security" because that
15 // contflicts with the name of the successor of SSL
16)
17 (obj SCM SecurityComponent
18 (identifier "SCC")
19 (name "ServiceControlMechanisms"))
20 (obj MTM SecurityComponent
21 (identifier "MTC")
22 (name "MarketplaceTrustMechanisms"))

A.3 Ability Objects

A.3.1 Certificate Management

1 ///
2 // Objects representing abilities of certificate management
3 (obj CMCPROVIDECERTIFICATES AgentAbility
4 (component CMC)
5 (name "CMC_PROVIDE_CERTIFICATES"))
6 (obj CMCCOMMUNICATECERTIFICATES AgentAbility
7 (component CMC)
8 (name "CMC_COMMUNICATE_CERTIFICATES"))

214 Appendix A, CAL

9 // an enumeration of the supported certificate types
10 // (see SSL standard)
11 (obj CMCCERTRSASIGN AgentAbility
12 (component CMC)
13 (name "CMC_CERT_RSA_SIGN"))
14 (obj CMCCERTDSSSIGN AgentAbility
15 (component CMC)
16 (name "CMC_CERT_DSS_SIGN"))
17 (obj CMCCERTRSAFDH AgentAbility
18 (component CMC)
19 (name "CMC_CERT_RSA_FIXED_DH"))
20 (obj CMCCERTDSSFDH AgentAbility
21 (component CMC)
22 (name "CMC_CERT_DSS_FIXED_DH"))
23 (obj CMCCERTRSAEDH AgentAbility
24 (component CMC)
25 (name "CMC_CERT_RSA_EPHEMERAL_DH"))
26 (obj CMCCERTDSSEDH AgentAbility
27 (component CMC)
28 (name "CMC_CERT_DSS_EPHEMERAL_DH"))

A.3.2 Knowledge Base Protection

1 (obj KBPAUTHENTICATEDSAFE AgentAbility
2 (component KBP)
3 (name "KBP_AUTHENTICATED_SAFE"))

A.3.3 Low Level Security

1 ///
2 // Objects representing abilities of transport layer security,
3 // they are a direct canonical mapping of the cipher suites as
4 // defined in the SSL standard
5 (obj SSLNULLWITHNULLNULL AgentAbility
6 (component LLS)
7 (name "SSL_NULL_WITH_NULL_NULL"))
8

9 // The following CipherSuite definitions require that the server
10 // provide an RSA certificate that can be used for key exchange. The
11 // server may request either an RSA or a DSS signature-capable
12 // certificate in the certificate request message.

A.3 Ability Objects 215

13

14 (obj SSLRSAWITHNULLMD5 AgentAbility
15 (component LLS)
16 (name "SSL_RSA_WITH_NULL_MD5"))
17 (obj SSLRSAWITHNULLSHA AgentAbility
18 (component LLS)
19 (name "SSL_RSA_WITH_NULL_SHA"))
20 (obj SSLRSAEXPORTWITHRC440MD5 AgentAbility
21 (component LLS)
22 (name "SSL_RSA_EXPORT_WITH_RC4_40_MD5"))
23 (obj SSLRSAWITHRC4128MD5 AgentAbility
24 (component LLS)
25 (name "SSL_RSA_WITH_RC4_128_MD5"))
26 (obj SSLRSAWITHRC4128SHA AgentAbility
27 (component LLS)
28 (name "SSL_RSA_WITH_RC4_128_SHA"))
29 (obj SSLRSAEXPORTWITHRC2CBC40MD5 AgentAbility
30 (component LLS)
31 (name "SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5"))
32 (obj SSLRSAWITHIDEACBCSHA AgentAbility
33 (component LLS)
34 (name "SSL_RSA_WITH_IDEA_CBC_SHA"))
35 (obj SSLRSAEXPORTWITHDES40CBCSHA AgentAbility
36 (component LLS)
37 (name "SSL_RSA_EXPORT_WITH_DES40_CBC_SHA"))
38 (obj SSLRSAWITHDESCBCSHA AgentAbility
39 (component LLS)
40 (name "SSL_RSA_WITH_DES_CBC_SHA"))
41 (obj SSLRSAWITH3DESEDECBCSHA AgentAbility
42 (component LLS)
43 (name "SSL_RSA_WITH_3DES_EDE_CBC_SHA"))
44

45 // The following CipherSuite definitions are used for
46 // server-authenticated (and optionally client-authenticated)
47 // Diffie-Hellman. DH denotes cipher suites in which the server’s
48 // certificate contains the Diffie-Hellman parameters signed by the
49 // certificate authority (CA).
50

51 (obj SSLDHDSSEXPORTWITHDES40CBCSHA AgentAbility
52 (component LLS)
53 (name "SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA"))
54 (obj SSLDHDSSWITHDESCBCSHA AgentAbility
55 (component LLS)

216 Appendix A, CAL

56 (name "SSL_DH_DSS_WITH_DES_CBC_SHA"))
57 (obj SSLDHDSSWITH3DESEDECBCSHA AgentAbility
58 (component LLS)
59 (name "SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA"))
60 (obj SSLDHRSAEXPORTWITHDES40CBCSHA AgentAbility
61 (component LLS)
62 (name "SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA"))
63 (obj SSLDHRSAWITHDESCBCSHA AgentAbility
64 (component LLS)
65 (name "SSL_DH_RSA_WITH_DES_CBC_SHA"))
66 (obj SSLDHRSAWITH3DESEDECBCSHA AgentAbility
67 (component LLS)
68 (name "SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA"))
69

70 // DHE denotes ephemeral Diffie-Hellman,
71 // where the Diffie-Hellman parameters are signed by a DSS or RSA
72 // certificate, which has been signed by the CA. The signing
73 // algorithm used is specified after the DH or DHE parameter. In all
74 // cases, the client must have the same type of certificate, and must
75 // use the Diffie-Hellman parameters chosen by the server.
76

77 (obj SSLDHEDSSEXPORTWITHDES40CBCSHA AgentAbility
78 (component LLS)
79 (name "SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA"))
80 (obj SSLDHEDSSWITHDESCBCSHA AgentAbility
81 (component LLS)
82 (name "SSL_DHE_DSS_WITH_DES_CBC_SHA"))
83 (obj SSLDHEDSSWITH3DESEDECBCSHA AgentAbility
84 (component LLS)
85 (name "SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA"))
86 (obj SSLDHERSAEXPORTWITHDES40CBCSHA AgentAbility
87 (component LLS)
88 (name "SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA"))
89 (obj SSLDHERSAWITHDESCBCSHA AgentAbility
90 (component LLS)
91 (name "SSL_DHE_RSA_WITH_DES_CBC_SHA")
92 (requires { AgentAbility : CMCPROVIDECERTIFICATES }))
93 (obj SSLDHERSAWITH3DESEDECBCSHA AgentAbility
94 (component LLS)
95 (name "SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA")
96 (requires { AgentAbility : CMCPROVIDECERTIFICATES }))
97

98 // The following cipher suites are used for completely anonymous

A.3 Ability Objects 217

99 // Diffie-Hellman communications in which neither party is
100 // authenticated. Note that this mode is vulnerable to
101 // man-in-the-middle attacks and is therefore strongly discouraged.
102

103 (obj SSLDHANONEXPORTWITHRC440MD5 AgentAbility
104 (component LLS)
105 (name "SSL_DH_ANON_EXPORT_WITH_RC4_40_MD5"))
106 (obj SSLDHANONWITHRC4128MD5 AgentAbility
107 (component LLS)
108 (name "SSL_DH_ANON_WITH_RC4_128_MD5"))
109 (obj SSLDHANONEXPORTWITHDES40CBCSHA AgentAbility
110 (component LLS)
111 (name "SSL_DH_ANON_EXPORT_WITH_DES40_CBC_SHA"))
112 (obj SSLDHANONWITHDESCBCSHA AgentAbility
113 (component LLS)
114 (name "SSL_DH_ANON_WITH_DES_CBC_SHA"))
115 (obj SSLDHANONWITH3DESEDECBCSHA AgentAbility
116 (component LLS)
117 (name "SSL_DH_ANON_WITH_3DES_EDE_CBC_SHA"))

A.3.4 Speech Act Security

1 ///
2 // Objects representing abilities of speech act security
3 // There are different objects for use in-session and
4 // out-of-session
5

6 // If no sessions are wanted there is no key exchange. then,
7 // the sender defines the symmetric key.
8 // format for "name":
9 // SAS_<KeyExchange>_<Authen>_<Signature|Mac>_<symmetric Encrytion>

10 // format for <Signature> Method::==Algorithm[/param]
11 // format for <symmetric Encryption>::==Algorithm[/param][_strength]
12

13 (obj SASRSARSASHANULL AgentAbility
14 (component SAS)
15 (name "SAS_RSA_RSA_SHA_NULL"))
16 (obj SASRSARSASHADES40CBC AgentAbility
17 (component SAS)
18 (name "SAS_RSA_RSA_SHA_DES40CBC"))
19 (obj SASRSARSASHAIDEACBC AgentAbility
20 (component SAS)

218 Appendix A, CAL

21 (name "SAS_RSA_RSA_SHA_IDEACBC"))
22 (obj SASRSARSASHARC440 AgentAbility
23 (component SAS)
24 (name "SAS_RSA_RSA_SHA_RC4_40"))
25 (obj SASRSARSASHARC4128 AgentAbility
26 (component SAS)
27 (name "SAS_RSA_RSA_SHA_RC4_128"))
28 (obj SASDHRSAHMACSHARC4128 AgentAbility
29 (component SAS)
30 (name "SAS_DH_RSA_HMAC/SHA_RC4_128"))

A.3.5 Service Control Mechanisms

1 ///
2 // Objects representing abilities of service use authorization
3 // service control
4 (obj SCMSERVICEAUTHORIZATION AgentAbility
5 (component SCM)
6 (name "SCM_SERVICE_AUTHORIZATION"))
7 // management of service control mechanisms by speech acts
8 (obj SCMCOMMUNICATESCLS AgentAbility
9 (component SCM)

10 (name "SCM_COMMUNICATE_SCLS")
11 (requires { AgentAbility : CMSPROVIDECERTIFICATES }))

A.4 Security Dependencies Objects

Here dependencies between abilities are defined.

1 // Objects representing requirements for the KBP component
2 (obj KBPWITHRSAREQ PerAbilityRequirement
3 (ability KBPWITHRSA)
4 (requiresOneOf [AgentAbility : CMCCERTRSASIGN]))
5

6 // Objects representing requirements for the SSL component
7 (obj SSLRSAWITHNULLMD5REQ PerAbilityRequirement
8 (ability SSLRSAWITHNULLMD5)
9 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))

A.4 Security Dependencies Objects 219

10 (obj SSLRSAWITHNULLSHAREQ PerAbilityRequirement
11 (ability SSLRSAWITHNULLSHA)
12 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
13 (obj SSLRSAEXPORTWITHRC440MD5REQ PerAbilityRequirement
14 (ability SSLRSAEXPORTWITHRC440MD5)
15 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
16 (obj SSLRSAWITHRC4128MD5REQ PerAbilityRequirement
17 (ability SSLRSAWITHRC4128MD5)
18 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
19 (obj SSLRSAWITHRC4128SHAREQ PerAbilityRequirement
20 (ability SSLRSAWITHRC4128SHA)
21 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
22 (obj SSLRSAEXPORTWITHRC2CBC40MD5REQ PerAbilityRequirement
23 (ability SSLRSAEXPORTWITHRC2CBC40MD5)
24 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
25 (obj SSLRSAWITHIDEACBCSHAREQ PerAbilityRequirement
26 (ability SSLRSAWITHIDEACBCSHA)
27 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
28 (obj SSLRSAEXPORTWITHDES40CBCSHAREQ PerAbilityRequirement
29 (ability SSLRSAEXPORTWITHDES40CBCSHA)
30 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
31 (obj SSLRSAWITHDESCBCSHAREQ PerAbilityRequirement
32 (ability SSLRSAWITHDESCBCSHA)
33 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
34 (obj SSLRSAWITH3DESEDECBCSHAREQ PerAbilityRequirement
35 (ability SSLRSAWITH3DESEDECBCSHA)
36 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
37 (obj SSLDHDSSEXPORTWITHDES40CBCSHAREQ PerAbilityRequirement
38 (ability SSLDHDSSEXPORTWITHDES40CBCSHA)
39 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
40 (obj SSLDHDSSWITHDESCBCSHAREQ PerAbilityRequirement
41 (ability SSLDHDSSWITHDESCBCSHA)
42 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
43 (obj SSLDHDSSWITH3DESEDECBCSHAREQ PerAbilityRequirement
44 (ability SSLDHDSSWITH3DESEDECBCSHA)
45 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
46 (obj SSLDHRSAEXPORTWITHDES40CBCSHAREQ PerAbilityRequirement
47 (ability SSLDHRSAEXPORTWITHDES40CBCSHA)
48 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
49 (obj SSLDHRSAWITHDESCBCSHAREQ PerAbilityRequirement
50 (ability SSLDHRSAWITHDESCBCSHA)
51 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
52 (obj SSLDHRSAWITH3DESEDECBCSHAREQ PerAbilityRequirement

220 Appendix A, CAL

53 (ability SSLDHRSAWITH3DESEDECBCSHA)
54 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
55 (obj SSLDHEDSSEXPORTWITHDES40CBCSHAREQ PerAbilityRequirement
56 (ability SSLDHEDSSEXPORTWITHDES40CBCSHA)
57 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
58 (obj SSLDHEDSSWITHDESCBCSHAREQ PerAbilityRequirement
59 (ability SSLDHEDSSWITHDESCBCSHA)
60 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
61 (obj SSLDHEDSSWITH3DESEDECBCSHAREQ PerAbilityRequirement
62 (ability SSLDHEDSSWITH3DESEDECBCSHA)
63 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
64 (obj SSLDHERSAEXPORTWITHDES40CBCSHAREQ PerAbilityRequirement
65 (ability SSLDHERSAEXPORTWITHDES40CBCSHA)
66 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
67 (obj SSLDHERSAWITHDESCBCSHAREQ PerAbilityRequirement
68 (ability SSLDHERSAWITHDESCBCSHA)
69 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
70 (obj SSLDHERSAWITH3DESEDECBCSHAREQ PerAbilityRequirement
71 (ability SSLDHERSAWITH3DESEDECBCSHA)
72 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
73

74 // Objects representing requirements for the service control component
75 (obj SCMSERVICEAUTHORIZATIONREQ PerAbilityRequirement
76 (ability SCMSERVICEAUTHORIZATION)
77 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))
78 (obj SCMCOMMUNICATESCLSREQ PerAbilityRequirement
79 (ability SCMCOMMUNICATESCLS)
80 (requiresOneOf [AgentAbility : CMCPROVIDECERTIFICATES]))

A.5 Service Security Requirements Ob-
jects

This is an example of protecting a service called dummy. The service shall
be available only to authenticated users, security shall be on the transport
layer. The certificates shall be based on the RSA algorithm. SHA-1 shall
be the hash algorithm, RC4 with 128 bit key length or IDEA in CBC mode
is the symmetric encryption algorithm. The user must be authorized to use
the service.

A.5 Service Security Requirements Objects 221

1 (obj DummyServiceLLS AgentAbility
2 (component LLS)
3 (name "Dummy Service Transport Layer Security"))
4 (obj DummyServiceLLSRequirements PerAbilityRequirement
5 (ability DummyServiceLLS)
6 (requiresOneOf [AgentAbility : SSLRSAWITHRC4128SHA SSLRSAWITHIDEACBCSHA]))
7 // combined with authorization
8 (obj DummyServiceRequirements ServiceSecurityRequirements
9 (requires { AgentAbility :

10 DummyServiceLLSRequirements SCMSERVICEAUTHORIZATION }))

Glossary

Some of these entries stem from [Cyb01], others are from [WM-01]. Entries
from [McL93] and [Mat97] are found here as well. Other entries are adapted
from [Shi00].

3DES: Abbreviation for Tripple DES: Strengthened but even slower version
of DES (qv) with effectively its original key (qv) size trippled.

ACC: Abbreviation for Agent Communication Channel: Accoding to the
FIPA (qv) standard, it is the standard communication channel between
agents on an agent platform and between agent platforms.

ACL/1: Abbreviation for Access Control List: Mechanism to restrict access
to objects to authenticated (qv) and authorized (qv) subjects.

ACL/2: Abbreviation for Agent Communication Language: A defined syn-
tax with accompanying semantics for inter-agent communication, e.g.
as defined by FIPA. (qv)

Active Attack: The attacker modifies the attacked data stream.

Adjudicator: In a security-aware environment, a neutral party, that, after
a dispute about an already completed transaction arises, acts as a judge
to set things right.

AI: Abbreviation for Artifical Intelligence: The effort to create intelligent
behaviour by machines.

AMS: Abbreviation for Agent Management System: According to the FIPA (qv)
standard, it is the actively managing entity on an agent platform.
It controls the life cycle of agents and resource usage, including the
ACC. (qv)

ii Glossary

Arbitrator: In a security-aware environment, as neutral party in an ongo-
ing communication protocol is charged with ensuring, that a contract
conclusion or information exchange is done fairly.

ASITA: Abbreviation for Advanced Security Infrastructure for Multi-Agent-
Applications in the Telematic Area: The title of this work, and the
architecture as developed herein.

ASN.1: Abbreviation for Abstract Syntax Notation One: The standard
[cci88a] for describing data objects.

ASP: Abbreviation for Applications Service Provider: An organization that
provides applications to a user’s desktop or other computing device,
rather than requiring them to invest in local software.

Asymmetric Cipher: Encryption, (qv) where the key to be used to decrypt
the ciphertext (qv) is different from the encryption key. Both keys are
correlated, but it is a “hard” problem to derive one from the other.

Authentication: It is the process of ensuring, that in a communication
protocol a presented identity is impersonated rightly by the present-
ing entity. Further, an authenticated communication includes ensuring
integrity of the data exchanged.

Authorization: Granting authorization is to allow an acting subject an op-
eration on an object. The subject is some kind of active entity, usually
a program acting on behalf of an user. The operation depends on the
object, in the context of data files this might be read, write, execute,
delete, change, and similar operations. The object is normally some
kind of passive entity, e.g. a data file or process being acted on. The
subject must be successfully authenticated (qv) before authorization
can be performed reasonably.

AOT: Abbreviation for Agent-oriented Technology: The technology domain
of software agents.

API: Abbreviation for Application Programming Interface: APIs allow to
program to a pre-constructed interface (the API) instead of program-
ming a device or piece of software directly. This allows for faster devel-
opment, since programming to a device’s API is designed to be easier
than programming to a device directly.

Applet: A Java program that can be embedded in a web page and which is
run by the web browser as the execution environment.

Glossary iii

B2B: Abbreviation for Business to Business: Refering to electronic trade or
partnering between organizations, often over an extranet or e-marketplace.

B2C: Abbreviation for Business to Consumer: Referring to electronic trade
(e-commerce) between businesses and end consumers, as opposed to
B2B e-business between organizations alone. (qv)

BER: Abbreviation for Basic Encoding Rules: The standard [CCI88c] for
representing ASN.1 (qv) data types as strings of octets.

BDI: Abbreviation for Belief-Desire-Intention: A common agent model,
that constructs agents as cognitive entities with a view of the world
(beliefs), goals to reach (desires), and a plan to reach them (inten-
tions).

Bean: The Java (qv) concept and implementation of a component architec-
ture.

Block Cipher: Encryption (qv) function, that works on a fixed block length
of data at a time. The last block of data in a bulk exchange requires
padding. (qv)

Block Counter: Extra sequential numbering added to a block of data to
gain replay (qv) protection.

Bluetooth: A standard for short-range wireless communication between
computing devices and associated peripherals, including laptop and
mobile computers, PDAs, (qv) and mobile phones.

Broker: The broker mediates information, often pertaining to the availabil-
ity of services, between actors.

Brute Force Attack: Trying out all possible combinations. This is feasible
for small key sizes and other specifc situations.

BXA: Abbreviation for Bureau of Export Administration: The administra-
tive bureau of the Department of Commerce of the United States of
America currently in charge of the Export Administration Regulations,
covering cryptographic software.

CA: Abbreviation for Certification Authority: A trusted third party issuing
certificates. (qv)

CAA: Abbreviation for CA Agent: In the ASITA (qv) concept implemen-
tation the name of an agent fulfilling the role (qv) of a CA. (qv)

iv Glossary

CAL: Abbreviation for CASA Agent Language: The agent description lan-
guage used in CASA. (qv) It is described briefly in Section A.1.

CASA: Abbreviation for Component Architecture for Service Agents: The
agent architecture described in [Ses02].

Certificate: The association between a public key and an identity, signed (qv)
by a trusted third party, the CA. (qv)

Cipher: Class of functions for encrypting (qv) and decrypting. (qv) Ciphers
deal with the characters of a message, at the syntactical instead of the
semantical level as does a code. (qv)

Ciphertext: The result of applying a cipher function to a plaintext (qv):
the encrypted output.

Code: A cryptosystem that deals with linguistic units: words, phrases, sen-
tences.

Collision: If it is a “hard” problem to find two random messages that gener-
ate the same hash (qv) value, the hash algorithm is said to be collision-
free.

Compression Function: Function to reduce the amount of data. Usually,
it is a loss-less transformation, but in some cases it incurrs data loss
and hence is not reversible, as is the case for hashes. (qv)

Confidentiality: The property that information is not made available or
disclosed to unauthorized individuals, entities, or processes.

Connectivity Provider: Offers network access.

Consumer: User of a service.

Content Provider: A special case of a provider, (qv) that only serves con-
tent without supporting or wrapping services.

CRL: Abbreviation for Certificate Revocation List: A list of revoked certifi-
cates (qv) no longer valid.

Cryptanalysis: Trying to break the security of a message.

Cryptanalyst: Person working on the field of cryptanalysis. (qv)

Cryptographer: Person working on the field of cryptography. (qv)

Glossary v

Cryptography: The science of keeping messages secure.

Cryptologist: Person working on the field of cryptology. (qv)

Cryptology: The sum of cryptanalysis (qv) and cryptography. (qv)

DAI-Labor: Abbreviation for Distributed Artificial Intelligence Laboratory:
Working group at the Technische Universität Berlin, where JIAC (qv)
was developed.

DARPA: Abbreviation for Defense Advanced Research Projects Agency:
An important research sponsor of the United States of America mili-
tary.

Deciphering: Synonymous but less common word for decryption (qv) as
defined in [Int89].

Decryption: The opposite of encryption. (qv)

DER: Abbreviation for Distinguished Encoding Rules: A subset of BER, (qv)
which gives exactly one way to represent any ASN.1 (qv) value as an
octet string, layed down in [ITU97b].

DES: Abbreviation for Data Encryption Standard: A specific block cipher (qv)
as defined in [oST99].

DF: Abbreviation for Directory Facilitator: A standard agent defined by
FIPA, (qv) that provides information about the provisioning of services.

DN: Abbreviation for Distinguished Name: A set of RDNs (qv) fully iden-
tifiying an entity in the context of X.500. [ITU93]

DNS: Abbreviation for Domain Name Server (or Domain Name System):
The computer facility that translates “human friendly” Internet domain
names into machine-readable IP addresses.

Domain Name: The unique identifier associated with each particular com-
puter attached to the Internet. For network communications a DNS (qv)
server has to translate such domain names into machine-readable IP
addresses.

DSA: Abbreviation for Digital Signature Algorithm: The asymmetric (qv)
algorithm used in the DSS. (qv)

DSS: Abbreviation for Digital Signature Standard: A standard for digital
signatures, (qv) defined in [oST00].

vi Glossary

E-Business: E-business encompasses all forms of on-line electronic trading,
taking in the more narrowly defined concept of B2C (qv) e-commerce, (qv)
plus B2B (qv) electronic trading and process integration, as well as the
internal use of IP (qv) and related technologies for process integration
inside organizations.

E-Commerce: In a strict sense, e-commerce is usually taken to encompass
B2C (qv) electronic trading. This distinguishes “e-commerce” from the
broader arena of “e-business.” (qv)

E-Marketplace: Electronic marketplaces are B2B (qv) online trading fo-
rum, often dedicated to e-business (qv) between companies and their
customers and suppliers in a particular industry or sector thereof.

ECC: Abbreviation for Elliptic Curve Cryptography: Asymmetric (qv) ci-
pher (qv) based on the “hard” problem of discrete ellipsis calculations
in an algebra over finite fields. Relatively new branch in cryptogra-
phy, (qv) its maturity is disputed.

ElGamal: Asymmetric (qv) cipher (qv) based on the “hard” problem of cal-
culating discrete logarithms in a finite field, named after its inventor.

Enciphering: Synonymous but less common word for encryption (qv) as
defined in [Int89].

Encryption: Hiding the contents of a communicated message, so that unau-
thorized (qv) parties, that don’t have access to a certain secret, i.e. the
key, are not able to semantically understand the contents. The reverse
operation of restoring the original contents is called decryption. (qv)

FCAPS: Abbreviation for Fault, Configuration, Accouting, Performance,
Security: The aspects of system management according to [ITU97a].

FIPA: Abbreviation for Foundation for Intelligent Physical Agents: A stan-
dardization organization for AOT. (qv)

FIPA-ACL: ACL (qv) defined by FIPA. (qv) The content language is SL0. (qv)

Firewall: Firewalls are network security filters used to protect individual
computers and/or computer networks (such as intranets or extranets)
from access by unauthorized users.

GPRS: Abbreviation for General Packet Radio Service: the technology
standard used by mobile phones to provide up to a 56Kbs always-on
data connection.

Glossary vii

GSM: Abbreviation for The Global System for Mobile communications: The
technology standard used by mobile phones (including WAP (qv) phones),
and that provides digital voice and a low-speed data services.

GSN: Abbreviation for General Software Note: Amendment to the Wasse-
naar Arrangement on Export Controls for Conventional Arms and
Dual-Use Goods and Technologies of the European Union pertaining
to computer software.

GUI: Abbreviation for Graphical User Interface: A GUI is a means of in-
teracting with a computer using a tracking device (such as a mouse)
to move a pointer to manipulate control menus or icons that represent
computer functions and data.

Hash: Cryptographic checksum of fixed length, that is easily calculated but
where it is a “hard” problem to find either the original value or another
value with the same checksum.

HMAC: Abbreviation for Keyed-Hashing for Message Authentication: A
MAC(qv) calculation indexed by a symmetric (qv) key (qv), thus en-
suring integrity and authenticity.

Illocutionary Act: Applied in the speech act theory (qv) to the force that
an expression of some specific form will have when it is uttered.

Initialization Vector: Random data used as feedback input for a mode (qv)
of a block cipher (qv) before real feedback from the algorithm is avail-
able. Makes codebook attacks much harder by virtually enlarging the
key size.

Integrity: Property of a communication, ensuring that no one is able to
modify the communicated data without this change being noticed.

Intelligent Home: A house or apartment equipped with computers to as-
sist or control household tasks. For example, a refrigerator might keep
an account of its contents and contact suppliers to replenish itself.

Internet: The International Network is an open, loose conglomeration of
interconnected (as opposed to directly connected) computer networks
based on IP (qv) and associated network communications standards.

IP: Abbreviation for Internet Protocol: The open computer network com-
munications standard [Inf81a] upon which the Internet (qv) is based.

viii Glossary

ISO: Abbreviation for Organization for Standardization: A worldwide fed-
eration of national standards bodies from some 140 countries. The
mission of ISO is to promote the development of standardization and
related activities in the world with a view to facilitating the interna-
tional exchange of goods and services, and to developing cooperation
in the spheres of intellectual, scientific, technological and economic ac-
tivity.

ITAR: Abbreviation for International Traffic in Arms Regulation: United
States of America regulation about the export of warfare material, in-
cluding cryptography, currently managed BXA. (qv)

Itinerary: The route of a migrating (qv) agent. In some texts this is par-
ticularly used for a route pre-computed and given to the agent before
the first migration.

Java: Java is a programming language and associated execution environ-
ment and specifically intended for the development of platform-independent
applications.

JCA: Abbreviation for Java Cryptography Architecture: Classes of Java (qv)
related to cryptography.

JCE: Abbreviation for Java Cyrptography Extension: Implementation of
the JCA, (qv) distributed separatly from the JDK (qv) due to legal
restrictions.

JDK: Abbreviation for Java Development Kit: Comprehensive set of Java
development tools, freely available from Sun Microsystems.

JESS: Abbreviation for Java Expert System Shell: A rule engine and script-
ing environment written entirely in Sun’s Java language. (qv)

JIAC: Abbreviation for Java-based Intelligent Agent Componentware: Software-
agent toolkit of DAI-Labor, (qv) in its incarnation JIAC IV, a specific
implementation of the CASA (qv) framework.

Jini: Jini network technology provides an infrastructure for delivering ser-
vices in a network and for creating spontaneous interaction between
programs that use these services regardless of their hardware or soft-
ware implementation.

JRE: Abbreviation for Java Runtime Environment: The native program
executing Java programs.

Glossary ix

JVM: Abbreviation for Java Virtual Machine: A VM(qv) for the Java (qv)
language.

KDC: Abbreviation for Key Distribution Center: Distributes certificates (qv)
issued by a CA. (qv)

Key: Input data for encryption (qv) and decryption (qv) functions. In sym-
metric (qv) algorithms the key has to be a pre-established shared secret
between the communicating partners. In an asymmetric (qv) protocol,
the secret key is held by only one party, the public key is, as the name
suggests, public.

KIF: Abbreviation for Knowledge Interchange Format: Content language
used in KQML (qv) speech acts.

KQML: Abbreviation for Knowledge Query and Manipulation Language:
A part of the “Knowledge Sharing Effort” project of DARPA. It de-
fines syntax and semantics of speech acts for inter-agent communica-
tion. [DAR, LF97] The KQML-specification only covers the speech acts
and their communicative role, but doesn’t define the contents, which
is specified in an own language, KIF. (qv)

Locutionary Act: Applied in the speech act theory (qv) to the simple act
of saying something.

M-Commerce: Referring to all forms of e-commerce (qv) that take place
when a consumer makes an online purchase using a mobile device such
as a WAP phone or wireless PDA.

MA: Abbreviation for Manager Agent: The system agent constituting and
managing an agent place.

MAC: Abbreviation for Message Authentication Code: (opposed to Me-
dia Access Control in network technology) A special application of
hashes (qv) to prove the integrity (qv) of a message.

Man-in-the-Middle: An attacker, located between two communicating par-
ties in the data path of a network.

MASIF: Abbreviation for Mobile Agent System Interoperability Facility: A
set of standards of the OMG (qv) dealing with mobile agents. De facto
obsoleted by the FIPA (qv) effort.

Migration: Changing one’s location, especially used for the movement of
an agent from one agent place to another.

x Glossary

Mobile Computer: A computing device, larger than a PDA or palmtop
but smaller and far lighter than a laptop. Mobile computers offer
“instant on” computing by having a compact operating system and
applications permanently installed on an internal ROM chip.

Mode: The combination of a cipher (qv) and some feedback data to gain
more security by interlocking single chunks of data.

MTP: Abbreviation for Message Transport Protocol: According to FIPA, (qv)
a standardized protocol for message exchange between agents.

Non-repudiation: The impossibility for the signer of a message to later
deny, that he signed the document.

NSA: Abbreviation for National Security Agency: An agency of the United
States of America to produce foreign intelligence. Its very existence
was long time denied by the government, hence its abbreviations were
often interpreted as No Such Agency. The largest known employer of
mathematicians and cryptographers in the world.

OMG: Abbreviation for Object Management Group: Non-profit organiza-
tion developing commercially viable and vendor independent specifica-
tions for the software industry with several large companies as mem-
bers.

One-Time Pad: The only provably unbreakable cipher. (qv) Impractible
for normal use, because the key (qv) material is of the same size as
the plaintext (qv) and can never be re-used. This makes transmitting
the key material the same problem as transmitting the intended mes-
sage, gaining nothing.

Ontology: In the agent domain, an ontology is used to define a common
vocabulary between agents. An ontology is a set of definitions for basic
expressions in a domain. It comprises of categories, objects, attributes,
relations, and constraints.

OOT: Abbreviation for Object-oriented Technology: The technology domain
of object-oriented software development.

Orange Book: A standard [TCS85] about Trusted Computer System Eval-
uation Criteria of the US Department of Defense, named after the color
of its binder.

Glossary xi

OSI: Abbreviation for Open System Interconnection: A set of standards
published by the ISO. (qv)

Padding: Extension of some data to conform to a given block length, used
in block ciphers. (qv)

Passive Attack: The attacker only listens to the attacked data stream.

PDA: Abbreviation for Personal Digital Assistant: A pocket-sized com-
puter, typically operated via a touchscreen stylus rather than a key-
board.

Perlocutionary Act: Term applied in the speech act theory (qv) to the
effect brought about by an utterance in the particular circumstances
in which it is uttered.

PGP/1: Abbreviation for Partial Global Planning: A co-operation protocol
avoiding redundancy.

PGP/2: Abbreviation for Pretty Good Privacy: A cryptographic system
and software for secured message exchange based on peer-to-peer ex-
changed certificate instead of hierarchically distributed certificates as
is the case with CAs (qv) and KDCs. (qv)

Plaintext: The message to be hid by applying a cipher (qv) function to it.
Also the result of correctly appying a deciphering (qv) function to a
ciphertext. (qv)

Platform Provider: Offers the execution environment, where instances of
other roles meet and communicate.

PKCS: Abbreviation for Public Key Cryptography Standards: Set of pop-
ular de-facto standards dealing with public key cryptography by the
company RSA Security.

Privacy The right of an entity (normally a person), acting in its own behalf,
to determine the degree to which it will interact with its environment,
including the degree to which the entity is willing to share information
about itself with others.

Provider: Offers services.

Proxy: A computer process that relays a protocol between client and server
computer systems, by appearing to the client to be the server and
appearing to the server to be the client. In more general, a messenger
between two parties.

xii Glossary

RDN: Abbreviation for Relative Distinguished Name: A 2-tupel of attribute
and value in the context of X.500, [ITU93] used to construct a DN. (qv)

Reactive Agent Architecture: A common agent model, that constructs
agents as entities purely reacting on sensoric input from its environ-
ment.

Replay Attack: Re-inserting or re-ordering message blocks, active attack
by a man-in-the-middle. (qv)

Retailer: A special case of a provider, (qv) but a retailer makes available
services of other providers, potentially by adding value due to intelligent
combination of services.

RMI: Abbreviation for Remote Method Invocation: The methods of remote
Java (qv) objects can be invoked from other Java virtual machines,
possibly on different hosts.

Roaming: Synonym for migrating. (qv)

Role: A functional position in an organization or process.

RSA Cipher: Abbreviation for Rivest-Shamir-Adleman Cipher: Probably
the best known and analyzed asymmetric (qv) cipher (qv), named after
its inventors, based on the “hard” problem of factoring large numbers.
Widely in use, but incumbered by patent issues until recently.

SANP: Abbreviation for Speech Act based Negotiation Protocol: A co-operation
protocol for agents, able to cope with conflicts.

SA: Abbreviation for Security Agent: Standard agent of the ASITA (qv)
architecture that supports security functionality to other agents, like
fulfilling the role (qv) of a KDC (qv) in a domain.

SAS: Abbreviation for Speech Act Security: Security properties applied to
speech acts, (qv) performed on the ISO (qv)/OSI (qv) application layer
(layer 7).

Security Manager: Java system object regulating security within a VM. (qv)

Set-top Box: Low-cost devices that connect to a conventional television set
and a phone line to permit low-cost Internet access.

Signature: A hash over a document, performed with a secret key, that can
be verified with the corresponding public key.

Glossary xiii

SL0: Abbreviation for Structured Language 0: Content language for FIPA-
ACL. (qv)

SMS: Abbreviation for Short Messaging Service: The technology standard
used for text-messaging on mobile phones.

Social Engineering: Attack not on the system but on the people using
them, e.g. tricking them into revealing their password.

Speech Act Theory: Describes how words are often used to do things,
rather than merely to comment on a state of affairs in the world. Com-
prises of a locutionary, (qv) illocutionary, (qv) and perlocutionary (qv)
act.

SSA: Abbreviation for Security Service Agent: A standard agent that offers
value-added security-related services to other agents in the ASITA (qv)
framework. Those services are not essential for the secure functioning
of an agent place, they are provided by the SA, (qv) instead they aid
in the creation of e-business (qv) applications and services.

SSL: Abbreviation for Secure Socket Layer: an Internet security standard
(cryptography protocol) developed in order to provide a reliable and
private connection over the world-wide web and potentially other forms
of computer network.

Steganography: This is the science of hiding the very existence of data.
This includes hiding large amounts of stored or communicated data
in other data. Another aspect of steganography is the concealment of
performed communication, or the hiding of communicating partners.

Stream Cipher: Encryption (qv) function, that works on only one bit of
data at a time.

Symmetric Cipher: Encryption, (qv) where the key to be used to decrypt
the ciphertext is the same as was used for encryption.

TCB: Abbreviation for Trusted Computing Base: A small and verifable
component of a computer system, that preserves the integrity of sensi-
tivity labels and uses them to enforce a set of mandatory access control
rules, defined in the “Orange Book.” (qv)

Telematics: Synthesis of telecommunication and information.

xiv Glossary

Thread: A thread of execution in a program. The Java Virtual Machine (qv)
allows an application to have multiple threads of execution running
concurrently.

Toolkit: The sum of an architecture, an execution environment, infrastruc-
ture services, and tools for the realization and management of applica-
tions and services.

Truncation: Arbitrarily reducing the length of an output, often used for
hashes. (qv) It is under dispute, if this strengthens the system by mak-
ing it even harder to guess the hashed data, or if it weakens the system
because it is now easier to find collisions. (qv)

Trust: This is a very intuitive and hence debatable property. One interpre-
tation is the extent to which someone who relies on a system can have
confidence that the system meets its specifications, i.e., that the system
does what it claims to do and does not perform unwanted functions.
Another definition is, an entity can be said to ’trust’ a second entity
when the first entity makes the assumption that the second entity will
behave exactly as the first entity expects, this trust may apply only for
some specific function.

Ubiqutous Computing: The concept of building computers into our ev-
eryday working and living environments to such an extent that data,
rich media, and network access become constantly, frictionlessly, and
transparently available. Developments in ubiquitous computing – such
as multimodality interfaces – involve making technology conform to
human requirements.

UMTS: Abbreviation for Universal Mobile Telephone System: The tech-
nology standard to be used in mobile phones which will provide up to
a 384Kbs data connection to the Internet.

URL: Abbreviation for Uniform Resource Locator: It is the address of a
certain file or directory on the Web. They consist of two main parts.
The first part of a URL indicates what protocol is used, the second is
an address meaningful in the context of the protocol.

VM: Abbreviation for Virtual Machine: Especially used in the Java (qv)
context, where it denotes the runtime engine of the architecture, provid-
ing a virtual machine with capabilities independent of and abstracted
from the host machine it is running on.

Glossary xv

WAP: Abbreviation for Wireless Application Protocol: A standard for data
communications that provides a relatively low speed (typically 9.6Kbs)
Internetconnection to a mobile phone via GSM. (qv)

X.500: A standard that defines a global naming scheme.

X.509: A standard defining certificates (qv) to be used in a X.500 (qv) con-
text.

Bibliography

[AAB+98] Hal Abelson, Ross Anderson, Steven M. Bellovin, Josh Be-
naloh, Matt Blaze, Whitfield Diffie, John Gilmore, Peter G.
Neumann, Ronald L. Rivest, Jeffrey I. Schiller, and Bruce
Schneier. The RISKS of Key Recovery, Key Escrow, &
Trusted Third Party Encryption. http://www.cdt.org/

crypto/risks98/, 1998.

[AF99] Carlisle Adams and Stephen Farrell. Internet X.509 Public
Key Infrastructure Certificate Management Protocols. IETF
RFC 2510, March 1999. Proposed Standard.

[Alb98] Sahin Albayrak. Introduction to Agent Oriented Technol-
ogy for Telecommunications. volume 36 of Frontiers in Ar-
tifical Intelligence and Applications, pages 1–18, Amsterdam,
Netherlands, 1998. IOS Press.

[And72] J. P. Anderson. Computer Security Technology Planning
Study. Technical Report I, US Air Force, Hanscom AFB,
Bedford, Mass., October 1972. ESD-TR-73-51.

[Aud01] Iris Auding. Sorge um Datenmissbrauch bremst E-Commerce.
heise online, May 2001.

[Aus62] John Langshaw Austin. How to Do Things with Words. Ox-
ford University Press, 1962.

[AW99] Sahin Albayrak and Dirk Wieczorek. JIAC — A Toolkit
for Telecommunication Application. volume 1699 of Lecture
Notes in Computer Science, Lecture Notes in Artificial Intel-
ligence, pages 1–18, Berlin, Heidelberg, New York, Barcelona,
Hong Kong, London, Milan, Paris, Singapore, Tokyo, 1999.

http://www.cdt.org/crypto/risks98/
http://www.cdt.org/crypto/risks98/

xviii Bibliography

Springer. Proceedings of third international workshop, Stock-
holm, Sweden.

[BF95] M. Barbuceanu and M.S. Fox. COOL: A Language for De-
scribing Coordination in Multi Agent Systems. In Proceed-
ings of the International Conference On Multi-Agent Systems,
pages 14–24, San Francisco, CA, USA, 1995. V. Lesser.

[BFIK99] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The KeyNote Trust-Management System Version 2. IETF
RFC 2704, September 1999.

[BG88] A.H. Bond and L. Gasser, editors. Readings in Distributed Ar-
tificial Intelligence. Morgan Kaufmann Publishers, San Ma-
teo, CA, USA, 1988.

[Bib93] W. Bibel. Wissensrepräsentation und Inferenz, 1993.

[BLFM98] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Re-
source Identifiers (URI): Generic Syntax. IETF RFC 2396,
August 1998.

[Bro86] Rodney A. Brooks. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation,
1(2):14–23, 1986.

[Bun95] Deutsche Bundesregierung. Verordnung über die tech-
nische Umsetzung von Überwachungsmaßnahmen des
Fernmeldeverkehrs in Fernmeldeanlagen, die für den
öffentlichen Verkehr bestimmt sind (Fernmeldeverkehr-
Überwachungs-Verordnung – FÜV), May 1995. Online at
http://www.regtp.de/imperia/md/content/tech_reg_t/

ueberwachu/2.pdf.

[Bun96] Deutscher Bundestag. Telekommunikationsgesetz (TKG).
BGBl. I S. 1120, July 1996. Geändert durch Art. 2 Abs. 34
des Begleitgesetzes zum Telekommunikationsgesetz vom 17.
Dezember 1997 (BGBl. I S. 3108), geändert durch Art. 2
Abs. 6 des Sechsten Gesetzes zur Änderung des Gesetzes gegen
Wettbewerbsbeschränkungen vom 26. August 1998 (BGBl. I
S. 2544), online at http://www.regtp.de/gesetze/start/

fs_04.html.

http://www.regtp.de/imperia/md/content/tech_reg_t/ueberwachu/2.pdf
http://www.regtp.de/imperia/md/content/tech_reg_t/ueberwachu/2.pdf
http://www.regtp.de/gesetze/start/fs_04.html
http://www.regtp.de/gesetze/start/fs_04.html

Bibliography xix

[Bun97] Deutscher Bundestag. Gesetz zur Regelung der Rah-
menbedingungen für Informations- und Kommunikationsdi-
enste (Informations- und Kommunikationsdienste-Gesetz –
IuKDG). BT-Drs. 13/7934 of June 11, 1997, June 1997.

[Cas95] C. Castelfranchi. Guarantees for autonomy in cognitive agent
architecture. Lecture Notes in Computer Science, 890:56–??,
1995.

[cci88a] Recommendation X.208 – Specification of Abstract Syntax
Notation One (ASN.1), 1988.

[CCI88b] CCITT. Recommendation X.208: Specification of Abstract
Syntax Notation One (ASN.1), 1988.

[CCI88c] CCITT. Recommendation X.209: Specification of Basic En-
coding Rules for Abstract Syntax Notation One (ASN.1),
1988.

[Cer97] Certicom Corp. An Introduction to Information Security.
http://www2.certicom.ca/ecc/wpaper.htm, March 1997.

[Cer99] Certicom Corp. Certicom News. http://www.certicom.com/
news.htm, August 1999.

[Cer00] Certicom Corp. Whitepapers. http://www2.certicom.ca/

ecc/wpaper.htm, August 2000. Version 4.1.

[CL90] P. R. Cohen and H. J. Levesque. Intention is Choice with
Commitment. Artificial Intelligence, 42:213–261, 1990.

[CML86] S.E. Conry, R.A. Meyer, and V.R. Lesser. Multistage Negoti-
ation in Distributed Planning. In Bond and Gasser [BG88].

[Com97] European Commission. Communication from the Commission
Towards A European Framework for Digital Signatures And
Encryption. October 1997. Online at http://www.ispo.cec.
be/eif/policy/97503toc.html.

[Cur98] Matt Curtin. Snake Oil Warning Signs: Encryption Software
to Avoid. http://www.interhack.net/people/cmcurtin/

snake-oil-faq.html, April 1998.

http://www2.certicom.ca/ecc/wpaper.htm
http://www.certicom.com/news.htm
http://www.certicom.com/news.htm
http://www2.certicom.ca/ecc/wpaper.htm
http://www2.certicom.ca/ecc/wpaper.htm
http://www.ispo.cec.be/eif/policy/97503toc.html
http://www.ispo.cec.be/eif/policy/97503toc.html
http://www.interhack.net/people/cmcurtin/snake-oil-faq.html
http://www.interhack.net/people/cmcurtin/snake-oil-faq.html

xx Bibliography

[CW92] M. Chang and C.C. Woo. SANP: A Communication Level
Protocol for Negotiations. In Y. Demazeau and J.P. Müller,
editors, Decentralized A. I. – Proceedings of the 3rd European
Workshop on Modelling Autonomous Agents in Multi-Agent
Worlds (MAAMAW-92), pages 31–54, 1992.

[Cyb01] Cyber Business Centre at Nottingham University Business
School. Glossary, 2001. Online at http://www.nottingham.

ac.uk/cyber/Gloss.html.

[DAR] The DARPA Knowledge Sharing Initiative. Specification of
the KQML Agent-Communication Language.

[dB94] B. den Boer and A. Bosselaers. Collisions for the compres-
sion function of MD5. Lecture Notes in Computer Science,
765:293–??, 1994.

[DBP96] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A
Strengthened Version of RIPEMD. Lecture Notes in Computer
Science, 1039:71–82, 1996.

[DH98] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6).
IETF RFC 2460, December 1998.

[Die00a] Dr. Oliver Diedrich. Europäisches Patentamt befürwortet
Software-Patente. heise online, September 2000.

[Die00b] Dr. Oliver Diedrich. Hyperlink-Patent zeigt Absurdität von
Software-Patenten. heise online, June 2000.

[Die00c] Dr. Oliver Diedrich. Keine Software-Patente nach amerikanis-
chem Muster in Europa. heise online, July 2000.

[DL91] E.H. Durfee and V.R. Lesser. Partial Global Planning: A
Coordination Framework for Distributed Hypothesis Forma-
tion. IEEE Transactions on Systems, Man, and Cybernetics,
21(5):1167–1183, 1991.

[DM90] E.H. Durfee and T.A. Montgomery. A Hierarchical Proto-
col for Coordinating Multiagent Behavior. In Proceedings of
AAAI-90, pages 86–93, 1990.

http://www.nottingham.ac.uk/cyber/Gloss.html
http://www.nottingham.ac.uk/cyber/Gloss.html

Bibliography xxi

[Dob97] H. Dobbertin. RIPEMD with Two-Round Compress Func-
tion Is Not Collision-Free. Journal of Cryptology: The Jour-
nal of the International Association for Cryptologic Research,
10(1):51–69, Winter 1997.

[Dr.01] Dr. Dorothee Dersch and Dr. Torsten Eymann and Stefan
Sackmann and Florenza Goanta and Ralf Baumann. Digital
Business Agents – Nutzen und Potenziale von Multi-Agenten-
Systemen: Grundlagen, Chancen, Geschäftsmodelle. Techni-
cal report, Diebold Deutschland GmbH, Frankfurter Straße
27, D 65760 Eschborn, 2001.

[ECS94] Donald E. Eastlake, Stephen D. Crocker, and Jeffrey I.
Schiller. Randomness Recommendations for Security. IETF
RFC 1750, December 1994.

[EG85] T. El-Gamal. A public-key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE TIT, IT-
31(4):469–472, 1985.

[ELG99] Hans Joachim Einsiedler, Alain Léger, and Marie-Pierre
Gleizes. ABROSE: A Co-operative Multi-Agent Based
Framework for Electronic Marketplace. Technical re-
port, European Commission, ACTS Programme, CLI-
MATE cluster, September 1999. Published in “Agents
Technologies in Europe – ACTS Activities,” online at
http://www.infowin.org/ACTS/ANALYSYS/PRODUCTS/

THEMATIC/AGENTS/ch3/abrose.htm.

[Ell99a] Carl M. Ellison. SPKI Requirements. IETF RFC 2692,
September 1999.

[Ell99b] Carl M. Ellison. The nature of a useable PKI. Computer
Networks, 31(8):823–830, 1999.

[Ern01] Ernst & Young Deutsche Allgemeine Treuhand AG. Informa-
tion Security Survey 2001. Technical report, ISAAS – Infor-
mation Systems Assurance and Advisory Services auf einen
Blick, 2001. Online at http://www.ernst-young.de/pdf/

Information_Security_Survey.pdf.

[FBK+01] Stefan Fricke, Karsten Bsufka, Jan Keiser, Torge Schmidt,
Ralf Sesseler, and Sahin Albayrak. Agent-based telematic ser-

http://www.infowin.org/ACTS/ANALYSYS/PRODUCTS/THEMATIC/AGENTS/ch3/abrose.htm
http://www.infowin.org/ACTS/ANALYSYS/PRODUCTS/THEMATIC/AGENTS/ch3/abrose.htm
http://www.ernst-young.de/pdf/Information_Security_Survey.pdf
http://www.ernst-young.de/pdf/Information_Security_Survey.pdf

xxii Bibliography

vices and telecom applications. Communications of the ACM,
44(4):43–48, April 2001.

[FG96] Stan Franklin and Art Graesser. Is it an Agent, or just a
Program? A Taxonomy for Autonomous Agents. In Proceed-
ings of the Third International Workshop on Agent Theories,
Architectures, and Languages. Springer-Verlag, 1996.

[FKK96] Alan O. Freier, Philip L. Karlton, and Paul C.
Kocher. The SSL Protocol. IETF Draft
draft-freier-ssl-version3-02.txt, November 1996.
Version 3.0.

[FN71] R. E. Fikes and N. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial
Intelligence, 5(2):189–208, 1971.

[Fou97] Foundation for Intelligent Physical Agents (FIPA). Fipa
97 specification version 1.2. http://drogo.cselt.stet.it/

fipa/spec/fipa97/fipa97.htm, 1997.

[Fou00] Foundation for Intelligent Physical Agents (FIPA). Mis-
sion statement. http://www.fipa.org/about/mission.

html, 2000.

[Gal88] J.R. Galliers. A Theoretical Framework for Computer Models
of Cooperative Dialogue, Acknowledging Multi-Agent Conflict.
PhD thesis, Open University, UK, 1988.

[GBS00] Bill Joy Gilad Bracha, James Gosling and Guy Steele. The
Java Language Specification. Java. Addison-Wesley, second
edition edition, 2000. Online at http://java.sun.com/docs/
books/jls/second_edition/html/j.title.doc.html.

[Geo00] George Cybenko and Bob Gray and David Kotz and Daniela
Rus. D’Agents. http://agent.cs.dartmouth.edu/, 2000.

[GF] Michael R. Genesereth and Richard E. Fikes. Knowledge In-
terchange Format, version 3.0 edition. Reference Manual.

[Gil96] D. Gilbert. Intelligent Agents White Paper. 1996. IBM Intel-
ligent Agent Center of Competency.

[GK94] Michael R. Genesereth and Steven P. Ketchpel. Software
agents. Communications of the ACM, 37(7):48–53, July 1994.

http://drogo.cselt.stet.it/fipa/spec/fipa97/fipa97.htm
http://drogo.cselt.stet.it/fipa/spec/fipa97/fipa97.htm
http://www.fipa.org/about/mission.html
http://www.fipa.org/about/mission.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://agent.cs.dartmouth.edu/

Bibliography xxiii

[Gol96] Dieter Gollmann, editor. Fast software encryption: third in-
ternational workshop Cambridge, UK, February 21–23, 1996:
proceedings, volume 1039 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1996.

[Gon98] Li Gong. Java Security Architecture (JDK1.2).
http://java.sun.com/products/jdk/1.2/docs/guide/

security/spec/security-spec.doc.html, October 1998.

[Gue01] Gregory L. Guerin. Microsoft, VeriSign, and Certifi-
cate Revocation. http://amug.org/~glguerin/opinion/

revocation.html, April 2001. Last revised May 13, 2001.

[GW94] Christine Guilfoyle and Ellie Warner. Intelligent Agents – the
new Revolution in Software. Technical report, OVUM, 1994.

[HCK95] Colin G. Harrison, David M. Chess, and Aaron Kershenbaum.
Mobile Agents: Are they a good idea? Technical report, IBM,
1995.

[Hei99] Heise Verlag Online. c’t CA Policy Zertifizierungsrichtlinien.
http://heise.de/ct/pgpCA/policy.shtml, May 1999.

[Hew77] Carl Hewitt. Viewing Control Structures as Patterns of Pass-
ing Messages. Artificial Intelligence, 8:323–363, 1977.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509
Public Key Infrastructure, Certificate and CRL Profile. IETF
RFC 2459, January 1999.

[Hig00] Daniel Higgs. Network Exploit Present Between Key-
board and Chair. http://www.osopinion.com/Opinions/

DanielHiggs/DanielHiggs1.html, 2000.

[IKV] IKV++ GmbH. Grasshopper Basics And Con-
cepts. http://www.grasshopper.de/download/doc/

BasicsAndConcepts2.2.pdf.

[Inf81a] Information Sciences Institute. Internet Protocol. IETF
RFC 791, September 1981.

[Inf81b] Information Sciences Institute. Transmission Control Proto-
col. IETF RFC 793, September 1981.

http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-spec.doc.html
http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-spec.doc.html
http://amug.org/~glguerin/opinion/revocation.html
http://amug.org/~glguerin/opinion/revocation.html
http://heise.de/ct/pgpCA/policy.shtml
http://www.osopinion.com/Opinions/DanielHiggs/DanielHiggs1.html
http://www.osopinion.com/Opinions/DanielHiggs/DanielHiggs1.html
http://www.grasshopper.de/download/doc/BasicsAndConcepts2.2.pdf
http://www.grasshopper.de/download/doc/BasicsAndConcepts2.2.pdf

xxiv Bibliography

[Ins98] MageLang Institute. Fundamentals of Java Secu-
rity. http://developer.java.sun.com/developer/

onlineTraining/Security/Fundamentals/index.html,
October 1998.

[Ins99a] Institute for Applied Information Processing and Communi-
cations, Graz University of Technology. IAIK Java Cryptogra-
phy Extension. http://jcewww.iaik.tu-graz.ac.at/jce/

jce.htm, July 1999.

[Ins99b] Institute for Applied Information Processing and Communica-
tions, Graz University of Technology. IAIK–iSaSiLk. http://
jcewww.iaik.tu-graz.ac.at/iSaSiLk/iSaSiLk.htm, July
1999.

[Int89] International Organization for Standardization. Information
processing systems – Open Systems Interconnection – Basic
Reference Model – Part 2: Security Architecture, June 1989.

[ist99] Information society technologies: 1999 workprogramme. Tech-
nical report, European Commission, 1999. Online at http:

//www.cordis.lu/ist/home.html.

[ITU93] ITU-T Telecommunication Standardization Sector of ITU. In-
formation Technology – Open Systems Interconnection – The
Directory: Models, November 1993. ITU-T Recommendation
X.501, ISO/IEC International Standard 9594-2.

[ITU97a] ITU-T Telecommunication Standardization Sector of ITU. In-
formation technology – Open Systems Interconnection – Sys-
tems management overview, 1997. ITU-T Recommendation
X.701, ISO/IEC International Standard 10040.

[ITU97b] ITU-T Telecommunication Standardization Sector of ITU. In-
formation Technology – Open Systems Interconnection – The
Directory: Authentication Framework, 1997. ITU-T Recom-
mendation X.509, ISO/IEC International Standard 9594-8.

[J.E94] J.E. White. Telescript technology: The foundation for the
electronic marketplace, 1994. Version 4.1.

[Jos95] Joseph A. Bank. Java Security. http://www-swiss.ai.mit.
edu/~jbank/javapaper/javapaper.html, December 1995.

http://developer.java.sun.com/developer/onlineTraining/Security/Fundamentals/index.html
http://developer.java.sun.com/developer/onlineTraining/Security/Fundamentals/index.html
http://jcewww.iaik.tu-graz.ac.at/jce/jce.htm
http://jcewww.iaik.tu-graz.ac.at/jce/jce.htm
http://jcewww.iaik.tu-graz.ac.at/iSaSiLk/iSaSiLk.htm
http://jcewww.iaik.tu-graz.ac.at/iSaSiLk/iSaSiLk.htm
http://www.cordis.lu/ist/home.html
http://www.cordis.lu/ist/home.html
http://www-swiss.ai.mit.edu/~jbank/javapaper/javapaper.html
http://www-swiss.ai.mit.edu/~jbank/javapaper/javapaper.html

Bibliography xxv

[KA98] Stephen Kent and Randall Atkinson. Security Architecture
for the Internet Protocol. IETF RFC 2401, November 1998.

[Kar] Neeran Karnik. Security in Mobile Agent Systems. PhD the-
sis. Ajanta agent system, online at http://www.cs.umn.edu/
Ajanta/papers/nmk_thesis.ps.

[KBC97] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC:
Keyed–Hashing for Message Authentication. IETF RFC 2104,
February 1997.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential
Power Analysis. 1999.

[Koc95] Paul Kocher. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. December 1995.

[Koo00] Bert-Jaap Koops. Crypto Law Survey. August 2000. Version
18.1.

[LF94] Yannis Labrou and Tim Finin. A semantics approach for
KQML – a general purpose communication language for soft-
ware agents, 1994.

[LF97] Yannis Labrou and Tim Finin. A Proposal for a new KQML
Specification, 1997.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification. Java. Addison-Wesley, second edition edition,
1999. Online at http://java.sun.com/docs/books/vmspec/
2nd-edition/html/VMSpecTOC.doc.html.

[Mag] General Magic. Web home page. http://www.generalmagic.
com/.

[MAM+99] Michael Myers, Rich Ankney, Ambarish Malpani, Slava
Galperin, and Carlisle Adams. X.509 Internet Public Key In-
frastructure Online Certificate Status Protocol – OCSP. IETF
RFC 2560, June 1999. Proposed Standard.

[Mat97] P.H. Matthews, editor. The Concise Oxford Dictionary of
Linguistics. 1997.

[McL93] Kenneth McLeish, editor. Bloomsbury Guide to Human
Thought. 1993.

http://www.cs.umn.edu/Ajanta/papers/nmk_thesis.ps
http://www.cs.umn.edu/Ajanta/papers/nmk_thesis.ps
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://www.generalmagic.com/
http://www.generalmagic.com/

xxvi Bibliography

[Met99] Riku Mettala. Bluetooth Protocol Architecture. http://www.
bluetooth.com/developer/whitepaper/whitepaper.asp,
August 1999. Bluetooth White Paper, Version 1.0.

[Möc99] Frank Möcke. EU-Verbraucherschutz bedroht den Mittel-
stand. heise online, August 1999.

[Möl97] Ulf Möller. Kryptographie: Rechtliche Situation, politische
Diskussion. http://www.fitug.de/ulf/krypto/verbot.

html, August 1997.

[MSST98] Douglas Maughan, Mark Schneider, Mark Schertler, and Jeff
Turner. Internet Security Association and Key Management
Protocol (ISAKMP). IETF RFC 2408, November 1998.

[NCS] Rainbow Series Library. Technical report. Online
at http://www.radium.ncsc.mil/tpep/library/rainbow/

5200.28-STD.pdf.

[NCS00] Evaluated Products List. Technical report, May 2000. Online
at http://www.radium.ncsc.mil/tpep/epl/index.html.

[Net99] Network Associates Inc. An Introduction to Cryptography.
3965 Freedom Circle, Santa Clara, CA 95054, USA, PGP Ver-
sion 6.5.2 edition, October 1999.

[Nor00] Nortel Networks Corporation. FIPA-OS V2.0.0 Distribution
Notes. http://prdownloads.sourceforge.net/fipa-os/

FIPA_OSv2_0_0.pdf, 2000.

[Obj00] ObjectSpace. Voyager Security Developer’s Guide. http:

//support.objectspace.com/doc/Security/index.htm,
2000. Version 4.0.

[Org99] European Patent Organization. Promoting innovation
through patents – Green Paper on the Community patent
and the patent system in Europe. February 1999.
Online at http://http://europa.eu.int/comm/internal_

market/en/intprop/indprop/paten.pdf.

[oST95] National Institute of Standards and Technology. Secure Hash
Standard, FIPS PUB 180-1, April 1995.

[oST96] National Institute of Standards and Technology. Electronic
Data Interchange (EDI), FIPS PUB 161-2, April 1996.

http://www.bluetooth.com/developer/whitepaper/whitepaper.asp
http://www.bluetooth.com/developer/whitepaper/whitepaper.asp
http://www.fitug.de/ulf/krypto/verbot.html
http://www.fitug.de/ulf/krypto/verbot.html
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf
http://www.radium.ncsc.mil/tpep/epl/index.html
http://prdownloads.sourceforge.net/fipa-os/FIPA_OSv2_0_0.pdf
http://prdownloads.sourceforge.net/fipa-os/FIPA_OSv2_0_0.pdf
http://support.objectspace.com/doc/Security/index.htm
http://support.objectspace.com/doc/Security/index.htm
http://http://europa.eu.int/comm/internal_market/en/intprop/indprop/paten.pdf
http://http://europa.eu.int/comm/internal_market/en/intprop/indprop/paten.pdf

Bibliography xxvii

[oST99] National Institute of Standards and Technology. Data En-
cryption Standard (DES), FIPS PUB 46-3, October 1999.
TripleDES also published as ANSI X9.52.

[oST00] National Institute of Standards and Technology. Digital Sig-
nature Standard (DSS), FIPS PUB 186-2, January 2000.

[otA90] Headquarters Department of the Army. Basic Cryptanaly-
sis, Field Manual No. 34-40-2. US Army, Washington, DC,
September 1990.

[otOoDTC99] Director of the Office of Defense Trade Controls. International
Traffic in Arms Regulations (ITAR), April 1999. Put online by
Society for International Affairs at http://www.siaed.org/

itar/itar120.html.

[plc99] British Telecommunications plc. Zeus web home page. http:
//www.labs.bt.com/projects/agents/zeus/index.htm,
1999.

[Pro01] The FreeBSD Documentation Project. Freebsd hand-
book. http://www.freebsd.org/doc/en_US.ISO_8859-1/

books/handbook/index.html, 2001.

[Reg97] Regulierungsbehörde für Telekommunikation und Post. En-
twurf Maßnahmenkatalog für digitale Signaturen – auf Grund-
lage von SigG und SigV, November 1997. Version 1.0.

[Reg00] Regulierungsbehörde für Telekommunikation und Post. Fra-
gen und Antworten. http://www.regtp.de/tech_reg_tele/
start/in_06-02-03-00-00_m/index.html, September 2000.

[Rei96] Deutscher Reichstag. Bürgerliches Gesetzbuch. RGBl. pg. 195,
August 1896. Also published in BGBl. III 400-2.

[RG85] J.S. Rosenschein and M.R. Genesereth. Deals among rational
agents. In Proceedings of the Ninth International Joint Con-
ference on Artificial Intelligence (IJCAI-85), pages 91–99, Los
Angeles, CA, USA, 1985.

[Riv92] Ronald L. Rivest. The MD5 Message-Digest Algorithm. IETF
RFC 1321, April 1992.

[RN95] Stuart Russel and Peter Norwig. Artificial Intelligence, A
Modern Approach. Prentice-Hall, 1995.

http://www.siaed.org/itar/itar120.html
http://www.siaed.org/itar/itar120.html
http://www.labs.bt.com/projects/agents/zeus/index.htm
http://www.labs.bt.com/projects/agents/zeus/index.htm
http://www.freebsd.org/doc/en_US.ISO_8859-1/books/handbook/index.html
http://www.freebsd.org/doc/en_US.ISO_8859-1/books/handbook/index.html
http://www.regtp.de/tech_reg_tele/start/in_06-02-03-00-00_m/index.html
http://www.regtp.de/tech_reg_tele/start/in_06-02-03-00-00_m/index.html

xxviii Bibliography

[RSA93a] RSA Laboratories. PKCS#1: RSA Encryption Standard.
ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-1.ps, November
1993. Version 1.5, also RFC2437.

[RSA93b] RSA Laboratories. PKCS#10: Certification Request Syntax
Standard. ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-10.ps,
November 1993. Version 1.0, also RFC 2314.

[RSA93c] RSA Laboratories. PKCS#3: Diffie-Hellman Key-Agreement
Standard. ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-3.ps,
November 1993. Version 1.4.

[RSA93d] RSA Laboratories. PKCS#5: Password-Based Encryp-
tion Standard. ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-5.

ps, November 1993. Version 1.5.

[RSA93e] RSA Laboratories. PKCS#7: Cryptographic Message Syn-
tax Standard. ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-7.

ps, November 1993. Version 1.5, also RFC2315.

[RSA93f] RSA Laboratories. PKCS#8: Private-Key Information Syn-
tax Standard. ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-8.

ps, November 1993. Version 1.1.

[RSA97] RSA Laboratories. PKCS#12: Personal Information Ex-
change Syntax Standard. ftp://ftp.rsa.com/pub/pkcs/

pkcs-12/PKCS12.PDF, April 1997. Version 1.0.

[RSA00] RSA Laboratories. FAQ about Today’s Cryptography. http:
//www.rsasecurity.com/rsalabs/faq/, August 2000. Ver-
sion 4.1.

[San01] Sandia National Laboratories. the Java Expert System Shell.
http://herzberg.ca.sandia.gov/jess/, May 2001.

[Sar89] Desmond J. Sargent. Information handling system and ter-
minal apparatus therefore, October 1989. Filed as US Patent
4,873,662.

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley & Sons,
Inc., 2. edition, 1996.

[Sch97] Peter Schefe. Eine kleine Sicherheitsphilosophie der Soft-
waretechnik. Telepolis, December 1997.

ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-1.ps
ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-10.ps
ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-3.ps
ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-5.ps
ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-5.ps
ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-7.ps
ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-7.ps
ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-8.ps
ftp://ftp.rsa.com/pub/pkcs/ps/pkcs-8.ps
ftp://ftp.rsa.com/pub/pkcs/pkcs-12/PKCS12.PDF
ftp://ftp.rsa.com/pub/pkcs/pkcs-12/PKCS12.PDF
http://www.rsasecurity.com/rsalabs/faq/
http://www.rsasecurity.com/rsalabs/faq/
http://herzberg.ca.sandia.gov/jess/

Bibliography xxix

[Sch98] Bruce Schneier. The Fallacy of Cracking Contests. Crypto-
Gram, December 1998.

[Sch99a] Bruce Schneier. Cryptography: The Importance of Not Being
Different. Crypto-Gram, April 1999.

[Sch99b] Bruce Schneier. Snake Oil. Crypto-Gram, February 1999.

[Sea69] John R. Searle. Speech Acts. Cambridge University Press,
1969.

[Sec00] SecurityFocus.com. Security Focus.com News. http://www.

securityfocus.com/, September 2000.

[Ses02] Ralf Sesseler. Eine Architektur zur Interaktion von Agenten
basierend auf Diensten. PhD thesis, Technische Universität
Berlin, 2002.

[Sha63] Claude E. Shannon. The Mathematical Theory of Communi-
cation. 1963. Originally from Bell System Technical Journal,
July and October 1948.

[Shi00] R. Shirey. Internet Security Glossary. IETF RFC 2828, May
2000. Informational.

[Sho93a] Yoav Shoham. Agent-Oriented Programming. Artifical Intel-
ligence, 60:51–92, 1993.

[Sho93b] Yoav Shoham. Agent-oriented programming. Artificial Intel-
ligence, 60:51–92, March 1993.

[Smi80] R. G. Smith. The contract net protocol: High-level commu-
nication and control in a distributed problem solver. IEEE
Transactions on Computers, 1980.

[SN95] Paul A. Samuelson and William D. Nordhaus. Economics.
McGraw-Hill Higher Education, 15th edition, 1995. Interna-
tional Edition.

[Spa95] Eugene H. Spafford. A Few Comments on “Hacker
Challenges”. In Carl Landwehr, Hilarie Orman, ed-
itor, Electronic CIPHER, number 12. IEEE Computer
Society’s TC on Security and Privacy, February 1995.
Online at http://www.itd.nrl.navy.mil/ITD/5540/ieee/

cipher/old-issues/issue9602.

http://www.securityfocus.com/
http://www.securityfocus.com/
http://www.itd.nrl.navy.mil/ITD/5540/ieee/cipher/old-issues/issue9602
http://www.itd.nrl.navy.mil/ITD/5540/ieee/cipher/old-issues/issue9602

xxx Bibliography

[SS75] J.H. Saltzer and M.D. Schroeder. The Protection of Infor-
mation in Computer Systems. In Proceedings of the IEEE,
volume 63, pages 1278–1308, September 1975.

[ST98] T. Sander and C. Tschudin. Towards mobile cryptography.
In Proceedings of the IEEE Symposium on Security and Pri-
vacy, pages 215–224, Oakland, CA, USA, May 1998. IEEE
Computer Society Press.

[Sun98a] Sun Microsystems, Inc. Permissions in JDK1.2.
http://java.sun.com/products/jdk/1.2/docs/guide/

security/permissions.html, October 1998.

[Sun98b] Sun Microsystems, Inc. Security Managers and JDK 1.2.
http://java.sun.com/products/jdk/1.2/docs/guide/

security/smPortGuide.html, October 1998.

[Sun99a] Sun Microsystems, Inc. Jini Technology Architec-
tural Overview. http://www.sun.com/jini/whitepapers/

architecture.html, January 1999.

[Sun99b] Sun Microsystems, Inc. What is the Java Platform? http:

//java.sun.com/nav/whatis/, October 1999.

[Sun00a] Sun Microsystems, Inc. JAVA 2 SDK, Standard Edition, Ver-
sion 1.2. http://java.sun.com/products/jdk/1.2/, Au-
gust 2000.

[Sun00b] Sun Microsystems, Inc. JAVA 2 SDK, Standard Edition, Ver-
sion 1.4. http://java.sun.com/j2se/1.4/, August 2000.

[Sun00c] Sun Microsystems, Inc. Java Cryptography Extension (JCE)
1.2.1. http://java.sun.com/products/jce/, September
2000.

[Sun01] Sun Microsystems, Inc. JavaTM Secure Socket Extension
(JSSE) 1.0.2. http://java.sun.com/products/jsse/, 2001.

[Syc88] K. Sycara. Resolving Goal-Conflicts via Negotiation. In Pro-
ceedings of AAAI-88, pages 245–250, 1988.

[T-T01] T-TeleSec. Richtlinien für die Vergabe von ServerPass Zer-
tifikaten. https://wwwca.telesec.de/Pub_Cert/ServPass/
cps/index.html, May 2001.

http://java.sun.com/products/jdk/1.2/docs/guide/security/permissions.html
http://java.sun.com/products/jdk/1.2/docs/guide/security/permissions.html
http://java.sun.com/products/jdk/1.2/docs/guide/security/smPortGuide.html
http://java.sun.com/products/jdk/1.2/docs/guide/security/smPortGuide.html
http://www.sun.com/jini/whitepapers/architecture.html
http://www.sun.com/jini/whitepapers/architecture.html
http://java.sun.com/nav/whatis/
http://java.sun.com/nav/whatis/
http://java.sun.com/products/jdk/1.2/
http://java.sun.com/j2se/1.4/
http://java.sun.com/products/jce/
http://java.sun.com/products/jsse/
https://wwwca.telesec.de/Pub_Cert/ServPass/cps/index.html
https://wwwca.telesec.de/Pub_Cert/ServPass/cps/index.html

Bibliography xxxi

[TCS85] Department of Defense Trusted Computer System Evalua-
tion Criteria. Technical report, Fort Meade, MD 20755-
6000, USA, December 1985. DoD 5200.28-STD, aka “Or-
ange Book,” online at http://www.radium.ncsc.mil/tpep/
library/rainbow/5200.28-STD.pdf.

[Töb99] Hermann Többen. Konzeption eines marktorientierten Rout-
ingverfahrens für ATM-Netze auf der Basis Intelligenter
Agenten. PhD thesis, Technische Universität Berlin, dec 1999.

[Tok00] Tokyo Research Laboratory, IBM Japan, Ltd. Aglets Software
Development Kit. http://www.trl.ibm.com/aglets/, June
2000.

[Var00] Various. Security Focus.com Bugtraq Mailing List Archive.
http://www.securityfocus.com/bugtraq/archive/,
September 2000.

[Ver97] VeriSign Inc. Verisign Certification Practice Statement.
https://www.verisign.com/repository/CPS/, May 1997.

[vNM44] J. von Neumann and O. Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, 1944.

[Wei] Lauren Weinstein. The PRIVACY Forum. http://www.

vortex.com/privacy/.

[WJ95] Michael Wooldridge and Nicholas R. Jennings. Intelligent
Agents: Theory and Practice. The Knowledge Engineering
Review, 10(2):115–152, 1995. Online at http://www.elec.

qmw.ac.uk/dai/pubs/KER95/.

[WJ98] Michael Wooldridge and Nicholas R. Jennings. Pitfalls of
Agent-Oriented Development. In Proceedings of 2nd Interna-
tional Conference on Autonomous Agents (Agents-98), pages
385–391, 1998.

[WM-01] WM-Net. Web developers online glossary, 2001. Online at
http://wm-net.com/glossary/.

[Yah01] Yahoo. Microsoft acknowledges secret code in software.
http://smallbusiness.yahoo.com/entrepreneur.html?

s=smallbiz/articles/20010514/microsoft_ackno, May
2001.

http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.pdf
http://www.trl.ibm.com/aglets/
http://www.securityfocus.com/bugtraq/archive/
https://www.verisign.com/repository/CPS/
http://www.vortex.com/privacy/
http://www.vortex.com/privacy/
http://www.elec.qmw.ac.uk/dai/pubs/KER95/
http://www.elec.qmw.ac.uk/dai/pubs/KER95/
http://wm-net.com/glossary/
http://smallbusiness.yahoo.com/entrepreneur.html?s=smallbiz/articles/20010514/microsoft_ackno
http://smallbusiness.yahoo.com/entrepreneur.html?s=smallbiz/articles/20010514/microsoft_ackno

	I Introduction and Domain
	Introduction
	Synopsis
	Domain Definition
	What This Is About
	What This Is Not About
	Structure of the Thesis

	Telematic Services
	Synopsis
	Demonstration Scenario
	Telecommunication Applications and Services
	Electronic Markets
	Roles
	Law
	Summary

	II Technology
	Security Technology
	Synopsis
	Terminology
	General Concepts
	Basic Techniques
	Symmetric Ciphers
	Asymmetric Ciphers
	Security Systems
	Secure Socket Layer
	System Security Requirements
	Attacks
	Summary

	Java
	Synopsis
	Programming Language
	Execution Environment
	Standard Class Library
	Java Tools
	Summary

	Agents
	Synopsis
	Notions of an Agent
	Definitions of Agents
	The Single Agent
	Agent Community
	Agent Architectures
	Agent Platforms and Toolkits
	Pitfalls of Agents
	Summary

	III Security Infrastructure for Agents
	Analysis and Design
	Synopsis
	Existing Agent Architectures
	Certificates
	Communication
	Mobile Agents
	Intra-Agent Security
	Platform Security
	Implementation Specifics
	Summary

	Basic Security
	Synopsis
	Platform Security
	Transport Layer Communication Security
	Certificates
	Summary

	Agent Security
	Synopsis
	Agent's Security Awareness
	Knowledge Base Protection
	Transport Layer Communication Security
	Application Layer Communication Security
	Service Authorization
	Summary

	Agent Community Security
	Synopsis
	Manager Agent
	Security Agent
	Summary

	Global Security
	Synopsis
	Certificate Authority Agent
	Security Service Agent
	Summary

	Conclusions
	Synopsis
	Analysis
	Achievements and Related Work
	Further Work
	Summary

	IV Appendices
	CAL
	CAL Introduction
	Component Objects
	Ability Objects
	Security Dependencies Objects
	Service Security Requirements Objects

	Glossary
	Bibliography

