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Chapter 1

Introduction

There are two major frameworks for providing service guarantees in IP-based networks: The
Integrated Services (IS) architecture and the Differentiated Services (DS) architecture. While
the IS framework provides service guarantees using a flow-based packet differentiation, the DS
architecture differentiates the treatment of aggregates.

Though IS is able to provide strong Quality of Service (QoS) guarantees, its practical use suffers
from significant scalability problems. The DS framework addresses this issue through its concept
of aggregation. Packets are identified by simple markings that indicate the respective class. In the
core of the network, routers do not need to determine to which flow a packet belongs, only which
aggregate behavior has to be applied. Edge routers mark packets by setting the DS Code-Point
(DSCP) and indicate whether they are within profile. If they are out of profile they might even be
discarded by a dropper at the edge router. A particular marking on a packet indicates a so-called
Per Hop Behavior (PHB) that has to be applied for forwarding the packet.

The price for building aggregates is, however, a weaker control over the provisioned service
parameters. The derivation of delay bounds remains a challenge, when providing a Premium
Service. In [14] such bounds are derived for a general topology and a maximum load. However,
these bounds can be improved, when additional information concerning the current load and the
special topology of the DS domain is available.

In [54], a central resource management for DS domains called Bandwidth Broker is presented.
A Bandwidth Broker is a middleware service which controls and facilitates the dynamic access to
network services of a particular administrative domain [31]. The task of a Bandwidth Broker in a
DS domain is to perform a careful admission control, and to set up the appropriate configuration
of the domain’s edge routers, whereas the configuration of core routers remains static to allow for
scalability. While doing so, the Bandwidth Broker knows about all service requests. Besides it
can easily learn about the DS domains topology, either statically or by implementing a listener
for the domains routing protocol. Thus, a Bandwidth Broker can have access to all information
that is required, in order to base its admission control on delay bounds that are derived for the
current load, and the special topology of the administrated domain.

The particular challenge that arises here is to derive a set of formulas that can effectively be
used by the admission control procedures to decide about an additional service request based on
the composition of already accepted service requests. The reservation-based approach used by the
admission control procedures of the Integrated Services architecture is a foundation for this task.
However, its assumptions do not apply to the scenario of aggregate scheduling.

In this context, traffic engineering capabilities offer the opportunity to control the composition
of aggregates and can thus be used to provide stronger service guarantees. The Multi-Protocol
Label Switching (MPLS) architecture [59, 60] is a good candidate to extend the ability to build
reasonable end-to-end services based on the DS framework.

The MPLS architecture is a label switching technique which is based on a functional decom-
position of the network layer into a control component and a forwarding component. Flows of
packets are grouped into disjoint subsets which, from a forwarding point of view, are treated by
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2 Introduction

the routers in the same way. This logical grouping of traffic with a common destination leads to
the construction of Forwarding Equivalence Classes. The members of these classes are identified
by a common label. In contrast to other switching techniques such as Asynchronous Transfer
Mode (ATM), MPLS does not rely on specific capabilities of the underlying link layer. Instead,
it introduces the ability to add an additional label on top of the data link layer. It is therefore
possible to deploy MPLS in heterogeneous environments which are built on different data link
layer technologies.

The Path Allocation in Backbone Networks (PAB) was funded by the German Research Net-
work (DFN) to explore advanced mechanisms for providing service guarantees under the particular
constraints of an IP-based G-WiN-backbone. The project was performed by two contractual part-
ners:

• Central Institute for Applied Mathematics, Forschungszentrum Jülich GmbH

• Department of Computer Science, RWTH Aachen

Additional support was provided by Cisco Systems. Cisco collaborated with the project part-
ners and supported the project through its University Research Programme.

The evaluation was performed in two major workflows:

• Comprehensive experimental analysis of the Multi-Protocol Label Switching architecture
and its potential with respect to support QoS using a Cisco-based testbed.

• Analytical modelling of service guarantees including the validation of applicability using
simulation methods.

The work itself was organized in four work packages:

• Setup, validation, and operation of the testbed

• Configuration of Label Switched Paths

• Evaluation of Traffic Engineering algorithms

• Analysis of MPLS in the context of end-to-end Quality of Service

This report presents the results of the comprehensive evaluation and the software development
performed within the PAB-project. For readability, it is structured to be both, a primer to the
underlying methods and technology, and a documentation of the innovations achieved during the
project.



Chapter 2

Background: Service
Differentiation in the Internet

Emerging Grid applications exhibit complex mixes of data flows, with a wide range of data rates
and widely differing latency requirements. Applications with these characteristics arise in areas
as remote visualization, analysis of scientific databases, and teleimmersion. Table 2.1 lists the
various flows of a future teleimmersion application together with their networking demand [22].
Characteristics such as these place substantial demands on networks which cannot be fulfilled by
today’s Best-Effort (BE) Internet.

Table 2.1: Flows and requirements of teleimmersion applications
Latency Bandwidth Reliability Dynamic QoS

Control < 30 ms 64 Kb/s Yes Low
Text < 100 ms 64 Kb/s Yes Low
Audio < 30 ms 128 Kb/s No Medium
Video < 100 ms 5 Mb/s No Medium

Tracking < 10 ms 128 Kb/s No Medium
Database <100 ms > 1 Gb/s Yes High
Simulation < 30 ms > 1 Gb/s Mixed High

Haptic < 10 ms > 1 Mb/s Mixed High
Rendering < 30 ms > 1 Gb/s No Medium

Now consider a situation in which several teleimmersion sessions are in operation simultane-
ously, while other groups are concurrently attempting to perform high-speed bulk-data transfers
over the same network infrastructure, perhaps to stage data required for an experiment later in
the day. We receive a complex and dynamic mixture of network service requirements.

There are two basic approaches to providing network Quality of Service (QoS):
reservation-based and adaptation-based. Applications using the reservation-based approach usu-
ally rely on specific capabilities of the underlying network infrastructure. They specify their
QoS requirements during connection establishment and typically do not change the demand sub-
sequently; the QoS system in turn guarantees that the reservation will not change during the
lifetime of the application. From the reservation-based approach, network QoS refers to the abil-
ity of the network to handle specific packets in such a way that the related flows receive a specific
type of Guaranteed Service, i.e. leaving the current Best-Effort Service.

On the other hand, applications that use the adaptation-based approach do not make a reserva-
tion but adapt to the network conditions at hand by responding to some form of feedback, whether
explicit (notification of network conditions) or implicit (noticing that the achieved bandwidth is
low). Instrumentation and notification are the key issues in this approach. Adaptation may occur
when the application detects a problem or when the application is notified that a problem may
exist. From the adaptation-based approach, network QoS refers to the ability of an application

3



4 Background: Service Differentiation in the Internet

to adapt its network resource usage to the actual state of the network in such a way that the
fundamental functions of the application are still performed.

The PAB-project evaluated new mechanisms for implementing a reservation-based approach
that relies on the ability of the network to provide a specific type of service. Service levels can be
characterized by the following QoS-related parameters:

Bandwidth The rate at which packets of a flow are carried by the network. The specification of
bandwidth guarantees includes the assurance of a peak data rate, a sustained data rate, and
a minimum data rate. The latter is important, as it assures the ability to use this capacity
at any time. The sustained date rate can either be a statistical guarantee, or, in the more
common case, equal to the minimum date rate. The peak data rate is often specified in term
of bursts relative to the sustained data rate.

Delay An upper boundary for the time it takes to send a Maximum Transmission Unit (MTU)-
sized packet (see below) to traverse the network from the sender to the receiver (end-to-end
delay) 1. A more detailed definition of the Type-P-One-way-Delay can be found in [4]. For
some applications it is useful to limit the delay for a full round-trip.

Jitter The variation of delay. Its formal representation is currently discussed by the Internet
Engineering Task Force (IETF) as the ”instantaneous packet delay variation” [23] and is the
difference of the delay experienced by subsequent packets on a one-way transit from source
to destination.

Reliability This parameter specifies the percentage of lost packets, errors in the network due
to non-failure events, the mean-time between failures, the mean-time to repair, and the
availability as percent of the uptime.

Maximum Transfer Unit Because network traffic is typically not continuous but separated
in discrete packets of a maximum size, the maximum transfer unit is a service relevant
parameter. First, it denotes a bound for the packet header overhead. Second, it indicates
possible fragmentation delays for the application. Finally, it is relevant for packet scheduling
as packets in transit are typically non-preemptive.

Today, the BE Service is the only service that is supported throughout the whole Internet.
Though the BE class comprises a variety of different flows, special care has to be taken considering
their co-existence. The majority of the Internet applications so far use the Transmission Control
Protocol (TCP), which is responsive to network congestion by means of halving the sending data
rate in case of packet loss. In contrast, if packets are successfully transmitted the data rate is
increased by a constant [3]. This congestion control mechanism is supported in the network by
Random Early Detection (RED) [29]. In case of an upcoming congestion RED starts early to
randomly discard packets in order to force TCP connections to reduce their sending data rate and
thus to avoid situations of persistent congestion, during which all incoming packets would have to
be dropped. Problems arise especially, if unresponsive Real-Time Transport Protocol (RTP)/User
Datagram Protocol (UDP) flows share the BE class with TCP streams, since neither RTP, nor
UDP implements congestion control. Furthermore, there are often no performance incentives for
implementing congestion control at application level. Thus RTP/UDP flows easily tend to steal
capacity from TCP streams and can lead to an unfair distribution of the available capacity in case
of congestion. Besides also greedy, and high data rate sources that apply parallel TCP sockets,
like GridFTP [2], and also current Web browser implementations, can by these means lead to
unfairness.

1Listing the upper boundary for an MTU-sized packet gives an upper delay boundary for all packets of this
connection
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2.1 The Integrated Services Framework

The Internet Engineering Task Force (IETF) has specified the Integrated Services (IS) Framework
with the goal to provide end-to-end QoS to applications. The basic framework is comprised of two
elements:

• An extended service model which is also called the IS model.

• A reference implementation framework.

The extended service model consists of two particular real-time services which are built on
specific capabilities provided by all networking devices. Namely, the model assumes that each
network node is capable of differentiating packets based on their service-class and of a particular
preferred treatment of those packets to influence the time-of-delivery under all conditions.

The reference implementation framework states that all routers capable of supporting the IS
architecture should offer three components that implement the required traffic control within the
network devices:

• The Admission Control procedure of a router decides whether to accept or reject the re-
quested QoS of a new flow. It is important to note that the admission control test does
not provide any specific QoS, instead it declines unacceptable request and polices whether
a granted request is conforming to its specification.

• The Packet Classifier identifies the service class and maps it into the related treatment, i.e.
to the related output queue of the Packet Scheduler. The service specific treatment includes
accounting.

• The Packet Scheduler manages the packet forwarding as part of the output driver of a router.
It uses a set of queues and perhaps other mechanisms such as timers to schedule the order
of outgoing packets.

The essence is a QoS infrastructure which offers services for individual flows which have applied
for this in advance. Each router performs admission control to ensure that they only accept reser-
vation requests when they do have sufficient local resources. Once an appropriate reservation has
been installed in each router along a path of a flow, the particular treatment of the packets assures
the desired level of service during the life-time of the reservation. Note that the IS framework is
a flow oriented mechanism.

2.2 The Differentiated Services Architecture

The DS architecture [10] is a QoS framework that provides scalability by defining the behavior of
aggregates. Packets are identified by simple markings that indicate according to which aggregate
behavior they should be treated. In the core of the network, routers need not determine to which
flow a packet belongs, only which aggregate behavior should be used. Edge routers mark packets
and indicate whether they are within profile or if they are out of profile, in which case they might
even be discarded by a dropper at the edge router. A particular marking on a packet indicates
a Per-Hop Behavior (PHB) that has to be applied for forwarding of the packet. Currently, the
Expedited Forwarding (EF) PHB [21] and the Assured Forwarding (AF) PHB group [38] have
been specified. Though the DS architecture allows for the definition of additional PHBs by setting
the 6-bit Differentiated Services Code-Point (DSCP), end-to-end guarantees require the support
of a certain PHB in all pertaining DS domains, thus making an end-to-end deployment with only
a few PHBs more feasible.

The intention of specifying Per-Hop Behaviors for aggregates is always the establishment of
services. Because the concept of DS is bound to domains in which the specific PHBs are applied,
services are established by domains and are provided within domain boundaries. Recently, Nichols
and Carpenter [53] formulated this particular property by the definition of a Per-Domain Behavior
(PDB).
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Definition 1 The term Per-Domain Behavior (PDB) describes the expected treatment that an
identifiable or target group of packets will receive from ”edge-to-edge” of a DS domain. A particular
Per-Hop Behavior (PHB) (or, if applicable, list of PHBs) and traffic conditioning requirements
are associated with each PDB.

In the following, the two standardized PHBs are described in more detail:

2.2.1 Expedited Forwarding

The EF PHB [21] is intended for building a service that offers low loss, low delay, and low delay
jitter, namely a Premium Service. In addition, the EF PHB can be used to implement a Guar-
anteed Rate Service. However, if flows with different delay requirements and especially, if bursty
flows share the EF PHB, traffic shaping of these bursts at the edge of the DS domain is likely to
be required. To avoid a starvation of other traffic classes, EF traffic has to be strictly policed at
the ingress router of a DS domain and excess EF traffic has to be discarded [21]. The specification
of the EF PHB was recently redefined to allow for a more exact and quantifiable definition [15].

2.2.2 Assured Forwarding

Besides the Premium Service a so called Olympic Service [38] is proposed by the IETF to be based
on the AF PHB group by extending it by means of a class based over-provisioning. Three of the
four currently defined classes of the AF PHB group are used for such an Olympic Service [63].
The service differentiation between the three classes Gold, Silver, and Bronze is proposed to be
performed by the means of admission control, assigning only a light load to the Gold class, a
medium load to the Silver class, and a high load to the Bronze class. Drop rates can be configured
independently within the three Olympic classes. Each AF class consists of a differentiation into
up to three levels of drop precedence, namely Green, Yellow, and Red. The different levels of
drop precedence can be supported in the network by Multiple Random Early Detection (MRED),
which allows applying multiple instances of RED [29] with independent parameters to implement
different levels of drop precedence. Like the EF PHB, the AF PHB can be applied to build a
Guaranteed Rate Service for conforming traffic that is marked Green. An advantage of an AF
based Guaranteed Rate Service is the isolation of the pertaining traffic from the EF based Premium
Service. Doing so significantly reduces the interdependencies of the two aggregate classes, however,
this distinction is not necessarily required [64].

2.2.3 Classifying, Policing and Packet Marking

A fundamental requirement to implement a Per-Hop Behavior is to support specific well known
features in each network device. Edge routers must classify, police, mark, and optionally shape the
traffic. Core routers have to provide specific congestion avoidance and management mechanisms to
establish the desired per-hop behavior. The term “policing” denotes the ability to check whether a
specific set of timely ordered incoming packets is not exceeding a given traffic profile. A common
technique for specifying a traffic profile uses the “Token Bucket Model”. A token bucket is a
non-negative counter which accumulates tokens at a constant rate r until the counter reaches a
maximum capacity b, the token bucket depth. Upon packet arrival, the packet size in Bytes is
checked against the amount of tokens in the bucket. If this amount exceeds the packet size, the
packet is treated as conforming and the actual amount of tokens is reduced by the size of the
packet. Whenever the increase of tokens was stopped due to a full token bucket, the filling is
initiated again. If there is not a sufficient amount of tokens in the bucket the packet is treated
as exceeding its traffic profile. To clarify the use of a token bucket (r, b), consider that it is used
for policing a flow in such a way that exceeding packets were dropped. Using this token bucket,
one could assure that for any given time interval [t0, t1] of length T = t1 − t0 the amount of data
passing this policing function is not exceeding rT + b Bytes.
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An implementation of the policing function requires to actually classify incoming packets based
on their characteristics, such as source and destination IP-address, Port numbers, Type of Service
field of the IP-header, or DSCP. Once the decision whether a packet is relevant or not has been
made, it is policed against the related traffic profile. Depending on the question whether the
packet was conforming or not conforming, it receives a different treatment.

A common packet treatment used in this context is to assign a service specific DSCP value
to the related IP packet. The action for packets exceeding the reserved rate could be to either
transmit them with a different marking, or to drop them explicitly.

Packet classification facilitates the transition from flows to aggregates. Policing is used for
controlling access to aggregates, i.e. for admission control, and marking is the entry point to
aggregates.

2.2.4 Congestion Management

While edge routers police and mark the incoming traffic, core routers implement the related
aggregate behavior. Two major concepts exist to fulfill this tasks.

Congestion Management is the ability of a network device to perform a specific packet sched-
ule when the output link is congested. The ideal approach is to associate a relative weight (or
precedence) with each individual traffic flow, and at every router, segment each traffic flow into
an individual First-In First-Out (FIFO) queue, and configure the scheduler to serve all queues in
a bit-wise weighted round robin fashion. This is an instance of a Generalized Processor Sharing
(GPS) [57] discipline.

A popular approximation to GPS is Weighted Fair Queuing (WFQ). WFQ offers dynamic,
fair queuing that divides bandwidth across a set of queues of traffic based on weights. Given the
weight of the queues, WFQ calculates the time the packet finishes service under the GPS scheme
and ensures that packets are served in the order of the time they would finish their service in a
GPS environment.

Weighted queues can be established based on a value of the DSCP. That is, class-based WFQ
is able to detect higher priority packets marked with a related DSCP and can schedule them in a
well-defined manner. Class-based WFQ is conceptually very well suited for scheduling traffic with
a marked precedence.

In periods of congestion each WFQ class is allocated a percentage of the output bandwidth
equal to the weight of the related queue. For example, if a DSCP class is assigned a weight of 30,
packets from this class will allocate at least 30 percent of the outgoing bandwidth during periods
of congestion. It is important to note that WFQ only has an effect when there is congestion. When
the interface is not congested, the treatment of packets is independent from their classification.

Since DS offers services that are of higher quality than the BE Service, an admission control
is required, which controls incoming traffic and further on allows for billing. Such an admission
control can be implemented by an automated DS network management based on a centralized
entity a so-called Bandwidth Broker.

2.3 The Concept of a Bandwidth Broker

The task of a Bandwidth Broker is to facilitate and control the access to network services for appli-
cations. Here, the Bandwidth Broker performs admission control, resource provisioning and other
policy decisions. From the Differentiated Services (DS) architecture point of view, a Bandwidth
Broker expands the Per-Hop Behavior (PHB) of aggregates to a Per-Domain Behavior (PDB) [53].

Definition 2 A Bandwidth Broker is a middleware service which controls and facilitates the dy-
namic access to network services of a particular administrative domain. Bandwidth Brokers are
also viewed as the Policy Decision Point (PDP) of the controlled domain.
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Each PDB has measurable, quantifiable attributes that can be used to describe the offered
service characteristics. While the associated PHBs do have a great impact on the achievable PDB
attributes, the topology and the entering traffic profile influence the service as well.

It is very unlikely that a single Bandwidth Broker will control more than one administrative
domain. Instead, each administrative domain wishes to have control over its resources and will
operate its own policy decision point. A network reservation for traffic traversing multiple domains
must therefore obtain multiple network reservations. Whenever service guarantees have to be
obtained in multiple domains, a specific contract between peered domains comes into place. This
contract is called a Service Level Agreement (SLA). It regulates details about available service
levels by specifying the related parameters, access policies, and associated costs. Hence, the SLA
regulates the acceptance and the constraints of a given traffic profile. Note that service associated
costs and access rules are also listed in this contract. In contrast to the formal character of
an SLA, Service Level Specifications (SLS) are used to technically describe the appropriate QoS
parameters [71] that an SLA demands. According to [53] the definition of an SLS is as follows:

Definition 3 A Service Level Specification (SLS) is a set of parameters and their values which
together define the service offered to a traffic stream by a DS domain. It is expected to include
specific values or bounds for Per-Domain Behavior parameters

SLSs are used by Bandwidth Brokers as input information for their admission control proce-
dures. End-to-end guarantees can then be built by a chain of SLSs, i.e. by the transitivity of all
SLSs.

An example SLS could list domain related boundaries for delay and jitter for traffic of this
type of service. It could also specify a minimum bandwidth available for requesters, depending
on either their source and/or destination address, and a threshold for the available bandwidth.
In this context, the service requester would be able to claim the demand of bandwidth dynam-
ically. Whenever SLSs allow a service provision independently from the actual egress point, the
granularity of control is quite limited:

• The maximum available bandwidth for this type of service does only depend on the minimum
link capacity and not on the actual path in the network

• Multiple ingress domains might interfere and thus might reduce the amount of available
bandwidth again

• Delay and jitter boundaries used in the SLA have to be calculated based on worst-case
assumptions for their use of network links

Because of these limitations, we propose an architecture where an SLS lists the service pa-
rameters between each pair of ingress and egress point. In this environment, a Bandwidth Broker
dynamically maps service requests to their traversing path. A service request is only granted
if the Bandwidth Broker is able to validate the service availability on all traversed links. Each
service request must therefore contain a destination address which allows the derivation of the
related destination domain. Note that this model also applies to environments in which a network
operation center manually performs the tasks of a Bandwidth Broker.

The desired granularity of service control is different for transit domains than for end-domains.
While end-domains typically perform their admission control on a per-request basis, transit do-
mains are focusing on their contractual conformance. This leads to the abstraction of a core
tunnel:

Definition 4 A core tunnel is an aggregated unidirectional reservation between two end-domains.
It connects the egress router of the source-domain with the ingress router of the destination-domain
applying the parameters of the service request. Any subject authorized to use this tunnel may then
request portions of this aggregate bandwidth by contacting just the Bandwidth Brokers of relevant
end-domains. Intermediate domains do not need to be contacted as long as the total bandwidth
remains less than the size of the tunnel.
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A core tunnel instantiation of a single transit domain nicely relates to the concept of Per-Domain
Behavior, and fits well to the proposal to incorporate traffic engineering mechanisms during its
allocation. In some sense, the PDB can be viewed as a core tunnel with particular service param-
eters. While the term core tunnel is used to model aggregated reservations, the abstraction of a
traffic trunk [6] is frequently used to model the realization of a core tunnel. Core tunnels traversing
multiple domains can then be seen as the concatenation of the PDBs of all transit domains.

The abstraction of a core tunnel allows an entity to request an aggregate end-to-end reserva-
tion. Users authorized to use a particular core tunnel can then request portions of this aggregate
bandwidth by contacting just the two end domains. The intermediate domains do not need to be
contacted as long as the total bandwidth remains less than the size of the tunnel.

Whenever traffic engineering mechanisms are incorporated into the Bandwidth Broker of a
transit domain, the question arises how these mechanisms are instantiated at the edge router. In
Multi-Protocol Label Switching (MPLS) [59] networks, the allocation of a core tunnel respective
a traffic trunk can be associated with the placement of a Label Switched Path (LSP). However,
traffic designated to use the core tunnel must somehow be routed to the related LSP. Solutions
for this problem will be presented in the following sections.





Chapter 3

Testbed and Experimental
Configuration

The PAB-project evaluated the concepts of service provisioning in an MPLS-domain by an exper-
imental analysis that was performed with widely deployed router hardware. Here, the project was
able to benefit from a collaboration with Cisco Systems through the University Research Program
and was therefore enabled to explore the proposed technologies in a hardware environment that
is closely related to that deployed in the current G-WiN. Further on, the Command-Line Inter-
face (CLI) of the operating system is similar to that interface offered by other hardware vendors,
particularly by emerging popular Layer2/3-Switch products.

3.1 Testbed

Our experimental configuration comprises a laboratory testbed at the Research Centre Jülich,
donated by Cisco Systems. The testbed allows controlled experimentation with basic DS mech-
anisms. Four Cisco Systems 7200 series routers were used for all experiments. These are either
connected by OC3 ATM connections, by Packet Over SONET (POS), by Fast Ethernet, or by
Gigabit Ethernet connections. End-system computers are connected to routers by switched Fast
Ethernet connections. Hence, the minimum MTU size of our testbed is that of the end-systems:
1500 Bytes. Figure 3.1 illustrates the configuration used during the basic service evaluation. Note
that the actual configuration during experiments varied.

Various Cisco Internetwork Operating System Software releases have been used during the
lifetime of the project. The focus was on releases that did offer the newest functionality, i.e. early
deployment versions (IOS E releases) and so-called T-releases. All of the described functions were
available with the special early deployment Version 12.2(14)S5 and later versions.

3.2 Evaluation Tools

We performed several experiments demonstrating the performance of high-end TCP applica-
tions [65] like a guaranteed rate file transfer with a fixed deadline and typical UDP applications
like video streaming [28] or videoconferencing. The following major tools have been used and
enhanced within the project:

• gen send/gen recv – BE UDP traffic generator. This traffic generator was applied to generate
BE UDP traffic with a mean rate of 50 Mbps and different burst characteristics. These UDP
flows do not aim to model any specific applications, but we assume that the applied burst
characteristics reflect effects that occur in today’s and in the future Internet. TCP streams
are initially bursty, UDP based real-time applications are emerging, which create bursts, for

11
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Figure 3.1: Basic Testbed Configuration

example by intra-coded frames in a video sequence. Further on burst sizes increase in the
network, due to aggregation and multiplexing [14].

• rude/crude – Delay-sensitive UDP traffic generator. This traffic generator allows to measure
the one-way delay and delay jitter. In several experiments we used real-time traffic patterns
from script files, which we created from publicly available video traces [28]. We applied IP
fragmentation for the transmission of frames that exceed the MTU, which we consider as
being allowed here, since we configured the DS classes to prevent from dropping fragments.
Note that IP fragmentation is a potential problem for a DS domain since packet classifi-
cation is working differently for fragments. Hence, it typically requires host-based packet
marking. The sequence, which we applied for the experimental results shown in this paper,
is a television news sequence produced by the ARD. The sequence is MPEG-4 encoded with
a minimum frame size of 123 Byte, a maximum frame size of 17.055 KB, a mean rate of
0.722 Mbps and a peak rate of 3.411 Mbps. The Hurst parameter is about 0.5 and decays
with an increasing aggregation level. Figure 3.2 illustrates the traffic profile of the sequence.

• ttcp – TCP stream generator. We used the widely known TCP benchmark ttcp to generate
TCP load. In the experiments reported in this paper we selected an end-system which was
not capable of generating a rate of more than 1.8 MB/s = 14.4 Mb/s and if not stated
otherwise we applied a socket buffer corresponding to a maximum window size of about 15
MTU.

• Videoconferencing Software. We used the RWTH-Aachen development VEXPHONE and
RAXLET. Additionally, we applied the MBONE-tools VIC/RAT.

• Bandwidth Broker. We used the General-purpose Architecture for Reservation and Alloca-
tion (GARA). GARA was developed as a next generation resource management prototype of
the Globus project and is used within the EU-projects DataGrid and DataTAG. GARA is a
modular and extensible QoS system architecture that integrates different QoS mechanisms.
There exist prototype implementations for several resource types, including a Bandwidth
Broker for the DS architecture. A comprehensive description of GARA can be found in [61].
Further details about the use of GARA will be listed in Chapter 7. Note that the results
of the EU-funded Grid Interoperability Grid Project (GRIP) led by FZ-Jülich can be used
as a basis for the incorporation of Globus services into a UNICORE-based Grid. This con-
veniently gives a roadmap for application initiated network services in both frameworks:
UNICORE and Globus.
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Clock synchronization was assured by the use of the Network Time Protocol (NTP).

3.3 Experimental Analysis of Service Differentiation

Applying the plain BE Service to the two example applications used throughout this paper we
generate the baseline for our evaluation. Our configuration allocates the remaining capacity of
the ATM bottleneck link, which is not used by any other class, to the BE class. In the following
experiments no other class than BE is used, resulting in an assignment of 60 Mbps of the bottleneck
ATM link to the BE class. The tx-ring-limit parameter on the ATM interface card that specifies
the queue size, which is assigned to the applied ATM PVC, was set to 16 particles each of 512 B
allowing to store up to four MTU on the ATM interface. This value is by far smaller than the
default value, but it has to be applied to allow for an efficient QoS implementation [24]. The BE
layer 3 queue was configured to hold at most 256 packets. We consider this queue size, which is a
trade off between delay and loss rate, as being feasible for BE traffic, which is more sensitive to
packet drops than to queuing delay in a range of a few tens of milliseconds.

In Figure 3.3 the delay measured when transmitting the news sequence in the BE class is
shown. Congestion is generated by applying an UDP stream with two bursts, each of ten seconds
duration. As can be seen from figure 3.3, the delay is bounded to about 42 ms, showing some
minor effects on the measurements due to tail-drop in the router. The delay corresponds to an
effective data rate on the ATM interface of about 48 Mbps after subtracting the ATM induced
overhead. While this delay is acceptable for streaming video applications, it can be critical for real-
time video applications like videoconferencing. A Weighted Fair Queuing (WFQ) environment
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Figure 3.2: Data Rate UDP News Sequence.
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Figure 3.3: Delay BE UDP News Sequence.
is used for the implementation of the Olympic Service based on three AF PHB classes. The
Olympic Service [38] proposed by the IETF is realized by admission control and a class based
over-provisioning. We carried out experiments with the transmission of the news sequence in each
of the Olympic classes, with the classes configured according to table 3.1. Within each of the

Table 3.1: Core Configuration of the Olympic Classes
Class Percent Gross Capacity Approx Net Capacity Over-Provisioning Factor

Bronze 5 % 3 Mb/s 2.4 Mb/s ≥ 1
Silver 10 % 6 Mb/s 4.8 Mb/s ≥ 2
Gold 15 % 9 Mb/s 7.2 Mb/s ≥ 3

Olympic classes a differentiation of the drop probability for differently marked excess traffic can
be performed by applying Multiple Random Early Detection (MRED). Nevertheless, we consider
excess traffic in an over-provisioned class as harmful for the BE class. Therefore we mark the
conforming traffic Green and we drop excess traffic in the over-provisioned classes, whereas we
allow a marking of excess traffic as Red in the Bronze class. The layer 3 queue size of each of
the three Olympic classes was configured to 128 packets in the WFQ environment. Consequently,
the ingress meter and marker is based on a token bucket with a Confirmed Information Rate
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(CIR) of 2.4 Mbit/s for all Olympic classes thereby leading to the over-provisioning factors given
in table 3.1. A Confirmed Burst Size (CBS) of 32 MTU is used at the ingress. This value is
intentionally smaller than the queue size applied, to avoid packet drops in the Olympic classes
within the network and also to avoid a high utilization of the queuing space and thus to reduce
queuing delays. Besides it has to be noted that the WFQ queue sizes are configured in packets,
which can be smaller than the MTU, whereas the confirmed burst size is configured in Bytes.
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Figure 3.4: Delay Bronze UDP News Se-
quence.
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Figure 3.5: Delay Silver UDP News Sequence.

Figure 3.4 shows the measured delay for the news sequence in the Bronze class and the impacts
of congestion in the BE class on the Bronze class. Compared to the transmission of the sequence
within the BE class, which is shown in Figure 3.3, the delay is reduced significantly. Furthermore,
packet drops did not occur in the Bronze class. Thereby AF based services can be applied as
Guaranteed Rate Service without packet loss for conforming traffic.

The delay and delay jitter differentiation, which can be achieved in addition by the Olympic
Service, is shown in figure 3.5 and 3.6 for the Silver and the Gold class respectively, compared to
the Bronze class in figure 3.4.
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Figure 3.6: Delay Gold UDP News Sequence.
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Figure 3.7: Delay Premium UDP News Se-
quence.

3.4 Implementation of a Guaranteed Rate Service and a
Scavenger Service

In the following we report on an implementation of a Guaranteed Rate Service based on the
different DS PHBs, the BE Service and possible Scavenger Services using commodity products.
The traffic sources and sinks that were applied for the following evaluation of the different services
are given in Figure 3.8.

Figure 3.9 shows the queuing and scheduling unit of a DS core node that supports the EF, and
AF PHB, the BE Service, and the Scavenger Service. The EF PHB is based on Priority Queu-
ing (PQ), AF, BE, and the Scavenger Service on Weighted Fair Queuing (WFQ). We concatenate
two WFQ scheduler to form a hierarchical service policy, which separates the AF PHB from the
group of BE Service and Scavenger Service. In case of queued packets in all of the classes, this
hierarchical service policy could be replaced by a flat one, whereas, if any of the queues is empty,
the hierarchical policy allows for a different redistribution of resources. The L2 queue that is
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Figure 3.8: Testbed Configuration used for the Evaluation of DS-based Services

shown in Figure 3.9 is implementation dependent and usually required on the outgoing interface
card of a router [63]. In the right of the figure the MRED configuration that is used within the
AF classes is shown. An exponentially weighted moving average of the queue size s is used as an
input parameter to derive a drop probability p for incoming packets. This drop probability is zero,
as long as the average queue size does not exceed a minimum threshold ming,r, and it is one, if it
exceeds a maximum threshold maxg,r. Between the two thresholds p increases within the interval
[0, pg,r]. Within the AF classes independent RED curves apply to packets that are marked Green,
or Red, such that Red marked packets are discarded earlier and with a higher probability. Yellow
marked packets are not supported in accordance with the AF PHB specification [38].
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Figure 3.9: Differentiated Services Queuing and Scheduling and Assured Forwarding Multiple
Random Early Detection

3.4.1 Guaranteed Rate Service

A Guaranteed Rate Service can be implemented in a DS network either by applying the EF PHB
or the AF PHB. Since we implement both PHBs in our testbed, either of these two can be chosen.

In detail the EF PHB is implemented in the testbed based on PQ. A token bucket mechanism is
attached to the priority queue in order to bound the amount of EF traffic to 10 % of the bottleneck
link capacity and to allow a maximum EF burst size of 48 kB. The same parameters are used at
the ingress side of the DS domain for metering and marking incoming EF traffic. Excess traffic is
discarded as is required by the standard [21].
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The AF PHB [38] is implemented based on Weighted Fair Queuing. In the following exper-
iments only one AF class is used to form the basis of a Guaranteed Rate Service. Here the DS
domains ingress configuration allows to match the reserved DS domains core capacity with Green
marked packets that correspond to a low drop precedence. Excess traffic is marked Red and is
mapped to a high drop precedence implemented by MRED. A pre-coloring of streams by upstream
domains, or DS aware hosts is supported.

3.4.2 Low Loss Alternative Scavenger Service

The Scavenger Service proposed in [77] is designed for applications that are both loss and delay
tolerant. However, we apply the fundamental idea of the Alternative Best-Effort (ABE) Ser-
vice [40] and propose an Alternative Scavenger Service, which provides a low loss probability to
loss-sensitive but responsive flows such as TCP streams. TCP implements two main sources of
congestion control [3]. These are a self-clocking by the Round-Trip-Time (RTT) and a congestion
window size adaptation in case of packet loss. Whereas an increase of the RTT is tolerable and
can often be addressed by the use of a larger socket buffer size that allows for a larger congestion
window, frame loss leads to a significant performance degradation. In detail the self-clocking of
TCP can be described by equation 3.1 with R denoting the data rate and W denoting the window
size in Bytes.

R = W/RTT (3.1)

Equation (3.1) expresses that with the window flow control applied by TCP a maximum of W
unacknowledged Bytes may be outstanding. The acknowledgement of these W Bytes is received
after one RTT, thus allowing the sender to transmit another W Bytes, leading to a rate of W
Bytes per RTT. Further on TCP implements an Additive Increase Multiplicative Decrease (AIMD)
technique that increments the congestion window by one Maximum Segment Size whenever a
complete window of data is acknowledged successfully, whereas the congestion window is at least
halved in case of a packet loss.

To implement an efficient Scavenger Service routers require an amount of queued data in the
Scavenger class ideally at any time, to be able to transmit this data, whenever there is no data
of the BE class available. Thereby it becomes obvious that rather big TCP congestion windows
are required, which are only offered by TCP, if packets are not lost. Thus, applying the Scavenger
Service, TCP performance is heavily influenced by packet loss, which we address by a Low Loss
Alternative Scavenger Service (LLASS). This service is implemented by Weighted Fair Queuing
with a separate queue and a minimum weight of 1 %. In Figure 3.9 the queue that is applied for
the LLASS is labelled with SS. Our configuration applies two WFQ scheduler that are combined
hierarchically, such that unused BE capacity is at first assigned to the LLASS class. Only if the
BE and the SS queue are empty, the unused BE capacity is redistributed to the AF PHB. We
propose to assign a large buffer capacity to the LLASS class. In our implementation, a buffer
capacity of 256 packets is used for the LLASS class compared to 128 packets for the BE class, in
order to allow TCP streams to use comparably big windows and the window scale option without
generating packet loss in case of congestion.

3.4.3 Low Delay Alternative Scavenger Service

In addition to loss sensitive but delay tolerant TCP streams, the Internet has to cope with an
increasing number of real-time video and audio applications that are delay sensitive, but considered
to be loss-tolerant to some extend. Thus, these flows require significantly different means of
adaptation to network load and congestion. A Scavenger Service if applicable has to consider
these properties.

Our implementation of such a Low Delay Alternative Scavenger Service (LDASS) is build on the
MRED configuration of the AF PHB, but it could also be implemented by similar means in an ABE
class. The relevant AF class offers a Guaranteed Rate Service for packets that are marked Green,
whereas it in addition allows to oversubscribe the AF class with packets that are marked Red.
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These Red packets are mapped to an aggressive RED curve, which in case of network congestion
drops Red packets very early and rigourously, thus limiting the delay increase imposed by such
Red packets on Green ones. The MRED configuration implemented in our testbed differentiates
between the two drop precedence levels Green and Red. It uses the thresholds minr = 16,
maxr = 32, ming = maxg = 64 and the maximum probability pr = 0.1. Thereby it is ensured
that Red packets are dropped comparably early and further more that Red packets are dropped
with a probability of 1.0 before Green packets are discarded. On the other hand, if no Green
marked packets are available, Red marked packets are able to scavenge the unused AF capacity,
and, if neither BE nor LLASS traffic is queued, also the configured BE capacity. We disable the
RED mechanism for Green packets to implement a lossless Guaranteed Rate Service by these
means.

3.5 Multi-class Applications

In this section we report on two example applications that we implemented for a utilization of
a Guaranteed Rate Service and a Scavenger Service in parallel. Instead of the Guaranteed Rate
Service a Best-Effort Service or Alternative Best-Effort Service can be applied at the cost of not
being able to give any performance guarantees as it can be done if a DS based Guaranteed Rate
Service is used. The two example applications we present are significantly different in that the
first one – a deadline file transfer based on a parallel FTP – is TCP based, whereas the second one
– the transmission of hierarchical video streams – is RTP/UDP based. In the reported experiments
we create congestion with a very aggressive and unresponsive BE UDP flow, to be able to clearly
show the qualitative impacts of BE congestion on both the Guaranteed Rate Service and on the
Scavenger Service.

3.5.1 Multi-class Grid FTP

Grid FTP [2] was proposed in the context of Grid computing to achieve an extremely high through-
put. It is based on parallel streams and implemented by striped TCP sockets, as also applied by
many Web browsers. Using several TCP streams in parallel circumvents TCP congestion control
to some extend. Each of the individual TCP connections performs congestion control by adapting
its data rate. Thus each TCP connection on its own can be considered to be TCP-friendly, whereas
the sum of the rates achieved with parallel TCP connections is higher than the rate of a single
connection. In order to increase fairness towards applications that use only a single TCP stream,
Grid FTP should ideally apply a Low Loss Alternative Scavenger Service. On the other hand Grid
computing often requires that data is delivered fulfilling certain deadlines. Thus a reservation of
network capacities is required, which can be addressed with a Guaranteed Rate Service for which
we apply the EF PHB. A drawback in using the EF PHB is that a deadline file transfer can send
data at most with the guaranteed rate. Probably unused capacity cannot be used by excess traffic,
since when applying the EF PBH, excess traffic has to be discarded at the DS domains ingress.
Similar problems arise, if the required Guaranteed Rate Service is implemented based on the AF
PHB. Here excess traffic is not discarded at the ingress of the domain, but marked as Red and
probably discarded in the domains core and can thus also decrease TCP performance significantly.

To address these shortcomings, we developed a multi-class Grid FTP as an example for a high
data rate TCP based application. The multi-class FTP is configured to apply a Guaranteed Rate
Service and a Low Loss Alternative Scavenger Service in parallel. Its performance is shown in
Figure 3.10 for an example file transfer of 280 MB with a deadline at 200 s after the file transfer
start. The file transfer application initially requests 12 Mb/s of EF capacity from the DS domains
Bandwidth Broker to ensure that the file transfer deadline is met by applying the EF PHB for a
Guaranteed Rate Service. It starts sending data at the requested rate by applying a rate shaping to
12 Mb/s at application level. Thereby the sending rate conforms to the requested rate and packet
drops due to policing at the ingress router of the DS domain are avoided. A similar functionality
can be achieved by implementing holding queues at the ingress router of the DS domain that allow
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to temporarily buffer excess traffic [64]. In parallel data is transmitted at the maximum possible
rate applying the Low Loss Alternative Scavenger Service. After succeeding in transmitting an
additional configurable amount of 25 MB of data by applying the Scavenger Service, the application
recomputes the required rate to meet the deadline and updates its request for EF capacity. In
Figure 3.10 this happens for a first time after about 8 s and leads to a new required rate of about
10 Mb/s. In the time interval from 10 s to 20 s, congestion is created in the Best-Effort class by
an aggressive UDP flow. As can be seen from Figure 3.10, this BE congestion does not have any
impact on the Guaranteed Rate Service, but it cuts off the transmission of data by the Scavenger
Service. The same process repeats until the complete file of 280 MB is transmitted after about
90 s instead of the target deadline of 200 s, which would have been reached, if only the Guaranteed
Rate Service would have been used. Thus besides the reduced transmission time, our multi-class
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Figure 3.10: Multi-class Grid FTP combining Guaranteed Rate Service and Low Loss Alternative
Scavenger Service

Grid FTP increases the utilization of the available network capacity without impacting the BE
class and it reduces the required EF capacity to meet the deadline. We receive an economic model
of a deadline file transfer which uses potentially cheap resources in the less than BE class to reduce
the deadline assuring EF reservation. In addition to the cost-effectiveness for the user, this model
also ensures that the scarce resource of a Guaranteed Rate Service is available to other requesters.

Scalability issues limit the approach of signalling required guaranteed rate updates to high
bandwidth and long lived flows. However, since the core configuration of a DS domain is intended
to be static, the signalling can as an option be applied at the source domain only. To address
these concerns, the requirement of application level rate shaping can be replaced by updating
the shaping configuration in the ingress router. Figure 3.11 illustrates the pacing property of
an updated traffic shaping configuration. It is therefore possible to handle these updates within
the Bandwidth Broker by a single policy propagation which includes an updated traffic shaping
configuration.

3.5.2 Multi-class Hierarchical Video

An increasing number of RTP/UDP audio and video streams are transmitted across the Internet.
Especially for high data rate video an application of a Low Delay Alternative Scavenger Service
can be advantageous, too. As already mentioned real-time audio and video applications are delay
sensitive, but to some extend loss tolerant. Concerning packet loss, video frames can be classified
by their importance on the decoding process and on the quality of the decoded video stream.
These differences in terms of importance can be efficiently accommodated by applying priority
dropping schemes that protect more important video frames and drop less important ones with
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Figure 3.11: TCP flow paced by a varying traffic shaping configuration on the ingress router.

priority, if necessary [9]. One means of generating such a video stream with a number of layers
with decreasing importance is the option of hierarchical video encoding, as it is offered by the
H.263+ standard [17] or by the MPEG-4 standard. In detail the H.263+ standard gives three
options of hierarchical video encoding:

• Temporal scalability is achieved deploying the disposable nature of bidirectionally predicted
frames.

• Signal-to-Noise Ratio (SNR) scalability permits the refinement of encoded video frames and
thereby modifies the SNR.

• Spatial scalability is achieved by encoding the frames with a low spatial resolution for the
base layer and with a higher resolution for the enhancement layers.

An hierarchical encoding of video data leads due to packetization overhead to an increased data
rate. However, as shown in [17] some options of layered encoding even allow for a higher compres-
sion ratio and thus for a reduced resulting data rate, compared to flat video encoding.

The realization of different drop probabilities that can be applied as priority dropping scheme
for the transmission of the different layers can be based on a differentiated queuing and scheduling.
It can be efficiently implemented by aggregate scheduling and the service classes offered by a DS
network [25].

Figure 3.12 shows the performance of an example multi-class video transmission. The video
application implements the option of SNR scalability of the H.263+ standard to generate a video
stream consisting of two layers. A base layer, which contains the complete encoded video stream
with a minimum requested quality, is transmitted applying a Guaranteed Rate Service. The
Guaranteed Rate Service is implemented based on the AF PHB using Green marked packets.
The enhancement layer, which in a joint decoding with the base layer increases the video quality,
but which is not required for decoding of the base layer, is mapped to a Low Delay Alternative
Scavenger Service. This service is also implemented by the same AF class, but the relevant
packets are marked Red and are mapped to an aggressive RED curve. Further on the Low Delay
Alternative Scavenger Service packets are allowed to exceed the configured AF capacity. The
video application performs the relevant marking of packets to be either Green or Red, such that
the ingress router of the DS domain already receives a pre-colored stream. Figure 3.12 shows the
quality of the decoded video stream in terms of the Peak Signal-to-Noise Ratio (PSNR). In case
of a transmission of the video base layer with the Guaranteed Rate Service, the PSNR oscillates
in a range of 35-36 dB. If in addition the enhancement layer is transmitted using the Low Delay
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Alternative Scavenger Service, an increase of the quality of the decoded stream to about 38 dB
can be noticed. Further on the effects of BE congestion are shown in the interval from frame
number 100 to 400. It can be seen, that BE congestion again has no impact on the Guaranteed
Rate Service, which ensures the transmission of the video base layer. In contrast enhancement
layer packets transmitted by means of the Low Delay Alternative Scavenger Service are dropped
during congestion. This occurs due to the fact, that the rate at which Green packets are sent
matches the configured capacity of the AF class. Thus, Red packets exceed this capacity and are
dropped with priority by MRED, if both the AF class and the BE or LDASS class are loaded.
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Figure 3.12: Multi-class Hierarchical Video Transmission combining Guaranteed Rate Service and
Low Delay Alternative Scavenger Service

Generally, if either AF or BE capacity is unused, it can be collected by the Scavenger Services.
Due to the hierarchical WFQ scheduler, unused BE capacity is at first assigned to the Low Loss
Alternative Scavenger Service, whereas unused AF capacity is at first assigned to the Low Delay
Alternative Scavenger Service. We assume that for BE and AF capacity billing is applied for
example by charging a flat rate. Thus, Scavenger Services in both of the classes are able to
scavenge unused capacity, which is already paid for, at a very low additional cost, but also at the
risk of being heavily penalized in case of congestion.



Chapter 4

Multi-Protocol Label Switching

4.1 The Multi-Protocol Label Switching Architecture

In conventional packet switching, a given router forwards packets according to their IP destination
addresses. For that purpose it maintains a forwarding table which specifies to which peered router
and through which interface a packet with a given destination address should be forwarded. Any
time a new packet arrives, a network part of its destination address is extracted. The router uses
the longest match procedure to check in the forwarding table which destination is matched and
what is the next hop for the packet.

The Multi-Protocol Label Switching (MPLS) architecture defines a new way of forwarding
packets between routers1. It uses an additional header placed between the OSI layer 2 and 3
headers (or a part of an ATM header) containing a 20-bit field called an MPLS label. Note
that MPLS is not bound to a particular link-layer or layer-3 protocol. Instead, it defines a
particular encoding for major link-layer protocols including Ethernet indicating that the MPLS
forwarding component should be used instead of the traditional IP-component. Then the next hop
is determined not as usual by applying the packet’s IP destination address to the longest match
procedure but by the MPLS label. Contrary to IP addresses, MPLS labels have no global meaning
since the router usually changes the label of a packet before it is forwarded. This leads to the
demand for some signaling mechanism which establishes a consistent path of label pairs between
ingress and egress routers.

When a packet enters an MPLS domain, its IP header is processed by the ingress router that
decides about the insertion of the MPLS-header. Figure 4.1 illustrates this. Within the MPLS-
domain, routers forward packets based on the incoming label and are not anymore required to
support IP’s longest match procedure. Taking this new functionality into account, the forward-
ing network elements within an MPLS-domain are called Label Switched Routers (LSRs). For
readability, we will use the term router in the remaining text. Since labels do not have a global
meaning, the outgoing label might be different than the incoming. Hence, the initial choice of
the label by the MPLS ingress router defines the path towards the edge of the MPLS domain.
This path is called Label Switched Path (LSP) and can be viewed as a tunnel which connects the
ingress with the egress router. At the tail end of an LSP, the MPLS header is removed by the
egress router. As a consequence, any packet leaving an MPLS-domain is forwarded further in its
conventional way.

In addition to the 20-bit “Label” value, the MPLS header, as shown in Figure 4.1, contains
3 bits of the “Exp” field (usually used to request some QoS parameters), one “S” bit indicating
whether further MPLS headers were following (label stacking is an important feature of MPLS,
particularly in the context of recovery and VPN support), and the “TTL” (Time To Live) field
used to limit the life time of the packet (used by loop detection mechanisms).

1MPLS does not replace the conventional forwarding but rather it is used as an additional switching technique,
which is very useful in traffic engineering.
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Figure 4.1: The example of packet forwarding through an MPLS domain. The ingress router
classifies every incoming packet into one of the predefined Forwarding Equivalence Classes (FEC)
and adds an MPLS header to it. The header contains the label value associated with the matched
FEC. All the MPLS routers along the path traversed by the packet use their label switching
forwarding tables to lookup for the next hop and the outgoing label to be used. The initial label is
therefore updated along its path through the domain. In the illustrated scenario, the initial label
“17” is changed to “65”, then to “33” and finally to “0”. The path determined by this procedure
is called Label Switched Path. The label value of “0” is reserved for a particular purpose. When
a router receives an MPLS packet marked with this label, like the egress router in the example
does, it has to forward the packet by means of conventional IP forwarding instead of MPLS.

Label switching, similarly to network layer routing, consists of two functional components (see
Figure 4.2):

• Control Component
It specifies the way in which the routers distribute labels in order to establish an LSP. Finally,
this component builds in each MPLS router a label switching forwarding table used by the
Forwarding Component.

• Forwarding Component
It forwards MPLS packets based on their labels and the information from the label switching
forwarding table.

It is important to note that the main motivation for MPLS is not the improvement of the
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Figure 4.2: The figure shows the two functional components of an MPLS router. Control
Components of the routers in the MPLS domain control the creation of LSPs by exchanging label
information with other routers. The main task of the Control Component is to create the label
switching forwarding table which is then used by the Forwarding Component to switch incoming
packets to the proper outgoing interfaces. The arrows denote the flow of information.

forwarding throughput, nor the provision of new QoS mechanisms. Using MPLS encoded labels
avoids to switch to the IP-layer processing routines of the router and, if implemented in hardware,
can therefore improve the throughput significantly. However, the fundamental design goal of
MPLS is the ability to influence the operation of the control component. Traffic engineering (TE)
is one of the major driving factors for MPLS.

4.2 Label Distribution in MPLS

Routers using label distribution protocols exchange information by means of messages. Each
message contains three fields: the number representing the type of the message, the length of the
message and the data. This way of encoding, called Type-Length-Value (TLV), allows to easily
extend the set of messages of a given protocol and thus to extend its functionality.
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4.2.1 Classification of the Label Distribution

Upstream vs. downstream mode

Each label used in any LSP sector 2 is always referred as outgoing for the sending node and as
incoming for the receiving node. It is therefore clear that only one from the two nodes should
make a binding of the label to the associated FEC. Once the node has bound the label, it should
advertise it to the second node. Hence, there are two possible modes concerning the label binding3:

• Upstream mode
The node which is upstream with respect to the data flow makes the binding of the given
FEC to the outgoing label and advertises it to the node which is downstream in respect to
the data flow. In this way the downstream node learns his incoming label for a given FEC.

• Downstream mode
The node which is downstream with respect to the data flow makes the binding of the given
FEC to the incoming label and advertises it to the node which is upstream with respect to
the data flow. In this way the upstream node learns his outgoing label for a given FEC.

The remaining text will assume that the downstream mode is chosen.

Downstream on-demand vs. downstream unsolicited

The label bindings can be requested by another node or sent unsolicited without any request. This
implies the two possible modes for the label distribution:

• On-demand mode
It is assumed that the incoming label binding is advertised to the upstream neighbor on
request only.

• Unsolicited mode
In this mode the incoming label binding is advertised to the neighbors unsolicited without
waiting for any request from their side.

Figure 4.3 illustrates both procedures.

Conservative vs. liberal label retention

This classification refers to the unsolicited mode described in the previous section. Since any node
working in this mode can send the incoming label advertisements to all peered routers, the node
itself can receive the label binding for the same FEC from more than one node. In this case, the
node must decide which binding is accepted and actually used. The output label bindings which
were not chosen are treated differently in the two modes:

• Conservative label retention mode
The rejected outgoing label bindings were not kept in memory for future use.

• Liberal label retention mode
The rejected outgoing label bindings were kept in memory for future use. In case of fault
conditions, such as a link failure, which invalidate the selected path, the actual binding will
be replaced by one of the alternative bindings.

The example of the liberal label retention in a downstream label distribution mode is presented
in Figure 4.4.

2An LSP sector refers to an LSP between two Label Switched Routers
3The term “downstream” is used to specify direction which is determined by the data flow while the term

“upstream” is used to specify the direction which is opposite to the data flow.
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Figure 4.3: The difference between the downstream on demand (1) and the downstream unso-
licited (2) label distribution modes. In the first case the label binding has to be requested (a)
before it is advertised (b). In the second case no label request is necessary to advertise the binding.

Independent control vs. ordered control

Each node in the MPLS domain binds the labels to a given FEC independently from the binding
performed by other nodes. However, the advertising process can be synchronized along the LSP.
One of two following modes can be chosen here:

• Independent control mode
In this mode, a node advertises the incoming label binding for a given FEC even when it
has not yet learned the out-going label binding for this given FEC.

• Ordered control mode
In this mode, a node advertises the incoming label binding for a given FEC only after it
learns the out-going label binding for this given FEC.

The example illustrating downstream unsolicited independent and ordered control modes is shown
in Figure 4.5.

The MPLS architecture does not specify how labels are actually distributed among the routers
and how LSPs are then maintained. All modes for the label distribution presented in the previous
section can be implemented.

The functionality of the label distribution protocol is also out of the scope of the proposed
MPLS standard. In the simplest case, the MPLS forwarding table may be configured in such a
way that it is equivalent to the conventional IP destination based one. However, the MPLS routing
can be configured to fulfill any specific network engineering requirements.

4.2.2 Label Distribution Protocol (LDP)

The basic documents describing this protocol are RFC3036 (LDP Specification) and RFC 3037
(LDP Applicability). LDP was designed particularly for the purpose of distributing labels in an
MPLS domain relying on the information gathered by some Interior Gateway Protocol (IGP), like
OSPF or IS-IS. Note that LDP does not support explicit routing nor reservations. However, its
extension described in the next section does.
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Figure 4.4: This Figure shows a simple example of the liberal label retention mode. a) The LSPs
are going to be established for the FEC grouping all packets with the destination address of the
router D. The label bindings for this FEC are distributed as shown on the picture. The router A
receives two label bindings but it chooses only one label, the label “18”. The label “20” is stored
as an alternative label for future use. b) The LSPs are established as marked by the thick arrows.
c) After the link failure the label “18” can not be used by the router A. The router restores the
alternative label “20” and the new LSP to the destination router D is established.

General description

LDP works closely with the installed IP routing protocols. In a steady state, MPLS packets are
routed exactly in the same way as in conventional destination based routing. However, some
differences might appear for relatively short times when e.g. the network topology changes. Since
the label switching is potentially faster than the conventional IP forwarding, an MPLS domain
can benefit from the smaller delivery times of packets.

LDP is a set of specifications defining the way in which peer LDP nodes discover each other
and exchange the necessary information. The communication, except during the initial stage,
is based on TCP ensuring reliability of the message propagation. Since messages were specified
in the TLV form, the protocol is easily extendible by adding new message types to the protocol
specification.

The course of the LDP session can be divided into the following phases, illustrated in Figure 4.6:

• Discovery
The aim of this stage is to find out which peered routers are LDP enabled routers. For that
purpose the router periodically transmits a UDP broadcast message (Hello message) to all
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Figure 4.5: Illustration of the two label binding advertisement modes. (1) In the downstream
unsolicited with independent control mode, the label bindings were advertised independently,
without any synchronization. (2) In the downstream unsolicited with ordered control mode, any
upstream node is not allowed to advertise its incoming label binding before it gets the outgoing
label binding for the given FEC from the peered downstream node.

peered routers4. On the other hand, it receives the Hello messages from its neighbors.

• Adjacency
The task of this step is to initiate the TCP session between two peered routers. After the
discovery phase, a router knows each of its LDP neighbors. It uses this information to
initialize a long-term TCP session with each of its neighbors. This is the purpose of the
Initialize message. Note that the source of the Initialize message is typically selected
based on the IP-addresses. If the parameters included in this message (e.g. LDP version,
the method of label distribution, timer values, ...) are accepted by the neighbor the latter
sends in response a Keepalive message (if not then the Error message is generated). At
the end of the Adjacency phase, peer routers send one to another Address messages to
advertise their interface addresses.

• Label advertisement
In this phase, the bidirectional TCP session between peered routers is established. Its
purpose is to facilitate the exchange of label bindings. The Label Mapping message con-
taining the bindings of the labels to the FECs is sent either unsolicited or on-demand (La-
bel Request). Additional messages were introduced to support the management of labels.
A Label Request message can be cancelled when it is followed by the
Label Request Abort message. On the other hand, the router which advertises the label
bindings can withdraw the advertised binding by sending the Label Withdraw. A router

4The specification of LDP allows to establish an LDP session between routers which have no direct connection.
In this case the address of the peer host should be known and the Hello is sent as uni-cast UDP message.
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which is not going to use a received binding uses the Label Release message to inform the
peered node about its decision.
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Figure 4.6: The sequence of the LDP messages exchanged by the two routers in the on-demand
mode label distribution mode.

The way in which labels are being advertised to neighbors depends on the selected label distri-
bution mode. However, downstream distribution is used in all cases. In general, the label bindings
can be requested by an upstream router or sent unsolicited without any request. On the other
hand, a router can either decide when to send the binding for a given FEC (requested or not) in-
dependent from the decision of other nodes or it waits until it receives the binding for a particular
FEC from its downstream router. Combining these different possibilities, we receive four modes
in which an LDP domain can operate5:

• Downstream unsolicited with independent control

• Downstream unsolicited with ordered control

• Downstream on-demand with independent control

• Downstream on-demand with ordered control

Note that the downstream unsolicited methods will initially generate more signaling traffic in
a domain than the alternative modes. It is so, because a router probably receives the binding for a
given FEC from all its neighbors, though it will select only one of them. Thus, the router receives

5The description of these modes can be found in Section 4.2.1.
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more information than really needed. Depending on the retention mode, the router can ignore
these extra label bindings by sending a Label Release message (conservative label retention) or
it can store them for future use. Whenever the routing table is updated in a way that a new
node becomes the next hop of a particular FEC, the router can easily restore the label binding
associated with the new next hop without any additionally LDP signaling (liberal retention mode).
Clearly, the downstream on-demand mode does not allow this mode. Here, only the next hop for
a given FEC is requested to advertise the binding. Hence, there are no extra binding information
available.

In the independent control mode, the time needed for establishing an LSP is shorter than in
ordered control where an upstream node has to wait for the binding from a downstream node
before it is allowed to advertise its own. On the other hand, the ordered control mode offers
more reliability since the label binding received for a given FEC indicates that the LSP is already
established from this node towards the egress router for this FEC.

Once the labels were advertised and the network topology remains, the labels bindings do need
to be refreshed. Only Keepalive messages were periodically sent to monitor the established LDP
connections. Any time a router receives a Keepalive message, it resets a counter associated with
the LDP session. Whenever the timer reaches its time-out value (hold-time), LDP assumes a fault
condition and cares about the rearrangement of LSPs to omit the fault link or the node.

Implementation of LDP in Cisco routers

The tests of LDP were performed using the topology that is shown in Figure 4.7. All routers were
configured to use the Open Shortest Path First (OSPF) routing protocol.
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Figure 4.7: Configuration of the testbed used to evaluate the operation of LDP in an MPLS
domain. Four Cisco 7200 routers were interconnected with Fast Ethernet, Gigabit Ethernet,
Packet Over SONET and ATM links. The routers’s names zam576 . . . zam579 are given together
with their loopback IP addresses, i.e. a unique IP address of a router. For each link its name, the
IP address and the port numbers are shown.

All routers were using a common operating system version as indicated by the output of the
show version command in the EXEC mode:

zam57X#show version

Cisco Internetwork Operating System Software

IOS (tm) 7200 Software (C7200-JS-M), Version 12.2(4)T, RELEASE SOFTWARE (fc1)

(...)
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Configuration of an MPLS domain

The first step to activate MPLS in the Cisco-based testbed is to enable Cisco Express Forwarding
by the following command executed in the general configuration mode:

zam576(config)#ip cef

Next, in order to enable MPLS routing on all interfaces interconnecting the routers, the two-
step configuration described below should be done.

• In the general configuration mode and in the interface configuration mode6:

zam57X(config)#mpls ip
zam57X(config-if)#mpls ip

• In the general configuration mode and in the interface configuration mode:

zam57X(config)#mpls label protocol ldp
zam57X(config-if)#mpls label protocol ldp

In this way LDP is chosen to distribute MPLS labels. Alternatively one could select the
older TDP (Cisco’s Tag Distribution Protocol). Both protocols are functionally identical
but they differ in the message formats and the related IOS procedures.

The flow of LDP messages.

By executing the configuration commands described above, LDP sessions were initiated between
peered routers. After enabling the LDP message logging as below (in the privileged EXEC mode):

zam57X#debug mpls ldp messages sent all
zam57X#debug mpls ldp messages received all

one can use the following command to monitor the messages recorded by the router by exe-
cuting the command:

zam57X#show logging

An example illustrating the LDP message flow between zam576 and zam577 (from the point
of view of the first one) is given below:

13:16:15.768: ldp: Rcvd init msg from 10.10.10.77 (pp 0x0)

13:16:15.768: ldp: Sent init msg to 10.10.10.77:0 (pp 0x0)

13:16:15.768: ldp: Sent keepalive msg to 10.10.10.77:0 (pp 0x0)

13:16:15.792: ldp: Rcvd keepalive msg from 10.10.10.77:0 (pp 0x0)

13:16:15.792: ldp: Sent address msg to 10.10.10.77:0 (pp 0x6306D01C)

13:16:15.792: ldp: Sent label mapping msg to 10.10.10.77:0 (pp 0x6306D01C)

13:16:15.792: ldp: Sent label mapping msg to 10.10.10.77:0 (pp 0x6306D01C)

(...)

13:16:15.792: ldp: Sent label mapping msg to 10.10.10.77:0 (pp 0x6306D01C)

13:16:15.792: ldp: Rcvd address msg from 10.10.10.77:0 (pp 0x6306D01C)

13:16:15.792: ldp: Rcvd label mapping msg from 10.10.10.77:0 (pp 0x6306D01C)

13:16:15.792: ldp: Rcvd label mapping msg from 10.10.10.77:0 (pp 0x6306D01C)

(...)

6 The notation zam57X means any of the routers in the testbed: zam576, zam577, zam578 or zam579.
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13:16:15.796: ldp: Rcvd label mapping msg from 10.10.10.77:0 (pp 0x6306D01C)

13:17:01.411: ldp: Sent keepalive msg to 10.10.10.77:0 (pp 0x6306D01C)

13:17:08.207: ldp: Rcvd keepalive msg from 10.10.10.77:0 (pp 0x6306D01C)

13:17:52.409: ldp: Sent keepalive msg to 10.10.10.77:0 (pp 0x6306D01C)

(...)

Here, the Initialize, Keepalive, Address and Label Mapping messages described in Sec-
tion 4.2.2 are denoted as “init msg”, “keep alive msg”, “address msg” and “label mapping
msg”, respectively.

We can see that the Initialize messages are exchanged first. They contain the LDP session
parameters like the time-out for receiving Keepalive messages (default: 180 s) or the flag for the
label distribution mode (default: downstream unsolicited). The time interval between sending the
Keepalive messages is set by the system to 1/3 of the time-out and in the discussed example it
was equal to 60 s. However, one can modify the default value for the time-out (for example to 360
s) by executing the following command in the general configuration mode:

zam57X(config)#mpls ldp holdtime 360

After this change the new value for the time interval between sending Keepalive messages is
set by the router. Neither too high nor too low values of the holdtime are advisable. In the
first case, the router would be too slow in detecting any link congestion or failure condition. In
the second case, it might wrongly conclude that the link can not transmit data even if it is only
affected by a short burst, which prevents the transmission of the Keepalive message on time.
One can see the actual LDP parameters used by the router by executing the following command
in the exec mode:

zam576#show mpls ldp parameters

Protocol version: 1

Downstream label pool: min label: 16; max label: 100000

Session hold time: 360 sec; keep alive interval: 120 sec

Discovery hello: holdtime: 15 sec; interval: 5 sec

Discovery targeted hello: holdtime: 180 sec; interval: 5 sec

(...)

LDP loop detection: off

Here, the allowed range for labels, the time-out, and the Keepalive message interval value is
shown in conjunction with the hold times and hold intervals for Hello messages7. During the
LDP Discovery, the “Hello” messages are sent every 5 s and should be received at least once per
15 s. These two time values can be also modified (for instance to 10 and 30 s respectively) by
using the general configuration mode command:

zam57X(config)#mpls ldp discovery interval 10
zam57X(config)#mpls ldp discovery holdtime 30

The loop detection functionality allows for avoiding loops within LSPs. It is disabled by default.
However, one can enable it by executing the following command in the general configuration mode:

zam57X(config)#mpls ldp loop-detection

A preceding “no” disables this option. The loop detection mechanism makes use of the following
two objects included in Label Request or Label Mapping messages:

• Path Vector object
7Discovery targeted hello statement refers to the situation where the LDP session is established between

peers not directly connected by a link - this is however not the case in the discussed router configuration.
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It contains the list of addresses of all nodes the message has already passed. If any node
finds its address on this list, it means that the loop is detected.

• Hop Count object
It contains the number of hops the message has already passed. If this number reaches
the preset value of the maximal number of hops then the node concludes that the loop is
detected.

Once MPLS is fully enabled in the testbed one can look into the MPLS forwarding tables. The
label forwarding table for the particular configuration of router zam576 is shown below.

zam576#show mpls forwarding-table

Local Outgoing Prefix Bytes tag Outgoing Next Hop

tag tag or VC or Tunnel Id switched interface

16 Pop tag 10.10.10.78/32 0 AT1/0.1 point2point

17 19 10.10.10.79/32 0 Fa0/1 192.168.32.242

17 10.10.10.79/32 0 AT1/0.1 point2point

18 Pop tag 10.10.10.77/32 0 Fa0/1 192.168.32.242

19 Pop tag 192.168.34.8/30 0 AT1/0.1 point2point

20 Pop tag 192.168.35.8/29 0 Fa0/1 192.168.32.242

21 22 134.94.204.16/28 0 Fa0/1 192.168.32.242

21 134.94.204.16/28 0 AT1/0.1 point2point

22 Pop tag 134.94.168.0/21 0 AT1/0.1 point2point

23 22 134.94.80.0/24 0 AT1/0.1 point2point

24 Pop tag 192.168.32.24/30 0 Fa0/1 192.168.32.242

25 Pop tag 192.168.32.16/30 0 Fa0/1 192.168.32.242

Pop tag 192.168.32.16/30 0 AT1/0.1 point2point

26 Pop tag 192.168.32.232/30 0 AT1/0.1 point2point

27 27 192.168.33.8/29 0 Fa0/1 192.168.32.242

25 192.168.33.8/29 0 AT1/0.1 point2point

The forwarding table information is presented in 6 columns.

• The “Local tag” is the incoming label assigned by the router.

• The “Outgoing tag or VC” is the label advertised by the downstream node (or the ATM
VPI/VCI values to reach this node). The notion “Untagged” that might appear in this
column indicates that all packets with the given incoming label are forwarded without any
label (e.g. when the label binding for the given destination was not advertised by any of the
neighboring nodes or the next hop for the given destination does not support MPLS). This
information might also be an indication for a configuration problem. The notion “Pop tag”
indicates that the incoming top label will be removed and no new outgoing label will take
its place (it can happen when the egress node advertises so called “implicit NULL label” for
a given FEC).

• The “Prefix or Tunnel ID” denotes the address of the destination network with its subnet
mask, or the identity number of the tunnel through which the data are going to be sent.

• The “Bytes tag switched” contains the number of Bytes forwarded by means of MPLS.

• The “Outgoing interface” field contains the types of outgoing interfaces used in the MPLS
forwarding.

• The “Next hop” field contains the IP addresses of the outgoing interfaces. Point-to-point
links are marked as “point2point”.

The above MPLS forwarding table matches the content of the conventional IP routing table
which can be displayed by the “zam576#show ip route” command executed in the EXEC mode.
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(...)

192.168.31.0/30 is subnetted, 1 subnets

C 192.168.31.8 is directly connected, FastEthernet0/0

10.0.0.0/32 is subnetted, 4 subnets

O E2 10.10.10.78 [110/20] via 192.168.32.10, 00:03:15, ATM1/0.1

O E2 10.10.10.79 [110/20] via 192.168.32.242, 00:03:15, FastEthernet0/1

[110/20] via 192.168.32.10, 00:03:15, ATM1/0.1

C 10.10.10.76 is directly connected, Loopback0

O E2 10.10.10.77 [110/20] via 192.168.32.242, 00:03:15, FastEthernet0/1

192.168.34.0/30 is subnetted, 1 subnets

O E2 192.168.34.8 [110/20] via 192.168.32.10, 00:03:15, ATM1/0.1

192.168.35.0/29 is subnetted, 1 subnets

O E2 192.168.35.8 [110/20] via 192.168.32.242, 00:03:15,FastEthernet0/1

134.94.0.0/16 is variably subnetted, 3 subnets, 3 masks

O E2 134.94.204.16/28

[110/20] via 192.168.32.242, 00:03:17, FastEthernet0/1

[110/20] via 192.168.32.10, 00:03:17, ATM1/0.1

O E2 134.94.168.0/21 [110/20] via 192.168.32.10, 00:03:17, ATM1/0.1

O E2 134.94.80.0/24 [110/20] via 192.168.32.10, 00:03:17, ATM1/0.1

192.168.32.0/30 is subnetted, 5 subnets

C 192.168.32.8 is directly connected, ATM1/0.1

O 192.168.32.24 [110/2] via 192.168.32.242, 00:03:17,FastEthernet0/1

O 192.168.32.16 [110/2] via 192.168.32.242, 00:03:17,FastEthernet0/1

[110/2] via 192.168.32.10, 00:03:17, ATM1/0.1

O 192.168.32.232 [110/2] via 192.168.32.10, 00:03:17, ATM1/0.1

C 192.168.32.240 is directly connected, FastEthernet0/1

192.168.33.0/29 is subnetted, 1 subnets

O E2 192.168.33.8 [110/20] via 192.168.32.242, 00:03:17,FastEthernet0/1

[110/20] via 192.168.32.10, 00:03:17, ATM1/0.1

O*E2 0.0.0.0/0 [110/1] via 192.168.32.10, 00:03:17, ATM1/0.1

Here, all destination addresses are listed together with the addresses and names of the associ-
ated outgoing interfaces through which the packets will be forwarded. The last line corresponds
to the default route (all packets with destinations distinct from the ones listed above will be sent
through the ATM interface (192.168.32.10 ). The notion “O” or “O E2” means that a given
route was determined by the OSPF protocol while the notion “C” indicates a directly connected
interface.

One can compare the next hops to which packets with a given destination address will be
forwarded in case of MPLS and IP routing. Let us take two example destinations:

• 10.10.10.79/32 - the address of the router zam577
The incoming label for this destination is 17 while the outgoing label advertised by the
zam577 router is 19 or 17. MPLS forwards all packets with this destination to the Fast
Ethernet interface (denoted as Fa0/1) having the address 192.168.32.242 or alternatively
to the ATM interface (denoted as AT1/0.1).
On the other hand, in the IP forwarding table, there are also two routes to this destination:
the primary going through the Fast Ethernet interface (192.168.32.242) and the alternative
going through the ATM interface (192.168.32.10). Thus, one can see that for this desti-
nation MPLS and IP forwarding are equivalent concerning both, primary and alternative
routes.

• 192.168.34.8/30 - the address of the network connected to the router zam578
The incoming label for this destination is 19 while the outgoing label is implicit NULL (i.e.
Pop tag. This means that packets will be forwarded through the ATM interface (denoted
as AT1/0.1) without any label. Also the IP forwarding uses this ATM interface for this
destination.

Any time the network topology changes, the OSPF protocol modifies the IP forwarding table.
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Since the LDP works in the liberal retention mode, the label forwarding tables follow this change
without additional label distribution.

4.2.3 Constraint-Based Routing LDP (CR-LDP)

So far, all LSPs were established following the shortest paths determined by the interior gateway
protocol (like OSPF). The Constraint-based Routing Label Distribution Protocol (CR-LDP), de-
scribed in this section, extends the functionality of LDP by the ability to explicitly map LSPs to
the topology (in a strict or a loose way). The basic document with the description of CR-LDP is
RFC3212.

General description

The extension to LDP was done by defining a set of new TLV objects which may be included in the
LDP “Label Request” message. Although the preferred path or the QoS requirements are specified
by the head-end router, they influence the behavior of all the routers along the path. Hence, all
other routers are not allowed to make any label binding before they get those constraints from
the head-end node. This implies that CR-LDP must work in the ordered downstream on-demand
mode described in Section 4.

There are several new objects defined in the CR-LDP extension which can be included in the
“Label Request” message:

• LSPID (mandatory in CR-LDP)
This object is used to identify the LSP within the MPLS domain. It contains the LSP
identification number (locally unique within the head-end router) and the head-end router
identification number (one of its IP addresses). The “Action Indicator Flag” carries the
information whether the LSP of a given identification number should be created or the
existing path should be modified.

• EXPLICIT ROUTE (optional in CR-LDP)
It is a list of abstract nodes which should be passed over by an LSP, where the term abstract
node refers to a single node or a group of nodes described by a common IP prefix or an
Autonomous System Number. An already existing LSP tunnel can also be the abstract
node in this list.

Each abstract node is marked by the “Strict” or “Loose” flag. The term “Strict” or “Loose”
refers to a path from the previous abstract node to the abstract node carrying the flag.
If the abstract node is marked as “Strict”, then this path must not include other nodes than
those belonging to it or to the prior abstract node.
If the abstract node is marked as “Loose”, then the path may include other nodes than those
belonging to it or to the prior abstract node.

• TRAFFIC PARAMETER (optional in CR-LDP)
This object contains the characteristics of the traffic to be routed through the LSP. For this
purpose the following token bucket parameters are used:

– Committed Data Rate (CDR)
The maximum average rate at which the data will flow through the LSP.

– Committed Burst Size (CBS)
The maximum number of extra Bytes which can be sent when the actual rate temporally
exceeds the CDR value.

– Excess Burst Size (EBS)
The maximum number of uncommitted data bits that the network attempts to deliver
over a measured time interval.
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– Peak Data Rate (PDR)
The maximum rate which can be reached while sending the data through the LSP8. The
Committed Data Rate alone does not limit the momentary rate of the data transmission.

– Peak Burst Size (PBS)
The maximum number of extra Bytes which can be sent during a short time when the
actual rate exceeds the PDR value.

In addition, the “Weight” parameter is used to determine the LSP’s priority to access the
bandwidth.

• PINNING (optional in CR-LDP)
This object contains a bit which selects whether the route pinning is enabled or disabled for
an LSP. It affects only those segments of the LSP which are loosely routed (when the next
hop has a “Loose” flag or it is a group of nodes). When the route pinning bit is set to “1”,
all loosely routed LSP segments will not be redefined even though some better placement
might appear at some later time.

• RESOURCE CLASS (optional in CR-LDP)
Each link can be attributed to up to 32 user defined resource classes (resource classes are
specified in the RFC2702 document). This information is represented by a 32-bit string.
Here, every bit indicates whether the link is assigned to a given resource class (the bit set to
“1”) or not (the bit is set to “0”). Similarly, the RESOURCE CLASS object contains a 32-bit
string indicating which resource classes may be used by the LSP. Any time an LSP is being
established, the LSP string is compared to the links’ bit strings and only those links are
selected which belong to the required resource classes. An example for a possible application
of this resource class affinity is shown in Figure 4.8.

• PREEMPTION (optional in CR-LDP)
It affects the rearrangements of LSPs. This object includes the parameters: “Setup Priority”
and “Hold Priority”. Both of them are in the range from 0 to 7. Here, the first value
corresponds to the highest priority and the second to the lowest. The priorities are compared
when the two LSPs compete for network resources. The “Setup Priority” parameter is
associated with the LSPs being established while the “Hold Priority” parameter is used for
the LSPs already present.

After the CR-LDP sessions between peered routers in an MPLS domain are established, the
head-end node of an LSP can initialize the creation of a constrained LSP. An example showing
the operation of CR-LDP during establishment of such an LSP is presented in Figure 4.9.

The head-end router usually adds the EXPLICIT ROUTE and the TRAFFIC PARAMETER objects
to the Label Request message. The Label Request message is then sent to the next node
which is chosen by taking into account all the constraints and the local routing information.
After the reception of the message (and preparing the appropriate network resource reservations if
necessary) the next node will proceed with the same procedure and will choose the destination for
its Label Request message. Thus, this procedure is continued until the LSP’s tail-end node is
reached. Then the tail-end creates the label binding which is advertised in the Label Mapping
message. A sequence of Label Mapping messages is sent from one node to another along the same
path which was previously used by the Label Request messages but in the opposite direction.
Finally the head-end node receives the label binding and the constrained LSP is established.

CR-LDP is not implemented in the evaluated Cisco router software.

4.2.4 Resource Reservation Protocol with Traffic Engineering Exten-
sions (RSVP-TE)

The Resource Reservation Protocol with Traffic Engineering extensions described in RFC3209 has
a similar functionality as CR-LDP. It extends RSVP described in RFC2205 with a set of new

8 In fact it is also some average value which can be momentary exceeded in a short time.
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Figure 4.8: The possible application of the RESOURCE CLASS object in selecting the placement of
an LSP is shown. The LSP is going to be established between the routers A and F. For simplicity
only two bits, representing two resource classes, are taken into account. Each link belongs to none,
one or two resource classes what is indicated by the appropriate bit patterns. a) The LSP bit
string “10” indicates that only links with the first bit set to “1” can be chosen for establishment
of the path. Thus, only one path traversing nodes ADEBCF is possible in this policing (thick
line). b) The LSP bit string “01”indicates that only links with the second bit set to “1” can be
chosen for establishment of the path. Thus, only one path traversing nodes ABF is possible in
this policing (thick line).

features supporting the distribution and maintenance of MPLS labels. The protocol uses the
downstream on-demand model to create LSPs.

Routers running RSVP-TE communicate via exchanging messages in form of raw IP or UDP
packets. The protocol defines 7 types of messages: Path, Resv, PathErr, ResvErr, PathTear,
ResvTear, and ResvConf, where each message can contain one or more objects carrying data
specific for a given type. The extension of RSVP to RSVP-TE supporting MPLS was done by
including new objects classes into the existing message types.

General description

The most important messages of RSVP are the Path and the Resv message. To illustrate their
usage for label distribution, let us consider the example of creating an LSP in an environment of
four routers as shown in Figure 4.10. Let us also assume that the LSP should follow the path from
the router A to the router D going through the routers B and C. Denoting the path in the explicit
route object one can enforce the placement of an LSP independently from the path calculated by
the shortest path algorithm.

When the LSP is to be established between routers A and D the router A must send a Path
message containing the LABEL REQUEST object to the router D. The packet containing this message
is first received by the router B which adds its address to the RECORD ROUTE objects and forwards
the modified Path message further to the router C. The RECORD ROUTE object keeps the actual
information of the path traversed by the messages9. Router C forwards the message further to
the destination router D. In response to the LABEL REQUEST included in the Path message, the

9The presence of the RECORD ROUTE object in a Path message is optional.
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Figure 4.9: This figure shows the flow of the Label Request and Label Mapping messages
during establishment of the CR-LSP tunnel. The time sequence of the messages corresponds to the
order of the numbers placed at the arrows (1,2, ..., 8). The thick lines denote the Label Switched
Path sectors.

router D binds an MPLS label as incoming label in its MPLS forwarding table and puts it in the
LABEL object of the Resv message. Then this message is sent back to the router A following the
path recorded in the RECORD ROUTE object but in reverse direction. The Resv message is received
first by the router C, which extracts the label from the LABEL object of the Resv message and
stores it in its MPLS forwarding table as outgoing label for the related LSP. Then the router
binds10 the incoming label associated with the just received outgoing label and sends it to the
router B in a LABEL object of the Resv message. When the router A receives the Resv message
the LSP is established. All packets sent by the router A using the just received MPLS label
will follow the newly established LSP. This procedure of distributing the MPLS labels is called
downstream-on-demand.

CISCO implementation

The tests of RSVP-TE were performed in a network testbed consisting of four Cisco 7200 routers
connected via Gigabit Ethernet, Fast Ethernet, and ATM links (see Figure 4.7). RSVP-TE is used
by the Cisco software installed in the routers to support the creation and maintenance of MPLS
tunnels. The setup of an MPLS tunnel is initiated by commands which trigger the RSVP-TE
message flow along the tunnel path. A detailed view on this procedure can be gained by using the
tracing facility of RSVP messages.

Figure 4.11 shows the topology of the testbed which was used to perform the tests. Here, an
MPLS tunnel was created from the router zam576 to the router zam579.

Configuration of the MPLS tunnel

In order to use an MPLS tunnel, the head-end router (in this example zam576) should be properly
configured. The following two commands must be executed in the general configuration mode
before defining any tunnel:

zam576(config)#ip cef

10This binding can already be done when the Path message was received.
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Figure 4.10: An example for the allocation of an MPLS tunnel using RSVP-TE. The
LABEL REQUEST objects were included in Path messages while the labels contained in the LABEL
objects were distributed with the Resv messages. The time sequence of the messages corresponds
to the order of the numbers placed at the arrows (1,2, ..., 6). The head-end router A sends the
Path message to the router B which is the next hop on the path to the tail-end router D. Then the
router B forwards the message to the router C which in turn sends it to the destination router D.
Similarly, but in opposite direction, the Resv message generated by the tail-end router D travels
the path to the head-end router A. When this procedure is completed, all the routers along the
described path have a consistent mapping between incoming and outgoing label for this LSP. The
LSP can now be used for sending data from the router A to D.
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192.168.32.18
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Figure 4.11: Testbed topology for an experiment in which an MPLS tunnel was placed between
router zam576 and router zam579 (thick line). The interface addresses used to define the explicit
path are shown together with the routers’ loopback addresses.
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zam576(config)#mpls traffic-eng tunnels

The first command activates the Cisco Express Forwarding (CEF), an advanced switching module
which is mandatory for the operation of MPLS. The second command enables RSVP signaling.
Additionally, it must be applied to all interfaces which will take part in transmitting MPLS traffic:

zam57X(config-if)#mpls traffic-eng tunnels

Then an MPLS tunnel interface can be created by entering the interface configuration mode
(in this example the tunnel’s name is Tunnel1).

zam576(config)#interface Tunnel 1

Next, Tunnel 1 can be configured by the specific commands in the interface configuration mode.
The first one is used to assign an IP address to the tunnel. Here, the tunnel is assigned not to a
separate address but to the unique IP address of the router, i.e. its Loopback interface:

zam576(config-if)#ip unnumbered Loopback 0

Next, one has to specify the destination address of the tunnel. Note that Cisco recommends
to use the loopback address of the tail-end router (in this example it is 10.10.10.79):

zam576(config-if)#tunnel destination 10.10.10.79

Since tunnels, in general, can be implemented in various ways, one has to select the MPLS mode
explicitly:

zam576(config-if)#tunnel mode mpls traffic-eng

The explicit path for this tunnel is identified by the MYPATH string (the explicit path, identi-
fied by this string, must be defined in the general configuration mode):

zam576(config-if)#tunnel mpls traffic-eng path-option 1 explicit name MYPATH

Here, the path-option value of 1 was chosen to enforce the prioritisation of this particular path.
This prioritisation is introduced because of the possibility to define multiple paths for a given
tunnel with different path-option values. Normally, the option with the lowest value is used.
However, sometimes it is not possible that the tunnel is established with this path-option value,
e.g. due to a link failure. Then the other paths are checked one by one, in ascending order of the
path-option value, until the available one is found. When the primary path becomes available,
the tunnel is automatically reconfigured to use the original path.

The path may be calculated dynamically, i.e. by using the Shortest Path First algorithm.
In this case, the argument explicit from the command above should be replaced by the word
dynamic. No further arguments are necessary. Note that it is always a good practice to define the
last optional path, i.e. the one with the highest path-option value, as a dynamical one:

zam576(config-if)#tunnel mpls traffic-eng path-option 2 dynamic

The explicit path must be defined in the general configuration mode. The example of the MY-
PATH definition is cited below. The created tunnel is forced to pass the listed interfaces.

zam576(config)#ip explicit-path name MYPATH enable
zam576(cfg-ip-expl-path)#next-address 192.168.32.242
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zam576(cfg-ip-expl-path)#next-address 192.168.32.18
zam576(cfg-ip-expl-path)#next-address 192.168.32.234

Path and Resv messages

Using the debugging capabilities offered by the Cisco software one can record the information
about incoming and outgoing messages. In order to enable the logging of the RSVP events the
following command must be executed:

zam576#debug ip rsvp detail

The recorded logging can be viewed with the command:

zam576#show logging

The system summarizes the information contained in a Path message as follows11.

14:23:08.022: RSVP session 10.10.10.79_1: Sending PATH message for

10.10.10.79 on interface FastEthernet0/1

14:23:08.022: RSVP: version:1 flags:0000 type:PATH cksum:7088

ttl:254 reserved:0 length:212

14:23:08.022: SESSION type 7 length 16:

14:23:08.022: Destination 10.10.10.79, TunnelId 1, Source

10.10.10.76

14:23:08.022: HOP type 1 length 12: C0A820F1

14:23:08.022: : 00000000

14:23:08.022: TIME_VALUES type 1 length 8 : 00007530

14:23:08.022: EXPLICIT_ROUTE type 1 length 44:

14:23:08.022: (#1) Strict IPv4 Prefix, 8 bytes, 192.168.32.242/32

14:23:08.022: (#2) Strict IPv4 Prefix, 8 bytes, 192.168.32.18/32

14:23:08.022: (#3) Strict IPv4 Prefix, 8 bytes, 192.168.32.233/32

14:23:08.022: (#4) Strict IPv4 Prefix, 8 bytes, 192.168.32.234/32

14:23:08.022: (#5) Strict IPv4 Prefix, 8 bytes, 10.10.10.79/32

14:23:08.022: LABEL_REQUEST type 1 length 8 : 00000800

14:23:08.022: SENDER_TEMPLATE type 7 length 12:

14:23:08.022: Source 10.10.10.76, tunnel_id 6

The refresh time used during the RSVP session is carried by the TIME VALUES object. The
hexadecimal value of 0x00007530 is the refresh time parameter given in milliseconds what is
equivalent to R = 30 seconds. This is the default value used by the Cisco software. However, it
can be separately chosen for each host. The actual refresh time (the time between sending two
subsequent Path or Resv messages) changes after sending every message and its new value is chosen
from the range of [0.5R, 1.5R]. The refresh time is randomly set to avoid any synchronization effects
from messages sourced by different nodes within the network. If the gap between the reception of
two subsequent Path or Resv messages is more than the life time defined as L = (K +0.5) ·1.5R, it
is assumed that the defined MPLS tunnel is not valid anymore. In this case, the LSP is cancelled
(K is an integer value and it is currently suggested in RFC2205 to be equal to 3) by propagating
PathTear and ResvTear messages downstream and upstream the LSP, respectively.

The EXPLICIT ROUTE object contains a list of addresses of the interfaces which must be passed
on the way to the tail-end router. This list is slightly different from the one specified by the MYPATH
variable. The address of the Gigabit Ethernet port of the zam578 router is added (192.168.32.233)
together with the loopback address of the destination router (10.10.10.79). This is, however, a
formal change which does not influence the actual path of the data flow. The EXPLICIT ROUTE

11 Since the reservation of the network resources is discussed in the next section the related objects are omitted
in the description of the RSVP message content here.
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object is being updated along the path, to eliminate interfaces which have already been passed.
Note that the Cisco implementation uses the EXPLICIT ROUTE object even if the path is calculated
dynamically. This indicates that the Shortest Path First algorithm is applied by the head-end
router prior to submitting the Path message.

The router zam576 receives a Resv message with the following content:

14:32:01.914: RSVP: version:1 flags:0000 type:RESV cksum:0000

ttl:255 reserved:0 length:108

14:32:01.914: SESSION type 7 length 16:

14:32:01.914: Destination 10.10.10.79, TunnelId 1, Source 10.10.10.76

14:32:01.914: HOP type 1 length 12: C0A820F2

14:32:01.914: : 00000000

14:32:01.914: TIME_VALUES type 1 length 8 : 00007530

14:32:01.914: LABEL type 1 length 8 : 00000010

14:32:01.914:

14:32:01.914: RSVP 10.10.10.76_6-10.10.10.79_1: RESV message

for 10.10.10.79 (FastEthernet0/1) from 192.168.32.242

Some parameters like SESSION, HOP and TIME VALUES have the same meaning as we described
in case of Path messages.

For MPLS the most important object is the LABEL object which contains the value of the
MPLS label. In the example for the head-end zam576 router it equals to 16 (10 in the hexadecimal
system). The routers zam577 and zam578 received from their downstream nodes the labels 3 and
0 respectively.

All the nodes along the LSP periodically send the Path and Resv messages to their neighbors
with the average frequency of R = 30 s.

PathTear and ResvTear messages

RSVP-TE maintains a “soft state”. The state information needs to be periodically refreshed by the
Path and Resv messages. Otherwise, the LSP will be automatically deleted. Thus, the use of the
special PathTear and ResvTear commands for an efficient cancellation of an LSP is recommended,
but not obligatory in the operation of RSVP.

PathTear and ResvTear messages travel along the LSP in analogy to the Path and Resv
messages: PathTear in the direction of the tail-end and ResvTear in the direction of the head-end.
The messages contain the same objects as included in Path and Resv messages but the triggered
action is opposite: instead of establishing an LSP the LSP is deleted.

The sending of tear down messages can be initialized anywhere along the LSP. It thus has not
to be sourced by either the head-end or the tail-end router. The reason for that is clear: a timeout
in receiving refresh Path or Resv messages might occur in any node along an LSP.

Below is the example of the PathTear message sent by the zam576 head-end router to the
zam577 router which is the next hop along the defined LSP.

15:22:52.666: RSVP session 10.10.10.79_1: send path teardown multicast

about 10.10.10.79 on FastEthernet0/1

15:22:52.666: RSVP: version:1 flags:0000 type:PTEAR cksum:9CFE

ttl:254 reserved:0 length:132

15:22:52.666: SESSION type 7 length 16:

15:22:52.666: Destination 10.10.10.79, TunnelId 1, Source 10.10.10.76

15:22:52.666: HOP type 1 length 12: C0A820F1

15:22:52.666: : 00000000

15:22:52.666: SENDER_TEMPLATE type 7 length 12:

15:22:52.666: Source 10.10.10.76, tunnel_id 60

In response to the PathTear message the router zam577 sends the ResvTear message back to
zam576:



42 Multi-Protocol Label Switching

15:22:52.677: RSVP session 10.10.10.79_1: send reservation teardown

to 192.168.32.241 about 10.10.10.79

15:22:52.677: RSVP: version:1 flags:0000 type:RTEAR cksum:1ACE ttl:255

reserved:0 length:100

15:22:52.677: SESSION type 7 length 16:

15:22:52.677: Destination 10.10.10.79, TunnelId 1,

Source 10.10.10.76

15:22:52.677: HOP type 1 length 12: C0A820F2

15:22:52.677: : 00000000

15:22:52.677: CONFIRM type 1 length 8 : C0A820F2

PathErr and ResvErr messages

When an error is detected by any router during the processing of an LSP setup request, it sends
RSVP-TE error messages. A PathErr message is sent upstream to the head-end when the problem
was caused by the Path message; a ResvErr message is sent downstream to the tail-end if the
problem was related to the Resv message.

4.3 MPLS protection capabilities

A major benefit of MPLS is caused by its path-orientation. MPLS can potentially provide faster
and more predictable protection and restoration capabilities in the face of topology changes than
conventional hop-by-hop routed IP systems. Whenever a link fails, routing protocols are involved
to recover the situation and to reestablish the routing convergence again. Unfortunately, the
link-state protocols such as Open Shortest Path First (OSPF) do use timer mechanisms with
exponential backoffs to avoid the frequent flooding of link-state changes. Even in an excellently
tuned system, the recovery time is of the order of seconds. Note that this time moght even be
increased by the time it takes to expose the interface error to the IP-layer. Multiple “Hello”-
messages are involved to identify a broken link, which again takes of the order of seconds. Finally,
the shortest path calculation and the flooding of the new link state takes a while. MPLS offers
three particular recovery mechanisms, all involving the use of a pre-configured, but unused switched
path: a backup tunnel.

• Link protection uses a backup tunnel which connects to the peered router of the protected
link. In case of failures, the upstream router simply pushes an additional label to the MPLS
label stack and transmits the packets to the backup tunnel. On the receiving router, so-
called global labels are used to accept the arriving packets of different switched paths. The
underlying idea is to forward a given label independently from the incoming interface. Note
that a single link protection is in principle capable of protecting multiple switched paths.

• Node protection follows a similar concept, but connects to the downstream router of the
peered node. It therefore ensures that any traffic from an LSP traversing the protected
router can continue to reach its destination even if the router fails.

• With path protection the backup tunnel covers major parts of the switched path using a
diversely-routed path. Note that path protection does not necessarily connect the ingress
router with the egress router.

The most efficient recovery approach is link protection. When applied to Packet Over SONET
(POS) interfaces, which provide convenient feedback mechanisms for link failure detection, recov-
ery can be kept within strong time constraints.



Chapter 5

Service Provisioning in
MPLS-Domains

5.1 Bandwidth reservation mechanisms

RSVP is a signaling protocol which is used by the Integrated Services architecture. It is therefore
capable of transporting information about the traffic profile and the expected level of service. This
all is, in principle, also true for the RSVP-TE extensions, since it is possible to associate some
bandwidth reservation with the allocation of an LSP.

The Cisco software in the version 12.2(4)T allows to specify classes of MPLS packets which can
be offered a special QoS treatment (e.g. dedicated bandwidth, priority queue). However, those
classes can be only defined by means of EXP values in an MPLS header. This scheme of ensuring
the QoS is called MPLS Differentiated Services (MPLS DS). A tunnel-based classification of MPLS
traffic is opaque to this QoS mechanism and one can not assign the QoS parameters to a given
tunnel without referring to the EXP field. RSVP-TE can therefore not be used to automatically
allocate appropriate resources in the traversed routers.

On the other hand, Cisco implements a bandwidth reservation mechanism which can keep
track of available and reserved bandwidth for every interface. A given tunnel must not contain
a particular link if the requested bandwidth is more than the available bandwidth on that link1.
Again we note that this is independent from any scheduling mechanism ensuring an appropriate
bandwidth allocation. Moreover, it does not even police tunnel traffic to ensure that the actual
usage of the bandwidth conforms the reservation made. Thus, it is clear that in order to create a
network environment supporting Quality of Service, the bandwidth reservation mechanism must
be combined with QoS mechanisms such as MPLS DS in a consistent way.

There are two bandwidth pools offered for reservations: a main pool and a sub-pool (which is
a part of the main pool). The maximal reservable bandwidth should be configured individually for
every interface. In order to allocate <X> kbits/s in the main pool and <Z> kbits/s in the sub-pool,
the following command must be executed in the interface configuration mode:

zam57X(config-if)#ip rsvp bandwidth <X> sub-pool <Z>

It is not required that the <X> value matches the link physical bandwidth. In fact, it can range
from 1 to 108 kbits/s. Since the sub-pool is a part of the pool, the <Z> value range is from 0 to
<X>. If the configured reservable pool or sub-pool bandwidth exceeds the link physical bandwidth
then it is said that the link is over-booked.

An MPLS tunnel can request bandwidth from either the main pool or the sub-pool of every
interface along the path of the tunnel. The following commands performed in the tunnel interface
modes show the two variants of the reservation:

1For simplicity, it is assumed here that all tunnels were defined with the same priority.
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zam57X(config-if)#tunnel mpls traffic-eng bandwidth <x>
zam57X(config-if)#tunnel mpls traffic-eng bandwidth sub-pool <z>

where <x> and <z> parameters are given in kbits/s and relate to the main pool and sub-pool
reservations. The allowed range for both parameters is limited by 0 and 232 − 1 = 4 294 967 295
kbits/s. The tunnel can not be established if there is not enough bandwidth from the given pool
on all interfaces along the path. A given tunnel can, however, preempt other tunnels (and obtain
the bandwidth assigned to them) if they have lower hold priorities than the set-up priority of the
particular tunnel. The values of the <hold> and <setup> priorities are used for this purpose. They
can be individually configured for every MPLS tunnel by the following command in the tunnel
interface configuration mode:

zam57X(config-if)#tunnel mpls traffic-eng priority <setup> <hold>

Both values can be chosen from the range between 0 and 7, where the first value specifies the
highest priority and the second one the lowest priority.

The amount of bandwidth requested by a tunnel is signalled in the SENDER TSPEC object in a
RSVP Path message.

14:23:08.022: SENDER_TSPEC type 2 length 36:

14:23:08.022: version=0, length in words=7

14:23:08.022: Token bucket fragment (service_id=1, length=6 words

14:23:08.022: parameter id=127, flags=0, parameter length=5

14:23:08.022: average rate=125000 bytes/sec, burst depth=1000

bytes

14:23:08.022: peak rate =125000 bytes/sec

14:23:08.022: min unit=124 bytes, max pkt size=1662480416 bytes

14:23:08.022: SESSION_ATTRIBUTE type 7 length 20:

14:23:08.022: setup_pri: 7, reservation_pri: 7 MAY REROUTE

14:23:08.022: SESSION_NAME:zam576_t1

14:23:08.022: ADSPEC type 2 length 48:

14:23:08.022: version=0 length in words=10

14:23:08.022: General Parameters break bit=0 service length=8

14:23:08.022: IS Hops:1

14:23:08.022: Minimum Path Bandwidth (bytes/sec):12500000

14:23:08.022: Path Latency (microseconds):0

14:23:08.022: Path MTU:1500

14:23:08.022: Controlled Load Service break bit=0 service length=0

The SENDER TSPEC object is passed unchanged from the head-end router zam576 to the tail-end
router zam579. ¿From all the parameters included in this object only the (‘‘average rate’’)
parameter carries meaningful information - the requested bandwidth. Other parameters like
(‘‘burst depth’’) and the peak data rate (‘‘peak rate’’) are ignored by the MPLS band-
width reservation system2. In the example above, a bandwidth of 1000 kbits/s is requested.
The value of the ‘‘average rate’’ is therefore set to 125000 Bytes/s. On the other hand, the
SESSION ATTRIBUTE object informs about the priorities of the tunnel concerning taking (setup pri)
and holding (reservation pri) resources. Here, both parameters are set by default to 7, i.e. to
the lowest available priority. In the Cisco implementation, the presence of the Controlled Load
Service part in the ADSPEC object indicates that the bandwidth reservation is requested from the
main pool. On the other hand, if the Guaranteed Service would be present in this object, the
requested bandwidth would be taken from the sub-pool.

2Those additional parameters are present here in order to ensure the compatibility with the original RSVP
object specification.



5.2 Guaranteed bandwidth - example 45

The bandwidth bookkeeping on a particular interface is made when the router receives the
FLOWSPEC object in the Resv message.

14:32:01.914: FLOWSPEC type 2 length 36:

14:32:01.914: version = 0 length in words = 7

14:32:01.914: service id = 5, service length = 6

14:32:01.914: tspec parameter id = 127, tspec flags = 0,

tspec length = 5

14:32:01.914: average rate = 125000 bytes/sec,

burst depth = 1000 bytes

14:32:01.914: peak rate = 125000 bytes/sec

14:32:01.914: min unit = 124 bytes, max pkt size = 1500 bytes

The FLOWSPEC object contains the same token bucket parameters as in the SENDER TSPEC object
described above. The average rate parameter is the only meaningful parameter here: it informs
about the requested bandwidth. The service id value of 5 (originally encoding Controlled-
Load Service) indicates that the bandwidth should be reserved from the main pool. A value of 2
(originally encoding Guaranteed Service) would indicate a bandwidth request from the sub-pool.

5.2 Guaranteed bandwidth - example

This section evaluates the bandwidth bookkeeping function described in the previous section. An
MPLS tunnel (Tunnel 1) was established at the router zam576 with the destination to the router
zam579 (see Figure 5.1).

IP 
MPLS Tunnel 1
(flow A only)

MPLS domain

zam576

zam577

zam579

zam578

flow A and Bflow A and B

congestion!

Figure 5.1: Two flows A and B traverse the same path from the ingress router zam576 to the
egress router zam579. However, the flow A is forwarded using an MPLS tunnel (Tunnel 1), while
flow B is forwarded in a conventional way as IP traffic. The congestion occurs on the ATM link
between the router zam577 and zam578.

This tunnel was configured to reserve a bandwidth of 1 Mbit/s from the main pool (the details
of the configuration procedure were described in the previous section). On the other hand, this
amount of bandwidth was actually guaranteed for all MPLS packets with an EXP field equal to
5 (MPLS Differentiated Service). We therefore actually provided bandwidth guarantees based
on a static scheduling configuration. This was achieved by the following configuration of all the
interfaces along the tunnel:

zam57X(config)#class-map match-all myclass



46 Service Provisioning in MPLS-Domains

zam57X(config-cmap)# match mpls experimental 5
zam57X(config-cmap)#exit

zam57X(config)#policy-map mypolicy
zam57X(config-pmap)#class myclass
zam57X(config-pmap)#priority 1000
zam57X(config-pmap)#exit

zam57X(config)#interface <int>
zam57X(config-if)#service-policy output mypolicy

In the above example, we first create a class-map myclass which filters all (MPLS) packets
which have the EXP field set to 5. Then, we create a policy map mypolicy which assigns to
all packets associated to the class map myclass, i.e. an EXP field of 5, a priority queue with
the bandwidth of 1000 kbits/s. At the end, we attach this policy map as a service policy to a
given interface <int> along the path of the Tunnel 1. As long as packets passing over the tunnel
are marked with EXP field set to the value of 5 the tunnel can use the priority queue with the
guaranteed bandwidth of 1 Mbit/s.

For the purpose of the test, two flows A (0.8 Mbit/s) and B (3.2Mbit/s) were generated,
see Figure 5.1. The flow A was forwarded to the Tunnel 1 by the static routing mechanism3.
Additionally, all packets belonging to this flow were marked with the EXP value set to 5. Thus,
the flow A travelling over the tunnel was prioritized (priority queue is served before any other
queue) up to a bandwidth of 1 Mbit/s. At the same time, the flow B was offered a Best-Effort
Service.

Note that both flows used the same path from the router zam576 to router zam579. We created
a single bottleneck link between router zam577 and zam578. This ATM link was configured to
provide a gross bandwidth of 2 Mbits/s (i.e. a net bandwidth of around 1.6 Mbit/s) while the
bandwidth demand of both flows was 4 Mbits/s in total.

Figure 5.2 shows the latency and the amount of lost packets for flow A:

• as described above (denoted in Figure as “Priority Queuing”),

• as described above with the difference that the packets from the flow A were not marked
with an EXP field of 5 - thus no QoS was offered for the flow (denoted in the Figure as
“Priority Queuing”).

When Priority Queuing is applied, the latency remained constant and no packet loss was
observed. On the other hand, when the packets did not belong to the appropriate packet class,
packets get queued until a tail-drop mechanism results in a constant and significant delay.

5.3 DSCP policy based routing

There are three ways of forwarding packets to MPLS tunnels at an ingress router:

• Static routing
All traffic to a given destination is mapped to a given tunnel.

• Making the tunnel available to a routing protocol
A given tunnel is treated by the routing protocol as one of the router interfaces.

3It was checked that the Cisco software, in the version which we used, does not support the functionality of
the policy-based routing simultaneously with the ability to modify of the EXP field in the MPLS header. Cisco
is investigating the problem but does not have a recommended workaround available at the time this report was
written
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Figure 5.2: Packet delivery delay and total loss of packets as a function of time from the beginning
of the data transmission. The packets were sent through an MPLS tunnel defined with (panels b
and d) and without (panels a and c) QoS mechanisms.

• Policy based routing
Only selected packets are being forwarded to a given tunnel. The traffic can be filtered
according to packets’ source address, destination address, source or destination port numbers,
IP DSCP field, etc.

This subsection describes the case where the tunnel to which the packets are forwarded is
solely chosen based on packets’ DSCP field in the IP header (see Figure 5.3). We created two
MPLS tunnels with the common head-end of zam576: Tunnel 1 and Tunnel 2. The steps needed
to configure a tunnel were described in Section 4.2.4.

IP packets entering the domain at the fast Ethernet interface (FastEthernet 0/0) of the router
zam576 were marked by the sending application with the DSCP values of 2 or 3. The policy-based
routing was configured in the following way.

Two access lists were defined in the general configuration mode to filter the incoming traffic
according to the DSCP field:

zam576(config)#access-list 112 permit ip any any dscp 2
zam576(config)#access-list 113 permit ip any any dscp 3

The parameters any any denote that the IP packets are not filtered according to their source
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MPLS domain

MPLS domain

IP MPLS

Tunnel 2

Tunnel 1

zam577

zam576

zam578

zam579

zam576

zam577

zam578

zam579

DSCP=3

DSCP=2

Figure 5.3: DSCP policy based routing. Two tunnels: Tunnel 1 and Tunnel 2 were defined at the
ingress router zam576. The incoming IP packets were forwarded according to their DSCP values.
Packets marked with DSCP equal to 2 were sent to Tunnel 1 while packets marked with DSCP
equal to 3 were sent to Tunnel 2.

and destination address. In the next step the route map myroute was configured as follows:

zam576(config)#route-map myroute permit 1
zam576(config-route-map)# match ip address 112
zam576(config-route-map)# set interface Tunnel1
zam576(config-route-map)# exit
zam576(config)#route-map myroute permit 2
zam576(config-route-map)# match ip address 113
zam576(config-route-map)# set interface Tunnel2
zam576(config-route-map)# exit

The route map myroute consists of two items which were identified by the last parameter in
the route-map myroute permit <n> command. In the discussed example <n> equals to 1 and 2.
Each item is configured separately by specifying the access list which should be matched (match
ip address <nl>) and the interface (set interface Tunnel <nt>). All packets which match
the access list <nl> were then sent over the tunnel <nt>.

The routing policy myroute defined as above is not yet assigned to any interface. To install it
at the FastEthernet 0/0 interface of the zam576 router, the following command in the interface
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configuration mode must be executed:

zam576(config-if)#ip policy route-map myroute

After this step the configuration is completed. It is worth noting that the forwarding defined
by the myroute at the ingress router is not based on the destination address but solely on the
DSCP field. Thus, the application which sends DSCP marked packets can influence the way how
the packets are forwarded at the ingress router. DSCP encoding of 2 or 3 will result in sending the
traffic through the Tunnel 1 and 2, respectively, while other encodings will cause that the traffic
will be forwarded traditionally. Moreover, if the tunnels were defined with the QoS parameters
(see previous section), the sender application can decide, in this way, whether to use those QoS
mechanisms or not. This can be done without changing a configuration of any router in the
domain.

5.4 Fast re-routing

A major benefit of the use of MPLS is given by its failure protection capabilities. The fast-reroute
feature allows to preserve the connectivity of LSPs for failures of a particular link, a particular
node, or a more complex error condition. Especially link protection is designed to perform a quick
restoration of connectivity. It also has the scalable property that the configuration of a single
backup tunnel is able to protect all LSPs which are traversing the particular link.

The experiments presented in this subsection explore the actual benefit of link protection
compared to a failure situation occurred in a typical IP-domain which uses the popular Open
Shortest Path First (OSPF) protocol as routing protocol. The layout of the two experiments is as
follows, see Figure 5.4.

backup tunnel (Tunnel 2)

tunnel (Tunnel 1)

zam579

zam577

zam578

POS lin
k

Figure 5.4: Fast re-routing mechanism. Two tunnels are defined at the router zam579. The
primary Tunnel 1 goes over the Packet Over Sonet link. Under normal conditions, the traffic from
the router zam579 to the router zam578 uses Tunnel 1 while the backup Tunnel 2 is not used. If
the POS link fails the MPLS forwarding at the router zam579 is automatically modified to use
Tunnel 2 instead of Tunnel 1 thus omitting the failure.

Under normal conditions the flow from the router zam579 to the router zam578 goes over the
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Packet Over Sonet (POS) link using the logical interface Tunnel 1 which is configured as below:

zam579(config)#interface Tunnel 1
zam579(config-if)#ip unnumbered Loopback0
zam579(config-if)#no ip directed-broadcast
zam579(config-if)#tunnel destination 10.10.10.78
zam579(config-if)#tunnel mode mpls traffic-eng
zam579(config-if)#tunnel mpls traffic-eng autoroute announce
zam579(config-if)#tunnel mpls traffic-eng path-option 1 explicit name PRIMARY
zam579(config-if)#tunnel mpls traffic-eng fast-reroute
zam579(config-if)#exit

The major part of the MPLS tunnel configuration is described in detail in Section 4.2.4.
Here, two additional commands were added, marked in bold. The first one causes that Tunnel 1
is announced to the Interior Gateway Protocol (OSPF in this example) as one of the zam579
interfaces. The second one enables the fast re-routing functionality. The explicit path PRIMARY is
defined as a direct path between nodes zam579 and zam578.

The backup Tunnel 2 is defined according to the procedure described in Section 4.2.4 with the
explicit path BACKUP going from the router zam579 to the router zam578 not directly, but through
the router zam577. In this case the tunnel is not advertised to the routing protocol.

zam579(config)#interface Tunnel 2
zam579(config-if)#ip unnumbered Loopback0
zam579(config-if)#no ip directed-broadcast
zam579(config-if)#tunnel destination 10.10.10.78
zam579(config-if)#tunnel mode mpls traffic-eng
zam579(config-if)#tunnel mpls traffic-eng path-option 1 explicit name BACKUP
zam579(config-if)#exit

During the first experiment, the POS interface was not configured to use any backup path af-
ter the failure condition. In the second experiment, the POS interface was configured to use the
backup Tunnel 2 whenever a failure occurs. To enable link protection, one has to add the following
command in the interface configuration mode, specifying the tunnel which should be used as a
backup path.

zam579(config)#interface POS 3/0
zam579(config-if)#mpls traffic-eng backup-path Tunnel 2
zam579(config-if)#exit

In both experiments the POS link was manually disconnected a few seconds after beginning
the data transmission. The flow was sent at the rate of 1 packet per millisecond. Figure 5.5 shows
the service offered to the traffic in both cases.

• Experiment 1
Figures 5.5-a and c illustrate the achieved service when a standard OSPF configuration was
deployed. Roughly at the 9-th second, the link failure occurred. IP-convergence took around
5 seconds, after which connectivity was reestablished. As the constant bit rate stream was
sending packets with a frequency of 1000 Hz, the overall amount of lost packets was around
5000. The reason for the experienced disruption of connectivity was not caused by the
layer 2 failure detection. The POS interface allows rapid failure detection by the explicit
configuration of feedback mechanisms, which was done in this experiment. When a link
state protocol is used to maintain the routing tables of each router, timers come into place
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Figure 5.5: Loss of packets due to link failure with (panels b and d) and without (panels a
and c) fast re-routing functionality. In both cases the flow was sent at the rate of 1 packet per
millisecond. The break in transmission was roughly 1 ms (b) when the fast re-routing was active
and it was roughly 5000 ms (a) when this functionality was disabled. That led to the cumulative
packet loss of 1 packet(d) and ca. 5000 packets (c), respectively.

which delay the recalculation of the shortest path. The intention of these timers is to avoid
an extreme flooding of routing updates, with the goal to prevent thrashing, especially when
the link is flapping. It were exactly these timers which caused the significant disruption
of service. Whenever the values of these timers were reduced, it is done at the risk of an
extreme overhead of CPU cycles of many routers. A significant decrease of the measured
disruption is therefore not a realistic assumption.

• Experiment 2
Figures 5.5-b and d illustrate the achieved service when link protection was deployed.
Roughly at the 12-th second, the link failure occurred. MPLS link protection was able to
recover the failure situation quite quickly. The POS interface allowed rapid failure detection
by the explicit configuration of feedback mechanisms, which was done in this experiment.
In a time frame of 1 ms all traffic was redirected to the backup Tunnel 2. Only one single
packet was lost.

The use of the protection capabilities of MPLS is an appropriate mechanism for a robust
provisioning of network guarantees.
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5.5 Any Transport over MPLS

IP networks transport data from one point to another, usually along the shortest path in some
metric. The MPLS extension to IP provides better control of the traffic and thus allows for a more
efficient usage of network resources. One of the very promising applications for the MPLS tech-
nique is the creation of virtual transport networks from network resources spread among different
locations. IP/MPLS networks can transport any data, in particular they can transport packets
between any connected networks, even on the data link level. The Any Transport over MPLS
(AToM) technique developed by Cisco uses this idea by offering connectivity over an IP/MPLS
backbone between transport networks which are not directly connected one to another. Thus, for
example geographically separated networks, i.e. Ethernet, can act as a single one although no
direct Ethernet connection between them exists.

The important aspect of the AToM solution is that a single IP/MPLS network infrastructure
can be used to transport both Layer 2 and Layer 3 traffic. Initially, the Layer 2 Virtual Private
Networks (VPN) are built with leased lines or virtual circuits offered by ATM or Frame Relay
technologies. Unfortunately, interconnecting networks with this kind of virtual circuits does not
scale. The core switches along virtual lines have to store the information about every single virtual
circuit. Thus, any time a new connection is added the core switches have to be reconfigured to
properly forward new traffic. Moreover, separate networks are usually exploited for Layer 2 and
Layer 3 traffic what is not an optimal solution from the network management and economical
point of view.

The AToM concept allows for more efficient usage of the network resources offering different
network services within a single IP/MPLS infrastructure. Moreover, the AToM solution for build-
ing layer 2 VPNs is much more scalable than the conventional one. This is because core routers
in the backbone network store information only about the configured MPLS tunnels while every
single tunnel can transport many virtual circuits. Thus, there is no need to reconfigure the core
routers any time a new virtual connection is added. Only edge routers (head-end and tail-end of
the tunnels) should be updated in this case. This significantly simplifies the network management
task.

AToM is an open specification which does not restrict a list of potentially supported transport
protocols. At the current stage the following protocols are supported by Cisco’s AToM solution:

• Ethernet

• ATM AAL5

• Frame Relay

• ATM Cell Relay

• Point-to-Point Protocol (PPP)

• High Level Data Link Protocol (HDLC)

The basic idea of AToM is shown in Figure 5.6. Here, the packet from the Network A1 is
forwarded to the Network B1, and similarly for the networks A2-B2 and A3-B3. The letter ”h”
denotes the header of the packet while the rest is data. In the IP/MPLS backbone this packet is
treated as a whole (although some fields in the header are modified) and it is transported through
a Label Switched Path towards the destination. Since one tunnel can transport many virtual
circuits, the circuits are identified by the second label in an MPLS header stack “L2”. This label
is added by the “PE1” edge router at the head-end of the tunnel and it is read and interpreted
by the “PE2” edge router at the tail-end of the tunnel. From the information carried by the label
“L2” the “PE2“ router knows to which destination network, e.g. B1, B2 or B3 in our example,
a given packet should be sent. All core routers like “PC” look only at “L1” labels which identify
MPLS tunnels. This makes that the AToM technique scales quite well with the increasing number
of virtual connections.
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Figure 5.6: The idea of the AToM solution. The IP/MPLS backbone network virtually connects
layer 2 networks: A1 with B1, A2 with B2 and A3 with B3. For this purpose only two MPLS
connections (two tunnels, one for each direction) are needed, independent of the number of virtual
circuits. The MPLS packets are forwarded according to their “L1” labels, while “L2” labels carry
information about the virtual circuit. The penultimate router usually removes the ”L1” label,
thus the tail-end router of the LSP obtains the packet only with the ”L2” label which includes the
information to which of the B networks a given packet should be forwarded. By ”H” the headers
of the data link protocols are shown, which enable connectivity between routers in the backbone
network.

In the current CISCO implementation Label Switched Paths (LSP) are signaled by the Label
Distribution Protocol (LDP). LDP was extended by a new Forwarding Equivalence Class (FEC)
element, specific for the virtual network connectivity. It contains information like a kind of trans-
ported protocol (Ethernet, PPP, etc...) or an identity number of a virtual circuit.

AToM can be combined with QoS provisioning. Any IP/MPLS network can be configured to
offer different QoS treatments to packets with different EXP fields in their MPLS headers. One
solution for the QoS policy would be a mapping of a QoS related field from a layer 2 header, if
such exists - for instance 802.1P field in the Ethernet header, to the mentioned EXP bits. On the
other hand a backbone network provider can apply its own QoS policy to the traffic going through
its network.

Currently, the AToM solution is implemented in various CISCO platforms including Cisco
12000 Series and Cisco 7600, 7500 and 7200 routers.

5.5.1 Tests with Ethernet over MPLS

AToM can be used to build virtual networks of several types, as listed in the previous section.
This section presents an evaluation of one particular option: Ethernet over MPLS. The tests were
made using the MPLS testbed installed at the Research Centre Jülich. It consisted of four Cisco
7200 routers forming an MPLS domain and two Linux machines belonging to the virtual Ethernet
network. The topology of the testbed is presented in Figure 5.7. Hosts A and B belong to the
same virtual Ethernet network. All frames sent by the host A to the host B go to the input of the
FastEthernet0/0.2 interface of the ingress router PE1. The router is configured to forward all
frames to the FastEthernet0/0.2 interface of the egress router PE2 (within the MPLS domain
the frames are transported in dynamically created MPLS tunnels). From there they are sent to
the destination host B. Similarly, the frames from the host B are transported to the host A.

Following subsections deliver the details about the router and host configuration.
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Figure 5.7: Topology of the testbed. Two hosts A and B belong to the same virtual Ethernet
network. Although they are not directly connected by any Ethernet link, the AToM technique
in the MPLS domain simulates the missing link by transferring whole Ethernet frames through
MPLS tunnels.

5.5.2 Ethernet types

Since only VLAN 802.1q frames can be transported over an MPLS domain, the hosts with standard
setting of their Ethernet cards could not be used in the tests, however, the latest releases of the
Linux kernel give support for the VLAN Ethernet. Thus, the operating systems of two Linux
hosts from the testbed were updated to make the Ethernet over MPLS evaluation feasible.

The classical Ethernet II frame structure and the VLAN 802.1q extension is presented in
Figure 5.8. Both frames contain preambles, source and destination MAC addresses, type field
specifying a layer-3 protocol, data and the checksum. VLAN frames contain 4 additional Bytes
following the source address field: 2 Bytes of the VLAN type (0x8100) and 2 Bytes of the Tag
Control Information containing VLAN ID number.

5.5.3 Configuration

All interfaces in the MPLS domain

AToM uses LDP as a signaling protocol to distribute labels. The first step to activate MPLS is to
enable Cisco Express Forwarding by the following command executed in the general CONFIGU-
RATION mode on every router in the domain:

router(config)#ip cef

Next, in order to enable MPLS routing on all interfaces, the two-step configuration described
below should be done.
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Figure 5.8: Structure of the Ethernet II and VLAN 802.1q frames.

• In the general configuration mode and in the interface configuration mode:

router(config)#mpls ip
router(config-if)#mpls ip

• In the general configuration mode and in the interface configuration mode:

router(config)#mpls label protocol ldp
router(config-if)#mpls label protocol ldp

In this way LDP is chosen to distribute MPLS labels.

Now, by executing the following command in the EXEC mode, one can check whether the LDP
peers discovered each other:

router#show mpls ldp discovery

For example, if the above command is executed on the router zam577 one gets the following
output:

Local LDP Identifier:
10.10.10.77:0
Discovery Sources:
Interfaces:

FastEthernet0/0 (ldp): xmit/recv
LDP Id: 10.10.10.76:0

ATM1/0.1 (ldp): xmit/recv
LDP Id: 10.10.10.78:0

ATM4/0.1 (ldp): xmit/recv
LDP Id: 10.10.10.79:0

One can see in this example that the LDP discovery process was successfully completed for
the zam577 router (10.10.10.77), since all neighbors were identified: zam576 (10.10.10.76),
zam578 (10.10.10.78) and zam579 (10.10.10.79), see Figure 5.7. In this way all links between
routers in the domain can be checked.

To make sure whether the LDP sessions were correctly established one uses the command:

router#show mpls ldp neighbor
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Below, again the output for the zam577 router:

Peer LDP Ident: 10.10.10.79:0; Local LDP Ident 10.10.10.77:0
TCP connection: 10.10.10.79.11005 - 10.10.10.77.646
State: Oper; Msgs sent/rcvd: 9843/9835; Downstream
Up time: 5d22h
LDP discovery sources:
ATM4/0.1, Src IP addr: 192.168.32.26

Addresses bound to peer LDP Ident:
192.168.32.34 10.10.10.79 192.168.32.26 134.94.204.17

Peer LDP Ident: 10.10.10.78:0; Local LDP Ident 10.10.10.77:0
TCP connection: 10.10.10.78.11003 - 10.10.10.77.646
State: Oper; Msgs sent/rcvd: 9818/9851; Downstream
Up time: 5d22h
LDP discovery sources:
ATM1/0.1, Src IP addr: 192.168.32.18

Addresses bound to peer LDP Ident:
134.94.173.106 192.168.32.10 192.168.32.33 192.168.32.18
10.10.10.78 192.168.34.9

Peer LDP Ident: 10.10.10.76:0; Local LDP Ident 10.10.10.77:0
TCP connection: 10.10.10.76.646 - 10.10.10.77.11003
State: Oper; Msgs sent/rcvd: 1517/1514; Downstream
Up time: 21:48:56
LDP discovery sources:
FastEthernet0/0, Src IP addr: 192.168.32.241

Addresses bound to peer LDP Ident:
10.10.10.76 192.168.32.9 192.168.32.241

Ingress/egress routers

In the presented tests zam576 and zam579 were the edge routers for the MPLS tunnels. The virtual
circuit was terminated at the FastEthernet 0/0.2 subinterfaces of both routers, see Figure 5.7.

Below are the detailed configurations of the zam576 and zam579 routers:

• zam576

interface FastEthernet0/0
no ip address
no ip redirects
no ip proxy-arp
no ip mroute-cache
no keepalive
duplex auto
speed auto
mpls label protocol ldp
tag-switching ip
no cdp enable

!

interface FastEthernet0/0.2
encapsulation dot1Q 123
mpls l2transport route 10.10.10.79 200
no cdp enable

!
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Both interface and subinterface have no IP address assigned. The subinterface FastEther-
net0/0.2 uses the 802.1q standard (VLAN) for Ethernet frames with the VLAN ID number
set to 123, see command encapsulation dot1Q 123 above. A virtual circuit identified
by a number of 200 (VC ID) should connect this (zam576) router to the zam579 router
(10.10.10.79), see the mpls l2transport route 10.10.10.79 200 command. Cisco Dis-
covery Protocol (CDP) should be disabled on both interface and subinterface.

• zam579

interface FastEthernet0/0
no ip address
no ip redirects
no ip proxy-arp
no ip mroute-cache
no keepalive
duplex auto
speed auto
mpls label protocol ldp
tag-switching ip
no cdp enable

!

interface FastEthernet0/0.2
encapsulation dot1Q 123
mpls l2transport route 10.10.10.76 200
no cdp enable

!

The configuration is similar to the one of zam576 router except the mpls l2transport
route 10.10.10.76 200 line which builds a connection to the zam576 router. Note, that
VLAN ID (123) respective VC ID (200) should be identical for both routers.

To check whether the configuration of VC was successful one can execute the following com-
mand on the zam576 and zam579 edge routers in the EXEC mode:

router#show mpls l2transport vc detail

The example output of this command on the zam576 router gives an indication that the virtual
circuit to the zam579 router is operational:

Local interface: Fa0/0.2 up, line protocol up, Eth VLAN 123 up
Destination address: 10.10.10.79, VC ID: 200, VC status: up

Tunnel label: 17, next hop 192.168.32.242
Output interface: Fa0/1, imposed label stack {17 27}

Create time: 1d04h, last status change time: 22:41:51
Signaling protocol: LDP, peer 10.10.10.79:0 up

MPLS VC labels: local 25, remote 27
Group ID: local 1, remote 1
MTU: local 1500, remote 1500
Remote interface description:

Sequencing: receive disabled, send disabled
VC statistics:

packet totals: receive 92628, send 97611
byte totals: receive 10047130, send 10825718
packet drops: receive 0, send 0
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The same command executed on the zam579 router gives a similar output:

Local interface: Fa0/0.2 up, line protocol up, Eth VLAN 123 up
Destination address: 10.10.10.76, VC ID: 200, VC status: up

Tunnel label: 18, next hop point2point
Output interface: AT1/0.1, imposed label stack {18 25}

Create time: 1d04h, last status change time: 22:48:52
Signaling protocol: LDP, peer 10.10.10.76:0 up

MPLS VC labels: local 27, remote 25
Group ID: local 1, remote 1
MTU: local 1500, remote 1500
Remote interface description:

Sequencing: receive disabled, send disabled
VC statistics:

packet totals: receive 98048, send 93082
byte totals: receive 10482630, send 10468378
packet drops: receive 0, send 0

End systems

Two linux machines were used as the end systems in the performed tests, see Figure 5.7. The
AToM technique does not support an Ethernet II but only Ethernet VLAN 802.1q frame transport.
Thus, Ethernet VLAN subinterfaces had to be configured in both systems4.

The configuration steps were as follows:

• Creating the VLAN subinterface. Initially, the systems had only standard Ethernet
eth0 network devices, as can be seen from the output of the ifconfig command:

linux# ifconfig
eth0 Link encap:Ethernet HWaddr 00:D0:59:D9:5E:C5

inet6 addr: fe80::2d0:59ff:fed9:5ec5/64 Scope:Link
UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1049751 errors:0 dropped:0 overruns:0 frame:0
TX packets:572912 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:136272414 (129.9 Mb) TX bytes:51463589 (49.0 Mb)
Interrupt:11 Base address:0x7000 Memory:c0200000-c0200038

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:80 errors:0 dropped:0 overruns:0 frame:0
TX packets:80 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:6172 (6.0 Kb) TX bytes:6172 (6.0 Kb)

linux#

Then, a new subinterface supporting Ethernet VLAN can be added to the system by the
following command:

linux# vconfig add eth0 123
Added VLAN with VID == 123 to IF -:eth0:-
linux#

4Note that older Linux kernels do not support Ethernet VLAN
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When the subinterface is no longer needed it can be deleted by the command below:

linux# vconfig rem eth0.123
Removed VLAN -:eth0.123:-
linux#

After creation of a subinterface it is shut down by default. To make it operational one should
use the ifconfig command as stated below:

linux# ifconfig eth0.123 up
linux#

• Assigning an IP address to the Ethernet VLAN subinterface. Till now, the eth0.123
subinterface has no assigned IP address. In the tests the host A got the address 192.168.33.10.
This was done by the command:

linux# ip addr add 192.168.33.10/29 dev eth0.123
linux#

Then one can check the status of the new created eth0.123 subinterface as well as eth and
lo interfaces:

linux# ifconfig
eth0 Link encap:Ethernet HWaddr 00:D0:59:D9:5E:C5

inet6 addr: fe80::2d0:59ff:fed9:5ec5/64 Scope:Link
UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1268098 errors:0 dropped:0 overruns:0 frame:0
TX packets:700763 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:164634226 (157.0 Mb) TX bytes:62876810 (59.9 Mb)
Interrupt:11 Base address:0x7000 Memory:c0200000-c0200038

eth0.123 Link encap:Ethernet HWaddr 00:D0:59:D9:5E:C5
inet addr:192.168.33.10 Bcast:0.0.0.0 Mask:255.255.255.248
inet6 addr: fe80::2d0:59ff:fed9:5ec5/64 Scope:Link
UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:320 (320.0 b)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:80 errors:0 dropped:0 overruns:0 frame:0
TX packets:80 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:6172 (6.0 Kb) TX bytes:6172 (6.0 Kb)

linux #

• Controlling the routing table. Then, after all configuration tasks described above, the
routing table can be checked by the route command:
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linux # route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.33.8 * 255.255.255.248 U 0 0 0 eth0.123
linux #

The above configuration steps were applied to both linux machines A and B. The assigned IP
addresses were 192.168.33.10 and 192.68.33.11, respectively.

5.5.4 Virtual Ethernet network

The connectivity between host A and B belonging to the same virtual Ethernet network was
checked with the network traffic monitoring application ethereal. It allows to list all packets
coming to and going out from a particular network interface, e.g eth0.123 in our case. A simple
test with ping packets sent from host A to B was performed. Figure 5.9 shows the screen dump
of the ethereal program running on the host B which was registering the packets.

Figure 5.9: Trace of a VLAN connection

Before the first ping packet is sent by the host A, the hardware address of the host B must
be learned. Thus, the host A first sends an Address Resolution Protocol (ARP) broadcast frame
which is transferred through the MPLS domain to the host B (packet nr 1). Then, host B send its
IP address in reply to the ARP query (packet nr 2). From now, the host A can send ping packets
(packets nr 3, 5, ...) and the host B replies to them (packets nr 4, 6, ...).

5.5.5 AToM and Quality of Service

Transporting of VLAN frames across the MPLS core network may require a QoS treatment better
than the standard Best-Effort approach. For this purpose the AToM frames must be distinguished
from the rest of the traffic what can be realized by modifying an EXP field in the MPLS header.
Since the EXP field contains 3 bits, it gives a possibility to define up to 8 classes of MPLS traffic
which can be bound to different QoS policies in the core network.

This concept was tested in the testbed configuration presented in Section 5.5.3. In order to
mark frames sent by hosts A or B an appropriate policy should be installed on the FastEthernet0/0
subinterfaces of the zam576 and zam577 routers, see Figure 5.7. In the presented example, these
policies mark the packets by setting the MPLS EXP field to 5 (default is 0). Below is the fragment
of the zam576 and zam577 configurations:
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class-map match-all exp5
match any

!
policy-map exp5
class exp5
set mpls experimental 5

!
interface FastEthernet0/0
no ip address
no ip redirects
no ip proxy-arp
no ip mroute-cache
no keepalive
duplex auto
speed auto
mpls label protocol ldp
tag-switching ip
service-policy input exp5
no cdp enable

!

The input policy exp5 installed on the FastEthernet0/0 interface will cause that all packets
coming to this interface, so all traffic in the virtual network between hosts A and B, will be pushed
to the MPLS domain with an MPLS EXP field of 5.

To ensure an appropriate QoS treatment for AToM packets output policies should be defined
and installed on all interfaces in the MPLS domain. These policies filter the MPLS traffic according
to their EXP field. In the discussed example, packets marked with the EXP field of 5 are scheduled
for the priority queue. For details see the following configuration:

class-map match-all qos
match mpls experimental 5

!
policy-map qos
class qos

priority 10000
!
interface FastEthernet0/1
(...)
service-policy output qos
(...)

!

The example above shows how the qos output policy is configured on the FastEthernet0/1.
However, it should be installed on all internal links in the MPLS domain in a similar way. All
packets from the qos class are placed in the priority queue that is limited by a serving rate of
10000 kbps.





Chapter 6

Traffic Engineering Framework for
Backbone Networks

In Chapter 2 relevant QoS parameters as well as corresponding traffic specifications have been
introduced. The following chapters provided detailed insights into the enabling components that
allow realizing a certain level of QoS. Yet, a management component is still missing, for which we
provide algorithms in terms of the PAB project’s traffic engineering framework.

The main QoS parameters that are addressed here are packet loss, which corresponds to certain
buffer and bandwidth guarantees, reliability, delay, and delay jitter. Bandwidth constraints and
availability respective survivability issues are covered by the routing in Section 6.1, whereas the
provisioning of delay bounds builds on Network Calculus in Section 6.2. A simulative evaluation
is provided in Section 6.3.

6.1 Routing

In on-line systems where requests arrive one-by-one bandwidth guarantees can be provided effi-
ciently applying capacity constrained routing. The survivability of the network can be further
increased by pre-computation and pre-establishment of backup paths, usually considering single
element of failure scenarios.

6.1.1 Capacity Constrained Routing

Certain capacity constraints can be efficiently integrated into known routing algorithms. This is
for example done in case of Constrained Shortest Path First (CSPF) [55] which is an extension
of the widely applied Shortest Path First (SPF) algorithm. The addition of capacity constraints
is straight forward. The amount of capacity that is available for a certain service on each of
the links is configured statically. Further on, the requested bandwidth of each of the accepted
requests that are active concurrently is known. Hence, the residual capacity of the individual links
can be computed. If a new request is received, all links which have a residual capacity that is
smaller than the bandwidth of this request are removed from the network graph. Thus, all links
of the remaining graph offer sufficient resources to accommodate the new request. Based on this
reduced graph, any routing algorithm can be run and, if a suitable path is found, it fulfills all of
the capacity constraints. However, doing so requires that routing algorithms are executed for each
request on an individual network graph, instead of once at initialization time, as it applies for the
static SPF scheme. In the following, a few known on-line routing algorithms [49, 50, 73, 69, 42, 43]
that are a subset of the routing algorithms that are implemented as part of our traffic engineering
framework are introduced.

63



64 Traffic Engineering Framework for Backbone Networks

Shortest Path First

The SPF algorithm is the standard routing scheme used in today’s Internet. It minimizes a single
additive metric that is assigned as a cost term to each link. This metric can simply be the hop-
count or the propagation delay. One important drawback of the SPF scheme is that it does not
define rules for the case in which several paths for the same source and destination pair have
the same cumulated metric. Instead of optimizing a second metric in this case, SPF chooses the
path randomly. This unfortunate property is addressed by the subsequent routing schemes. SPF
extensions towards Constrained SPF (CSPF) have already been addressed above. The complexity
of an SPF implementation based on the Floyd algorithm that finds shortest paths between all
nodes is in O(v3) for a network graph with v vertices. The paths from one node to all other nodes
can be found by Dijkstra’s algorithm in O(v2), which applies for CSPF on a per-request basis.

Widest Shortest Path First

The Widest Shortest Path First (WSPF) algorithm is very similar to the SPF scheme. The only
difference is that a second metric is considered, if the first metric leads to several alternative paths.
In this case the path with the maximal minimum capacity is chosen. Note that capacity is not an
additive metric. The capacity of a path is determined by the bottleneck link that is the minimum
of the capacities of all links on the path. The second metric is tested with just one additional
check, which does not change the complexity of the original SPF algorithm. Capacity constraints
are accounted for similar to the CSPF algorithm with one extension that is the residual capacity
is applied as the second metric.

Shortest Widest Path First

The Shortest Widest Path First (SWPF) algorithm [73] is another variant of the SPF scheme. The
first metric is the maximal minimum capacity along the paths. As second metric the propagation
delay or hop-count is applied. The target of the SWPF algorithm is to spread the offered traffic
load evenly across the network. Since the first metric is not additive, the implementation of
SWPF is more complicated compared to SPF or WSPF. In [50], a double application of Dijkstra’s
algorithm for each source and destination pair is proposed. In the first run widest paths are found.
Then, the next steps are made for each source and destination pair independently. All links that
offer a lower capacity than the widest path between a certain source and destination are eliminated
from the network graph. Among the remaining links Dijkstra’s algorithm is applied again to find
the shortest path. The complexity of Dijkstra’s algorithm to find the widest paths from one
source to all destinations is in O(v2). However, in the second step, the Dijkstra algorithm has to
be applied on network graphs that are individual for each source and destination pair. Thus, it
has to be run at most v · (v − 1) times, resulting in a complexity of this SWPF implementation
of O(v4). Capacity constraints are integrated by deleting links from the network graph as done
in case of CSPF and by applying the residual capacity as first metric. The complexity to derive
a single path from one source to one destination is given by a double application of the Dijkstra
algorithm. It is in O(2 · v2) = O(v2).

Maximally Disjoint Paths

The Maximally Disjoint Paths (MDJ) algorithm [69] differs from the routing schemes described
so far in that it finds more than one path for each source and destination pair. It generates a tree
from a source node to all destination nodes based on a simplified SWPF algorithm. Then, a pair
of maximally disjoint paths is computed by adding common links as a further routing metric. This
step is repeated for each possible source. Further details of the algorithm are given in [69] and
are omitted here. The MDJ scheme can be efficiently applied in MPLS networks that implement
path protection to pre-configure disjoint backup LSPs. Here, the second path that is the disjoint
path is used, if the first path does not fulfill the capacity constraint of the current request. The
MDJ algorithm is applied statically. It is run only once applying the configured link capacities and
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not for each request based on the residual link capacities. In the latter case, the second disjoint
path would never be required since the first one would fulfill the capacity constraints anyway. The
complexity of MDJ is in O(v2 · e), assuming the number of edges e fulfills e ≥ v.

Minimum Interference Routing

Minimum Interference Routing (MIR) [42, 43] extends the described algorithms by considering
possible future requests. Doing so is of particular interest for immediate reservation systems, where
already active traffic trunks cannot be re-routed to accommodate a current request. In contrast,
advance reservation systems can implement a planning component, which potentially resolves
future conflicts. However, also for immediate reservation systems some vague knowledge about
future requests can be used. Here, edge routers are applied as potential sources or destinations.
The MIR algorithm is briefly described below: For each source and destination pair the maximum
flow problem is solved applying the residual capacity of the links. Then, the interference of a
new request on a certain path is defined to be the reduction of the maximum flow value derived
for any source destination pair. The objective is to find a path for the current request that
maximizes a weighted sum of all of the maximum flow values. Since this problem is NP-hard [42],
a heuristic is applied. The minimum cut problem, which is the dual problem to the maximum
flow problem is solved and all links that belong to any minimum cut are marked to be critical.
Then, modified weights are assigned to the critical links, depending on the reciprocal value of the
maximum flow values assigned to these links and depending on the importance that is assigned to
the relevant source and destination pairs. Non-critical links are assigned the weight zero. Resulting
the CSPF algorithm is executed applying the modified weights as a metric. The complexity of
the MIR algorithm is dominated by the maximum flow problem that can be solved for a source
and destination pair by the Goldberg Tarjan algorithm in O(v2 ·√e). In addition determining the
critical links is in O(e2). The maximum flow respective minimum cut problem has to be solved
at most v · (v − 1) times, resulting in a complexity of O(v4 · √e + v2 · e2) for the derivation of a
single path.

6.1.2 Protection Algorithms

The protection capabilities that are offered by MPLS have already been discussed in Section 4.3,
where a classification into link, node, and path protection was introduced. Section 5.4 provided
results from experiments on fast re-routing, which applies, if errors can be detected and repaired
locally. This local repair comprises of link and node protection and can be distinguished from
so-called global repair, where signalling of failure events and path protection are used.

The choice between global and local repair mainly concerns restoration times and bandwidth
efficiency. The issue of restoration speed is for example analyzed in [33]. Clearly local repair
is much faster, since efficient techniques for error detection can be combined with an immediate
local repair using pre-established backup tunnels. Global repair in addition requires a signalling
procedure that allows propagating failure events upstream to the point where the primary path
and the pre-configured backup path split before the backup path can be used.

However, the pre-configuration of backup paths comes at a prize, that is resources have to be
reserved in advance, both for the working paths and for the backup paths. While global repair
requires only one backup path, local repair builds on a large number of usually shorter backup
paths. Thus, efficient schemes that minimize the required backup bandwidth are required. For
this purpose, usually single point of failure scenarios are addressed. The preferred options are
1 + 1, 1 : 1, and 1 : n protection. In case of 1 + 1 protection the traffic is duplicated and both
the working and the backup path transport identical copies of the traffic simultaneously. The
downstream node where both paths merge then chooses which copy to use. Thus, each working
path requires one exclusive backup path. The same applies for 1 : 1 protection, however, traffic is
not duplicated, but switched to the backup path only in case of failure of the primary path. Thus,
resources that are allocated for backup paths can still be used, for example by Best-Effort traffic.
A more resource efficient scheme is 1 : n protection, where n working paths share one backup path.
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Bandwidth sharing can be used inter-demand or in case of local repair also intra-demand [44, 48].
It usually applies among backup paths, whereby more sophisticated schemes also allow to exploit
bandwidth sharing between primary and backup paths [52].

¿From a routing point of view 1 + 1 and 1 : 1 can be implemented straight forward using the
remove and find approach that also applies for capacity constrained routing. All links that do not
provide a sufficient amount of bandwidth are removed from the network graph before a feasible
working path is found. Then, the network elements that shall be protected are also removed from
the graph and in a second step backup routes are computed. This approach finds the best disjoint
backup path according to a certain metric, if one exists. More flexibility is, however, provided by
Maximally Disjoint Paths [69], which allows finding backup paths, even if no completely disjoint
paths exist. Further on, algorithms have been developed that allow for a joint optimization of
primary and backup paths [35]. Bandwidth sharing schemes like 1 : n protection require more
sophisticated algorithms, where the additional bandwidth that has to be allocated for a primary
and backup path pair can be efficiently used as a joint routing metric [44].

6.2 Network Calculus

The reservation-based approach of the Integrated Services architecture relies on a analytical admis-
sion control model that is called Network Calculus. Network Calculus is a theory of deterministic
queuing systems that is based on the early work on the calculus for network delay in [18, 19], and
on the work on Generalized Processor Sharing (GPS) presented in [57, 58]. Further extensions,
and a comprehensive overview on current Network Calculus are given in [46, 47], and from the
perspective of filtering theory in [13].

The PAB-project selected Network Calculus as the framework for deriving delay-bounds for
a Premium Service. In extending the Network Calculus principles used by the Integrated Ser-
vices architecture towards aggregate based scheduling, we show how these procedures can provide
reasonable tight delay-bounds [27].

The basis of Network Calculus is a min-plus calculus where addition is replaced by computation
of the minimum and multiplication becomes addition. A comprehensive overview on min-plus
algebra can be found in [47]. In the sequel, min-plus convolution and min-plus de-convolution are
of particular interest:

Theorem 1 (Min-plus Convolution) In (6.1) the min-plus convolution denoted by ⊗ is given.

(f ⊗ g)(t) = inf
t≥s≥0

[f(s) + g(t− s)] (6.1)

Theorem 2 (Min-plus De-convolution) The min-plus de-convolution is denoted by ®. It is
given in 6.2.

(f ® g)(t) = sup
s≥0

[f(t + s)− g(s)] (6.2)

6.2.1 Arrival Curves

Network Calculus applies a description of data flows by means of cumulative functions F (t) that
are called arrival functions. By definition F (0) is zero and F (t) is increasing that is F (t) ≥ F (s)
for all t ≥ s. An upper bound on the arrival function can be defined, that is called arrival curve
α(t), according to (6.3).

Definition 5 (Arrival Curve) Consider an increasing function α(t) for t ≥ 0. A flow F (t) is
constrained by α(t− s) if (6.3) holds for all t ≥ s ≥ 0.

F (t)− F (s) ≤ α(t− s) (6.3)
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Based on min-plus convolution (6.4) can be found to be equivalent to (6.3).

F (t) ≤ (F ⊗ α)(t) = inf
t≥s≥0

[F (s) + α(t− s)] (6.4)

A typical arrival curve is given in the following definition:

Definition 6 (Leaky Bucket Constraint) The leaky bucket constrained curve αr,b is given
in (6.5) for t > 0. It is zero otherwise.

αr,b(t) = b + r · t (6.5)

An example of an arrival function and an arrival curve is shown in figure 6.1. A simple leaky
bucket constraint is applied to give an arrival curve for the particular arrival function that is
displayed. The arrival curve gives an upper bound for any interval t − s ≥ 0 as indicated by the
dashed lines in figure 6.1.
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Figure 6.1: Leaky Bucket Arrival Curve

Usually the ingress router of a DS domain meters incoming flows against a leaky bucket algo-
rithm and either shapes, re-marks, or drops non-conforming traffic.

6.2.2 Service Curves

In [57, 58, 20] an important concept for the derivation of service guarantees called minimum
service curve is introduced. An extension of this work is given by the following definition [46] that
is applied throughout this work.

Definition 7 (Minimum Service Curve) Consider a flow F (t) that is input to a system with
the respective output flow F ∗(t). The system offers to the flow a minimum service curve β(t), if
a time instance s exists for all t with t ≥ s ≥ 0 such that (6.6) holds.

F ∗(t)− F (s) ≥ β(t− s) (6.6)

From (6.6) the form in (6.7) follows.

F ∗(t) ≥ (F ⊗ β)(t) = inf
t≥s≥0

[F (s) + β(t− s)] (6.7)

A special characteristic of service curve is given in the following definition:
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Definition 8 (Rate-Latency Function) The rate-latency function is given by (6.8), where [t−
T ]+ = 0 if t < T . It describes a service element that offers a minimum service of R, but that
reacts with a worst case latency of T .

βR,T (t) = R · [t− T ]+ (6.8)

An example of the lower bound for the output of a rate-latency service curve is given in Figure 6.2
for a given input arrival function.
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Figure 6.2: Rate-Latency Service Curve

The rate-latency property applies for a variety of actual scheduler implementations, including
Priority Queuing (PQ) and Weighted Fair Queuing (WFQ).

6.2.3 Basic Network Calculus

This subsection covers some important concepts on the derivation of backlog, delay, and output
bounds at first for the single node case and then for the concatenation of nodes. Further on,
aggregate scheduling and rules for multiplexing are addressed. The respective proofs can for
example be found in [13, 47].

Bounds on the Backlog, Delay, and Output Flow

Bounds on the backlog, the delay, and on the output flow F ∗(t) for an α(t)-upper constrained
flow F (t) that is input to a system that offers a minimum service curve β(t) are provided by the
following theorems.

Theorem 3 (Backlog Bound) Assume a flow F (t) that is upper constrained by α(t) is input
to a system that offers a minimum service curve β(t). The output flow is denoted by F ∗(t). The
backlog F (t) − F ∗(t) that is the amount of data that arrived up to a time instance t but that has
not left the system by t is bound according to (6.9). The backlog bound is the supremum of the
vertical deviation of the arrival curve and the service curve.

F (t)− F ∗(t) ≤ sup
s≥0

[α(s)− β(s)] (6.9)

For the special case of service curves of the rate-latency type βR,T (t) and leaky bucket constrained
arrival curves αr,b(t), (6.9) simplifies to (6.10).

F (t)− F ∗(t) ≤ b + r · T (6.10)
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Theorem 4 (Delay Bound) The maximal virtual delay d for a FIFO system that offers a service
curve of β(t) with an input flow that is constrained by α(t), is given as the supremum of the
horizontal deviation of the arrival curve and the service curve according to (6.11).

d ≤ sup
s≥0

[
inf[τ ≥ 0 : α(s) ≤ β(s + τ)]

]
(6.11)

For rate-latency service curves and leaky bucket constrained arrival curves (6.12) is given.

d ≤ T + b/R (6.12)

Theorem 5 (Output Flow Constraint) Assume an input flow F (t) that is upper constrained
by α(t) traverses a system that offers a service curve β(t). The output flow F ∗(t) is upper con-
strained by an arrival curve α∗(t) that is given according to (6.13).

α∗(t) = (α® β)(t) = sup
s≥0

[α(t + s)− β(s)] (6.13)

In case of rate-latency service curves and leaky bucket constrained arrival curves (6.14) can be
found.

α∗(t) = b + r · T + r · t (6.14)

An example of the graphical representation of the bounds is shown for rate-latency service curves
and leaky bucket arrival curves in figure 6.3.
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Figure 6.3: Backlog and Delay Bound

The Multiple Node Case

The bounds on the backlog, delay, and on the output shown in theorems 3, 4, and 5 can be applied
directly to networks that consist of several nodes. In the following, networks are assumed to consist
of n such queuing and scheduling systems that are indicted by upper indices j. In the simplest
scenario a flow traverses two systems j and j + 1 in sequence, whereby the results immediately
extend to larger scenarios.

Assume that the input flow F j(t) to system j is αj(t)-upper constrained. The output flow
F j+1(t) of system j is αj+1(t)-upper constrained according to theorem 5. The flow F j+1(t) is
then input to system j + 1. Based on theorem 3 backlog bounds for the individual systems can
be derived. Similarly, theorem 4 allows to derive delay bounds at each of the systems that can be
summed up to worst case end-to-end delays. An example of the described incremental derivation
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of end-to-end delays is shown in Figures 6.4 and 6.5 for leaky bucket constrained arrival curves
and rate-latency service curves. The end-to-end delay bound d is given in (6.15).

d = dj + dj+1 = T j +
bj

Rj
+ T j+1 +

bj+1

Rj+1
= T j + T j+1 +

bj

Rj
+

bj + r · T j

Rj+1
(6.15)

However, a property known as Pay Bursts Only Once [47] allows to give a tighter end-to-end
delay bound, if the delay computation is based on the end-to-end service curve, instead of summing
the delays at individual systems up.

Theorem 6 (Concatenation) The end-to-end service curve of two systems j and j+1 that each
offer a service curve βj respective βj+1 is given in (6.16). The direct application of (6.16) also
holds for n links.

βj,j+1(t) = inf
t≥s≥0

[βj(s) + βj+1(t− s)] = (βj ⊗ βj+1)(t) (6.16)

The concatenation of two rate-latency service curves according to (6.16) can be simplified to (6.17).

βj,j+1(t) = min[Rj , Rj+1] · [t− T j − T j+1]+ (6.17)

The same example shown in Figures 6.4 and 6.5, but this time based on the concatenation
theorem 6, is given in figures 6.6 and 6.7. Assume that the input flow F j(t) to link j is leaky
bucket constrained. The service curves of system j and j + 1 are again of the rate-latency type.
At first, figure 6.6 shows the derivation of the end-to-end service curve. Based on this service
curve the end-to-end delay is shown in Figure 6.7 and given by (6.18). As can be seen from (6.15)
and (6.18) the delay bound is smaller, if the end-to-end service curve is derived prior to delay
computations. Obviously the burst of the flow F j(t) is paid only once with a latency that is
determined by the bottleneck link capacity in this case.

d = T j + T j+1 +
bj

min[Rj , Rj+1]
(6.18)

Aggregate Scheduling

In order to address aggregate based networks, rules for multiplexing and aggregate scheduling
have to be added. Assume that m flows are scheduled by a network in an aggregate manner. Let
lower indices i denote flows in the sequel.



6.2 Network Calculus 71

time

data

T

Rj

jT

Rj+1

j+1 jT + Tj+1

min[R ,R    ]j+1j

Figure 6.6: Concatenation of Nodes

time

data

jT + Tj+1

min[R ,R    ]j+1j

b

r

j

d
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Theorem 7 (Multiplexing) An aggregation, or multiplexing of flows can be expressed by addi-
tion of the arrival functions according to (6.19) respective arrival curves according to (6.20).

F1,2(t) = F1(t) + F2(t) (6.19)
α1,2(t) = α1(t) + α2(t) (6.20)

For leaky bucket constrained arrival curves α1 = b1 + r1 · t and α2 = b2 + r2 · t the form in (6.20)
simplifies to α1,2(t) = (b1 + b2) + (r1 + r2) · t.

Theorem 8 (FIFO Aggregate Scheduling) In aggregate scheduling networks with FIFO ser-
vice elements, families of per-flow service curves βi,θ(t) according to (6.21), with an arbitrary
parameter θ ≥ 0 are derived in [20, 47]. βi,θ(t) gives a family of service curves for a flow i that
is scheduled in an aggregate manner with a flow, or a traffic trunk i + 1 by a system that offers a
service curve β(t) to the aggregate of trunks i and i + 1. The term 1t>θ is zero for t ≤ θ.

βi,θ(t) = [β(t)− αi+1(t− θ)]+1t>θ (6.21)

The parameter θ has to be set to zero in case of blind multiplexing, which applies if no assumption
about the order of processing, for example FIFO, can be made.
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For the special case of rate-latency service curves and leaky bucket constrained flows, the service
curve for flow i in (6.22) can be derived from theorem 8 for ri + ri+1 < R. The optimal setting
of θ with respect to backlog bounds is θ = T + bi+1/R [47]. The example is shown in figure 6.8,
where the gray shaded area denotes the service that remains for flow i in the worst-case.

βi(t) = (R− ri+1) ·
[
t− T − bi+1

R

]+

(6.22)

6.2.4 Feed-Forward Networks

Unfortunately, the direct application of Network Calculus has one important prerequisite, namely
the network has to be of a feed-forward nature.

Definition 9 (Feed-Forward Property) A feed-forward queuing network is a network, in which
all queues can be ordered in such a way that whenever a traffic flow traverses from queue i to queue
j, this implies that i < j [37], or in a more verbatim way: the links of a feed-forward network
cannot form any cycles, i.e. it is impossible for traffic flows to create cyclic dependencies on each
other [13].

An example of a non feed-forward network is shown in the left of figure 6.9. The four traffic trunks
that are mapped onto the small five node network form a cycle. The service that is offered by each
link to each of the trunks depends on the interference introduced by trunks that traverse the same
link. However, the traffic specification of interfering trunks is subject to the service offered to
these trunks at the predecessor links, resulting in a cyclic dependency. Analytical methods which
address such scenarios like time-stopping have been discussed [13, 47]. However, these methods
are considered to be too complicated for an algorithmic implementation, here. An alternative is to
apply algorithms that transform the topology of an arbitrary network into a feed-forward network.
Mainly two approaches are known in current literature [66, 68], which either prohibit the use of
certain links or the use of certain turns. A link can be specified by the tuple consisting of source
and destination node for example (a, b) or (b, c), whereas a turn always consists of two successive
links. The turn around node b can for example be given by (a, b, c). Prohibiting this turn means
that the triple (a, b, c) is not allowed being part of any path, whereas the links (a, b) or (b, c) may
still be used. Intuitively, the prohibition of turns is less restrictive than prohibiting the use of
links.

Algorithms that ensure the feed-forward property have to be executed before routing algorithms
are run to ensure that the derived mapping of trunks on the network results in cycle-free aggregates.
We devolved the Turnnet concept, which allows integrating the different feed-forward schemes
efficiently into known routing algorithms [26].

Figure 6.9: Non Feed-Forward Network and Turn Prohibition Example
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Spanning Tree

A means to ensure the feed-forward property of an aggregate is to forbid all links that could
create a cycle within the topology. The Spanning Tree (ST) of a given network topology fulfills
this characteristic. All links that do not belong to the spanning tree are forbidden and routing
can only be performed along the tree. The connectivity is not affected for networks that consist
of bi-directional links. Several ways to construct Spanning Trees exist. Among these, the Kruskal
algorithm is implemented in our admission control. It starts with an empty link list and adds
links that do not create a cycle to this list until the spanning tree is complete. The links can be
ordered in advance according to some metric like the capacity to ensure that for example wider
links are tried first. The complexity is dominated by the sorting of links. It is in O(e · log e) for e
edges.

A major drawback of applying Spanning Trees to ensure the feed-forward property is that
forbidden links are completely unused whereas links that are close to the root of the tree are likely
to become congested. Further on, the resulting paths can be significantly longer than the ones
that are for example found by SPF routing.

Root Spanning Tree

A method which partly overcomes the problems of Spanning Trees is to apply a Root Spanning
Tree (RST). A root is chosen explicitly according to a criterion like capacity or degree that is the
number of connected links. Then, links are added in breadth-first order, if they do not introduce
a cycle. The resulting paths are likely to be shorter than the ones that are found by the Spanning
Tree algorithm. However, there is still a significant risk that links that are close to the root become
congested, whereas other links are only lightly loaded or even forbidden.

Up-Down Routing

The Up-Down Routing (UDR) algorithm [66] prevents from cyclic dependencies not by forbidding
the use of certain links, but only by prohibiting turns. A turn consists of two unidirectional links,
for example the two links (a, b) and (b, c) constitute the turn (a, b, c). Bidirectional links are split
up into two unidirectional links in advance.

Up-Down Routing is based on a classification of links to be either Up or Down. This classifica-
tion is performed based on a Root Spanning Tree. Links are considered as Up, if they are directed
towards the root of the Root Spanning Tree that is if the distance of the connected nodes towards
the root decreases in the direction of the links. Otherwise links are considered as Down. Note that
this classification is done for all links not only for links that belong to the Root Spanning Tree.
The Root Spanning Tree is applied only to order the nodes according to their distance to the root
from which the direction of the links follows. Based on the notation of Up and Down links, turns
can be classified to be either Up-Up, Down-Up, Up-Down, or Down-Down turns. A Down-Up
turn for example consists of a first link that is a Down link and a second link that is an Up link.
In [66] it is shown that a cycle must contain at least one Up-Down turn and one Down-Up turn.
Hence, it is sufficient to prohibit for example all Down-Up turns to prevent from cycles to ensure
the feed-forward property.

As pointed out in [68], Up-Down Routing still suffers from its dependency on the Root Spanning
Tree. The choice of the root can have a large impact on the performance.

Turn Prohibition

Turn Prohibition (TP) [68] like Up-Down Routing ensures the feed-forward property of the network
by prohibiting the use of certain turns, whereas complete links are not removed from the network
graph. The algorithm processes all nodes of the network in the order of their degree that is
the number of a node’s incoming and outgoing links. If several nodes have the same degree the
cumulated capacity of the links is applied as a second metric. During each iteration it basically
does the following:
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Figure 6.10: DFN G-WiN Topology as of 2000 and Level 1 Prohibited Turns

1. The node with the minimal degree is found.

2. All turns around the node are prohibited.

3. The node and all connected links are deleted from the network graph.

The different steps of the algorithm are shown in figure 6.9. The small example network consists
of five nodes that are either connected by low bandwidth links indicated by thin lines or high
bandwidth links that are thick lines. It is used by four traffic trunks that are shown in the left
of the figure. These trunks form a cycle, which does not allow the direct application of Network
Calculus. Now, if Turn Prohibition is applied, at first a node with minimal degree has to be
found. The degree is determined by the number of outgoing, respective incoming interfaces and in
a second step by the sum of the bandwidth of all these links. The node in the right lower corner
is chosen since it has the minimum number of interfaces and among these the smallest cumulative
capacity of the links. Another possible choice would have been the node in the center. All turns
around the node are prohibited and the node and all connected links are deleted. This process
repeats until all nodes have been inspected. At the end, two turns are prohibited to ensure the
required feed-forward property.

The actual algorithm that is implemented is more complex, to guarantee that the network
remains fully connected that is, it does not become divided into several unconnected subnet-
works. In [68], it is proven that the Turn Prohibition algorithm breaks all cycles, preserves global
connectivity, and prohibits at most one third of all turns.

Example results of an application of the Turn Prohibition algorithm to the DFN G-WiN
topologies as of 2000 [39] and 2002 [1] are shown in Figures 6.10 and 6.11. The nodes have been
processed by Turn Prohibition in the order of their numbering. We find that SPF routing with
Turn Prohibition does not result in any longer paths compared to simple SPF routing for the
G-WiN topology of 2000, whereas in the G-WiN topology of 2002 the turns (2, 1, 9) and (9, 1, 2)
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Figure 6.11: DFN G-WiN Topology as of 2002 and Level 1 Prohibited Turns

and thus the shortest path between nodes 2 and 9 is prohibited. However, this is the only path,
which has to be replaced by a longer one, due to Turn Prohibition.

6.2.5 Advanced Network Calculus for Aggregate Scheduling Networks

The Pay Bursts Only Once phenomenon is accounted for when the end-to-end service curve of
all links on the path of a flow is computed. While the reservation-based approach of the Inte-
grated Services architecture relies on this phenomenon, its applicability for aggregate scheduling,
particularly in the context of admission control procedures of a Bandwidth Broker, is still sub-
ject to research. We now show how the Pay Bursts Only Once phenomenon can be extended
to aggregate scheduling networks [27]. We motivate this step by investigation of the scenario in
figure 6.12, where two flows 1 and 2 are scheduled in FIFO order and in an aggregate manner at
two consecutive links I and II.

I II

1

2

Figure 6.12: Two Flows Share Two Consecutive Links

We derive the end-to-end service curve offered to flow 1 in this scenario. At first, the arrival
curve of flow 2 as it is input to link I respective link II can be computed. It can then be subtracted
independently from the service curves of links I and II according to theorem 8 and the resulting
end-to-end service curve for flow 1 can be obtained from concatenation of the two modified service
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curves as shown in (6.23), with the arbitrary parameters θ ≥ 0 and ϑ ≥ 0.

βI,II
1,θ,ϑ(t) = (βI

1,θ ⊗ βII
1,ϑ)(t)

= [(βI(t)− αI
2(t− θ))]+1t>θ ⊗ [(βII(t)− αII

2 (t− ϑ))]+1t>ϑ

(6.23)

For rate-latency service curves βI = RI · [t − T I]+ and βII = RII · [t − T II]+ and leaky bucket
constrained arrival curves αI

2(t) = bI
2 + r2 · t and αII

2 (t) = bII
2 + r2 · t equation (6.24) can be derived.

The actual parameters θ and ϑ applied are θ = T I + bI
2/RI and ϑ = T II + bII

2 /RII in accordance
with the derivation of (6.22).

βI,II
1 (t) =

(
(RI − r2) ·

[
t− T I − bI

2

RI

]+)
⊗

(
(RII − r2) ·

[
t− T II − bII

2

RII

]+)

= min[RI − r2, R
II − r2] ·

[
t− T I − T II − bI

2

RI
− bII

2

RII

]+
(6.24)

Doing so does unfortunately lead to unnecessarily loose bounds, although the Pay Bursts Only
Once phenomenon is taken into account. Bursts of flow 2 can occur and interfere at link I as
well as at link II. However, both links are traversed by both flows in FIFO order and flow 2 is
aggregated with flow 1 only once namely at link I. Thus, multiplexing effects can occur only once.
A closer bound can be obtained, if at first the end-to-end service curve for the aggregate of flows
1 and 2 is derived by min-plus convolution of the service curves of links I and II, before the arrival
curve of flow 2 is subtracted as shown in (6.25), where κ ≥ 0.

βI,II
1,κ(t) = [(βI ⊗ βII)(t)− αI

2(t− κ)]+1t>κ (6.25)

For rate-latency service curves and leaky bucket constrained arrival curves (6.26) follows with
κ = T I + T II + bI

2/ min[RI, RII].

βI,II
1 (t) = (RI · [t− T I]+)⊗ (RII · [t− T II]+)− bI

2 − r2 ·
(
t− T I − T II − bI

2

min[RI, RII]

)

= (min[RI, RII]− r2) ·
[
t− T I − T II − bI

2

min[RI, RII]

]+
(6.26)

It can be immediately seen that the burst size of flow 2 applies only once in (6.26) with bI
2

instead of twice in (6.24) with bI
2, and bII

2 , where bI
2 ≤ bII

2 = bI
2 +r2 · (T +bI

1/RI) according to (6.14)
and (6.22).

Here, the concept is extended inductively to cover larger scenarios. Consider a flow of interest i
that shares a certain sub-path Ji,k with an interfering flow k, as for example shown in Figure 6.12.
Then, add another interfering flow k + 1 to the setting that shares the sub-path Ji,k+1 with flow
i. The following four different scenarios can be constructed:

Case 1 (Ji,k ∩ Ji,k+1 = ∅) If the two sub-paths Ji,k and Ji,k+1 do not share any common links,
the service curves for flow i can be derived independently for each of the two sub-paths as shown
in (6.25) and (6.26) and concatenated according to (6.16) afterwards.

Case 2 (Ji,k = Ji,k+1) If the two sub-paths Ji,k and Ji,k+1 are identical, the arrival curves of
flows k and k + 1 can be multiplexed to a single interfering traffic trunk according to (6.20) for
which (6.25) respective (6.26) can be applied immediately.

Case 3 (Ji,k ⊂ Ji,k+1 ∨ Ji,k+1 ⊂ Ji,k) If one of the two sub-paths Ji,k or Ji,k+1 is completely
included within the other one, the service curve for flow i can be derived starting at the innermost
sub-path. An example scenario is shown in figure 6.13. Following the argumentation above, (6.27)
can be set up.

βI,II,III
1,θ,ϑ (t) = βI(t)⊗ [(βII(t)− αII

3 (t− θ))]+1t>θ ⊗ [βIII(t)− αI
2(t− ϑ)]+1t>ϑ (6.27)
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Figure 6.13: Example Network with Nested Interfering Flows

For rate-latency service curves and leaky bucket constrained arrival curves and with θ = T II +
bII
3 /RII and ϑ = T I+T II+T III+bI

2/ min[RI, RII−r3, R
III], equation (6.28) follows similar to (6.26)

before.

βI,II,III
1 (t) = (min[RI, RII − r3, R

III]− r2)

·
[
t− T I − T II − T III − bII

3

RII
− bI

2

min[RI, RII − r3, RIII]

]+ (6.28)
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Figure 6.14: Example Network with Overlapping Interfering Flows

Case 4 (Ji,k ∩ Ji,k+1 6= ∅ ∧ Ji,k * Ji,k+1 ∧ Ji,k+1 * Ji,k) If the two sub-paths Ji,k and Ji,k+1

overlap each other but none is completely included within the other one, the problem of deriving a
flow i service curve, where bursts of flows k and k +1 are paid only once, is more complicated. An
example setting is shown in figure 6.14, where flow 2 is the flow of interest for which the end-to-end
service curve is given in (6.29), where bIII

3 is the burst size of flow 3 as it is input to link III.

βI,II,III
2 (t) = min[RI − r1, R

II − r3 − r1, R
III − r3]

·
[
t− T I − T II − T III − bI

1

min[RI, RII − r3]
− bIII

3

min[RII − r1, RIII]

]+ (6.29)

The alert reader will have noticed that the above listed scenarios can be generalized to cover
all possible changes in the composition of an aggregate. First, the existence of more or less links
than in the scenarios presented does not change the above derivations. Whenever there are no
multiplexing or de-multiplexing points in between consecutive links, these can be concatenated
in advance as shown in (6.26). Further on, the assumption of a leaky-bucket constrained arrival
curve also applies for an aggregate of leaky-bucket constrained arrival curves according to (6.20),
i.e for traffic trunks. The derived formulas therefore also apply for more complex scenarios where
multiple-flows leave or join the aggregate. Finally, any combinations of the four cases shown
is possible to address scenarios with more than three flows. Each further flow increases the
interference and thus obviously has impacts on the offered service curve. However, any additional
flow can overlap each of the other interfering flows only according to one of the four cases addressed
before, so that the same rules as above can be applied.

6.3 Simulation Framework and Evaluation

This section gives evaluation results that are obtained for a Premium Service, based on the DFN
G-WiN topology as of 2002 shown in Figure 6.11. The theory discussed in Section 6.2 is applied
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for a parameter based admission control. In detail we use a leaky bucket Traffic Specification
(TSpec) that consists of a maximum burst size b and a sustainable rate r. The respective Service
Specification (RSpec) defines a target of zero loss and a requested delay bound d.

The application of Network Calculus requires that the respective aggregate is cycle-free, that
is the feed-forward property has to be fulfilled. Here, we apply Turn Prohibition for this purpose.
However, the prize at which the feed-forward property comes is still uncertain to some extend.
In Figure 6.11, we have shown that Turn Prohibition increases only one path by one hop in case
of the DFN G-WiN topology and SPF routing. Nevertheless, we want to quantify the impacts
of Turn Prohibition, when actually providing a certain service. Therefore, we at first relax the
RSpec and investigate a Guaranteed Rate Service that does not provide any delay guarantees.

6.3.1 Guaranteed Rate Service

The Guaranteed Rate Service that is investigated here is a service that simply provides bandwidth
on demand. Requests for this service are accepted as long as the capacity constraints can be
fulfilled for all of the links, otherwise requests are rejected. Evaluation results are derived for
SPF, MDJ [69], and CSPF routing, based on the topology of the DFN G-WiN as of 2002 [1].
The level one nodes are applied as core nodes. End-systems are connected to the level two nodes
that are edge nodes. In the emulated scenario, a share of 25 % of the available link capacities
is reserved statically to provide the Guaranteed Rate Service. The propagation delay is applied
as link metric. It is assumed to be 2 ms for each link. The performance measure that we apply
is the ratio of accepted requests based on the overall number of request. All simulations are run
until the confidence interval of the acceptance ratio respective blocking ratio is smaller than 0.01
for a confidence level of 0.95. Initial-data deletion [45] is applied to capture only the steady-state
behavior and the replication and deletion approach for means, that is for example shown in [45]
as a variance reduction technique, is used.

Figures 6.15 and 6.16 show the acceptance ratio of simulated Guaranteed Rate requests for a
varying load ρ. The load is defined to be the mean number of concurrent requests. Start and end
times of requests are modelled as negative exponentially distributed with a mean inter-arrival time
1/λ and a mean service time 1/µ. Resulting a mean of ρ = λ/µ requests are active concurrently.
The requested guaranteed rate is a random variable that is chosen uniformly from the interval
[10, . . . , 80] Mb/s, which is assumed to be appropriate for aggregated traffic.

Figure 6.15 addresses the performance of static routing algorithms that do not consider the
residual capacity of the links, but only the capacity that is configured. Thus, these algorithms
have to be executed only once at startup time and not for each request individually. The MDJ
algorithm computes two maximally disjoint paths for each source and destination pair. Thus,
it allows to apply an alternative path. Though the MDJ algorithm is executed only once at
startup time, capacity constraints can be applied to map requests on the two available paths. The
performance gain of the MDJ scheme compared to single path SPF routing is significant.

Results obtained from the respective capacity constrained routing algorithm CSPF are shown
in Figure 6.16. CSPF applies a reduced network graph from which all links that do not offer a
sufficient residual capacity to accommodate the current request are deleted prior to route compu-
tation. Resulting, if a path is found, it consequently fulfills the respective capacity constraint. A
significant performance increase compared to the static SPF based scheme can be noticed. How-
ever, it comes at the prize of additional computational complexity that is created by an execution
of the respective routing algorithm on a per-request basis. Note that though MDJ is a static
scheme that is not executed for each request, it performs only slightly worse than CSPF.

Besides, the impacts of Turn Prohibition (TP) on SPF, MDJ, respective CSPF routing are
addressed in figures 6.15 and 6.16. There is obviously no benefit from cycle-free Guaranteed
Rate aggregates, however, the performance degradation that is due to the feed-forward property
can be measured for a Guaranteed Rate Service to evaluate feed-forward routing that is required
for the Premium Service in the sequel. We find a certain performance degradation due to Turn
Prohibition, which results in a reduction of the acceptance ratio by ∼ 0.025 for a load of ρ ≥ 100
concurrently active requests. However, it has to be noted that the level one mesh of the G-WiN
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Figure 6.15: Static Routing Schemes and Turn
Prohibition, Guaranteed Rate Service
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Figure 6.16: Constrained Routing and Turn
Prohibition, Guaranteed Rate Service

topology is comparably challenging. In contrast, if redundancy is achieved by means of parallel
links in star-shaped topologies, for example in case of the level two nodes of the G-WiN, the
feed-forward property is fulfilled anyway.

6.3.2 Premium Service

The Premium Service that is investigated here extends the Guaranteed Rate Service by providing
hard delay bounds and zero loss. For this purpose the simple capacity check that is performed
by the admission control so far is extended by Network Calculus based backlog and delay compu-
tations. Premium Service requests are only accepted, if the capacity and backlog constraints can
be fulfilled at each link of the network and, if the requested edge-to-edge delay bound across the
respective domain can be ensured for all concurrently active requests. A link propagation delay
of 2 ms per link is included into the edge-to-edge delay computation.

The evaluation scenario is similar to the setup for the Guaranteed Rate Service in Section 6.3.1.
However, service requests are extended by a burst size parameter that is chosen randomly from
the interval [1, . . . , 8] Mb and a target delay bound within the interval [40, . . . , 80] ms. Further
on, a Priority Queuing (PQ) environment is emulated, where 100% of the link capacities can be
used to transmit Premium bursts. PQ is the canonical implementation of the EF PHB to support
a Premium Service. The latency of the PQ scheduler is assumed to be equal to the time it takes
to transmit 4 Maximum Transmission Units (MTU) of 9.6 kB, to account for non-preemptive
scheduling, packetization, and a router internal buffer for up to 2 MTU [63].

Simulation results that compare the option of an incremental delay computation, the appli-
cation of the well-known Pay Burst Only Once (PBOO) phenomenon, and the Extended Pay
Bursts Only Once (EPBOO) principle are shown in Figures 6.17 and 6.18. As before, the G-WiN
topology shown in figure 6.11 is used. In addition to the acceptance ratio of Premium Service
requests, we apply the Cumulative Density Function (CDF) of the derived delay bounds as a
performance measure. To illustrate how tight the derived delay bounds actually are, worst-case
per packet delays that are derived by state-event simulation of the respective domain are shown
for comparison.

Starting with Figure 6.17, it can be noticed that applying the Extended Pay Bursts Only
Once principle for aggregate scheduling allows to derive significantly tighter delay bounds than
the common Pay Burst Only Once principle, which in turn outperforms the incremental delay
derivation. The gain is small for traffic flows that have a relatively small delay bound, since these
flows mainly use short paths with a small number of interfering flows. In contrast, the gain is large
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Figure 6.18: Acceptance Ratio for a Premium
Service that Provides Bounded Delay

for flows with a large delay bound, that are mainly flows that use a comparably long path and
that are disturbed by high interference. Resulting, the Extended Pay Burst Only Once principle is
advantageous in two ways: It allows to derive tighter delay bounds and it in particular addresses
problematic flows for which the derived bounds are large and that are thus likely to violate delay
constraints. Compared to simulated worst-case delays, we find that the EPBOO option allows to
derive reasonably tight delay bounds.

Consequently, the call acceptance ratio shown in figure 6.18 is increased so that for example an
acceptance ratio of 0.95 can be achieved up to a mean load of nearly 70 instead of 50, respective
40 concurrent requests.
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Figure 6.19: Impacts of Routing Schemes for a
Premium Service
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Figure 6.20: Mean Computation Time for Pre-
mium Requests

So far, simple SPF routing has been applied. Now, figure 6.19 extends the results obtained
for the EPBOO option to CSPF and MDJ routing. Surprisingly, CSPF, which outperformed SPF
routing significantly in case of the Guaranteed Rate Service, does not increase the performance for
the Premium Service. This is due to the fact that the link capacity is not the limiting factor for
the Premium Service, but the edge-to-edge delay. Thus, SPF and CSPF compute the same paths.
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In contrast, the MDJ scheme outperforms both SPF and CSPF. The advantage of MDJ is again
created by the second maximally disjoint path. As long as the first path is capable of providing
the desired service, it is applied. However, if not, the second path provides a good alterative, since
there is a reasonable chance that certain congested links are avoided.

Finally, Figure 6.20 addresses the computational complexity of the implemented algorithms.
The theoretical complexity of the Network Calculus based admission control is in O(m2 · n) with
m denoting the number of traffic trunks and n the number of links of the respective domain.
However, there has been concern about the scalability of the approach that is followed here [72].
Therefore, we add results on the actually measured complexity of our implementation in Fig-
ure 6.20. The control procedures of our admission control have been implemented in C++. The
external signalling interface is based on TCP sockets. The admission control is executed on a
2.4 Ghz Pentium 4 running Linux kernel version 2.4.19. Static SPF routing is applied. For this
configuration, we find that the response time of the system is below 150-ms almost up to a load of
400 concurrently active requests, which clearly allows to apply our admission control in immediate
reservation systems. Further on, we find that the actual implementation scales with less than a
quadratic dependence on the number of admitted traffic trunks.





Chapter 7

Application Initiated Allocation of
Label Switched Paths

7.1 Background

7.1.1 The General-purpose Architecture for Reservation and Allocation

The General-purpose Architecture for Reservation and Allocation (GARA) provides advance reser-
vations and end-to-end management for Quality of Service on different types of Grid resources.
GARA is a research prototype of the Globus Project, a project that is developing fundamental
technologies needed to build Grids, and an advance reservation architecture for Grid infrastruc-
tures.

A GARA system is composed of a number of resource managers that each implement reser-
vation, control, and monitoring operations for a specific resource. Resource managers have been
implemented for a variety of resource types. A Bandwidth Broker is the resource manager of
particular interest here. Uniform interfaces allow applications to express QoS needs for different
types of resources in similar ways, thereby simplifying the development of end-to-end QoS man-
agement strategies. Mechanisms provided by the Globus Toolkit are used for secure authentication
and authorization of all requests to resource managers. A directory service allows applications to
discover resource properties such as current and future availability.

GARA has a four-layer architecture, as illustrated in Figure 7.1.
The layer that most programmers would use is the uniform remote access layer, via the GARA

Application Programmers Interface (API). This layer provides three essential services. First, it
allows reservation requests to be described in a simple, uniform way. Second, when a reservation
has been granted, it is described by a unique, data structure called a handle that can be stored,
transmitted, and used to refer to the reservation. This reservation handle is intended to be opaque,
that is, the format of the data structure should not be interpreted by programmers or users outside
of GARA. Third, it communicates with reservation services that may be located remotely. This
is an essential feature, because it allows for coordinated reservations on different resources to be
easily made and for reservations to be made in advance of when they are needed.

Applications also communicate with an information service that can inform them about likely
reservations that can be made, and whom to contact to make them. By combining resource
reservation and allocation with the ability to search the information service, GARA offers a flexible
framework for the construction of higher-level scheduling services.

The GARA API communicates with a resource interface. The resource interface is responsible
for authenticating and authorizing that the user is allowed to make a reservation. This layer
is unaware of the specifics of the reservation, so it can only provide coarse authorization such as
“Alice can make reservations”, but not “Alice can only make reservations for bandwidths less than
ten percent of the available bandwidth”. That fine-grained authorization happens at a lower-level
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Application Information Service

Uniform, remote acess
(GARA API)

Local Resource Layer
(LRAM)

Local Resource managers

QoS Agent

Figure 7.1: GARA’s four-layer architecture. Applications and higher-level services use the GARA
API, which communicate securely to the local resource managers level, which in turn communicates
with resource managers. Applications also communicate with an information service to find out
information about resources for which they can make reservations.

because it often depends on specifics of the available resource.
The resource interface passes the reservation requests to a lower-level interface. This is a

“mostly uniform” interface. It is not completely uniform because it is unnecessary: this layer
provides a thin shim between the resource interface layer and the resource manager level beneath.
It is the responsibility of this layer to translate all incoming requests so that they can be presented
to the resource managers that actually provide the QoS reservations.

The resource managers are responsible for tracking reservations and enforcing them by com-
municating with the lower-level resources, such as the network.

Instead of applications, there may be higher-level services at the top level. These handle
QoS requests for applications, often interacting with the information service and making multiple
reservations at the same time.

This four layer architecture allows for a uniform interface at the top, secure access to remote
resources, and any number of QoS implementations.

7.1.2 Resource Managers: Service Provisioning for Grid Resources

In a sense, resource managers are the most important part of GARA, because without them there
would be no QoS.

GARA was written to make it easy to integrate new resource managers written by other
people, but several resource managers were also created just for use in GARA. GARA incorporates
a network QoS resource manager that uses Differentiated Services, a prototype disk space QoS
resource manager, and a CPU QoS resource manager that uses process priorities. Additionally,
GARA offers a hybrid resource manager that interacts with the Dynamic Soft Real-Time (DSRT)
CPU scheduler, but adds advance reservations on top of DSRT. The most advanced resource
manager is a Bandwidth Broker for Differentiated Services networks.

To be used in GARA, resource managers need to have a few common features:

• Advance Reservations: Each resource manager must support advance reservations. If
a resource manager does not support advance reservations, support can be added by using
a hybrid resource manager on top of the resource manager, similar to the DSRT example
mentioned above. To implement the related bookkeeping, GARA uses a simple but effective
slot table manager. Here, reservations are considered as slots in time. Each slot represents
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a single capacity delegation as a “slot” of time. These slot tables can be used by any re-
source manager to keep track of reservations. In addition to the provision of basic slot table
operations such as creating, modifying, and deleting an entry, the manager can also deliver
asynchronous events when a reservation begins or ends. Therefore, it offers an implementa-
tion framework for implementing advanced notification services as described above and can
be reused in different resource managers.

• Interaction with Resources: Each resource manager needs to interact with the underlying
resource in order to enforce the QoS. If the resource manager does not have complete control
over the QoS, then reservations cannot be guaranteed.

• External Interface: Services provided by resource managers need to be accessed. Because
GARA incorporates the interface of resource managers into a Grid resource management
framework, it depends on the ability to interface directly with the resource manager. Note
that GARA was implemented within the Globus framework which provides user delegation.
It therefore knows which user is accessing a resource manager, and all interaction happens
as that user.

Note that resource managers do not necessarily need to provide authentication or remote
access, since that is provided through the higher levels in GARA. However, because GARA un-
derstands users and uses delegation when users authenticate, resource managers can do additional
authentication.

7.1.3 Network Reservations

In a Grid environment, networks are essential to the smooth operation of the Grid, and they
are also often the most shared resources. Therefore, a considerable effort was spent in ensuring
that GARA could effectively manage advance reservations and QoS for applications that made
demanding use of networks.

Grid applications have a wide-variety of network QoS needs which are much more challeng-
ing than other network QoS applications such as Voice over IP. This is because Grid applica-
tions use a wide variety of network flows, including low-bandwidth but low-latency control flows,
high-bandwidth and low-latency data transfers for applications such as visualization, and high-
bandwidth but not necessarily low-latency data transfers for moving large amounts of data for
analysis and other purposes. This combination of types of network flow places strong requirements
on the network QoS layers.

The Differentiated Services (DS) architecture is a reaction to the scalability problems of the
flow-based approach of the Integrated Services architecture. While DS follows the fundamental
principle of using a common infrastructure for both non-real-time and real-time traffic, it leaves
the reservation based approach of the Integrated Services architecture. In contrast to serving
individual flows it focuses on defining the behavior of aggregates. GARA builds a reservation
scheme on top of DS.

Packets are identified by simple markings in the Type of Service (ToS) field of the IP-header
that indicate how routers should treat the packets. In the core of the network, routers need not
to determine which flow a packet is part of, only which aggregate behavior they should apply.

In this scenario, of course, the question arises of which packets will get marked. This is
especially the case when the environment is dynamic, that is, when varying flows should be able
to use the available services. Here, a particular resource manager called Bandwidth Broker is used.
A Bandwidth Broker is a middleware service which controls and facilitates the dynamic access to
network services of a particular administrative domain. GARA designs and implements a resource
manager which fulfills the functions of a Bandwidth Broker.

DS allows packets to be marked either by applications or by the first router that receives the
packets—the edge router. If edge routers mark packets, which is the more general solution, they
could do so on any sort of basis—perhaps all IP packets for a particular protocol—but GARA
marks packets that belong to a reservation. In order to enforce the reservation, packets are only



86 Application Initiated Allocation of Label Switched Paths

marked when they are “within profile”—that is, when the sender is sending within rate given to
the reservation.

Core routers (those that are not on the edge) have an easier job because they do not need to
identify packets that need marking, nor police packets to ensure they are within profile. Instead,
core routers apply a particular packet treatment—called Per-Hop Behavior (PHB)—based only on
these markings. Currently, the Internet Engineering Task Force’s Differentiated Services Working
Group has specified a small set of PHBs, namely the Assured Forwarding and the Expedited
Forwarding PHB.

GARA uses the Expedited Forwarding (EF) PHB, which is intended to be used for a high-
priority service with little jitter and queuing delay. The exact definition of EF is rather technical,
so to simplify, each router interface can be configured so that traffic marked for the EF aggregate
is prioritized over all other packets. To prevent starvation, we somehow have to limit the amount
of data which is marked to belong to EF. This admission control is task of our GARA resource
manager.

In order to implement a Premium Service based on EF, GARA assumes that each output link
is configured to identify EF packets and to prioritize them appropriately by applying Priority
Queuing. Note that this potentially requires a configuration update of all routers in a domain.
Fortunately, this only has to be done once. While the admission control procedure uses the slot
table manager to respond to reservation requests, reservations also have to be instantiated and
policed in the edge routers. GARA dynamically configures the packet classifier, the policer, and
the packet marker to appropriately map packets to EF. Figure 7.2 illustrates this scenario. Packet
classification is done based on the reservation attributes specified when a user made a reservation.
When applied to the scenario we describe here, it is done based on the end-points (address and
port number) and the protocol (TCP or UDP).

Once the packets have been classified, a so-called “token bucket” is used to ensure that during
the time interval [t0, t1] of length T = t1 − t0 the amount of data sent does not exceed r · T + b
Bytes. Here, r denotes the average rate at which the token bucket operates and b represents the
depth of the token bucket which allows some limited bursts. Packets which fulfill this constraint
will be marked to belong to EF. To do this correctly, GARA identifies and configures the relevant
edge router every time a reservation is activated.

Note that applications may have a difficult time staying within the limits of their reservations.
While monitoring the policing function and providing feedback to the application is appropriate
for UDP-based flows, this mechanism does not work well for TCP-based communication. In order
to assist applications, a third mechanism, called traffic shaping, is used for the traffic entering the
edge router. The idea is to shape the injected TCP-traffic that it injects a smooth, reservation
conforming rate to the core network. By incorporating this with the relaxed configuration of the
policing function, TCP-applications can effectively be paced to use their reserved bandwidth.

7.1.4 Resource Reservations: A uniform API for Grid Applications

This subsection describes the exposed reservation interface offered by GARA. Let us take an
example of how a programmer may make a reservation for network bandwidth needed tomorrow
afternoon. First, the program has to make a list of the attributes needed for the reservation. GARA
uses a text-based attribute-value representation of a reservation. The representation language
currently used (the Globus Resource Specification Language, or RSL) is schema-free, but GARA
has some standard attributes. A typical reservation request may look like:

&(reservation-type=network)
(start-time=953158862)
(duration=3600)
(endpoint-a=140.221.48.146)
(endpoint-b=140.221.48.106)
(bandwidth=150);
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Figure 7.2: A simple network that shows how GARA uses DS. GARA configures edge routers to
use classification, marking, and enforcement per-flow, and Priority Queuing is used in the core.

The first three fields (reservation-type, start-time, and duration) are used for all reservations.
The last three fields are unique to network reservations.

To request the reservation, the programmer makes a simple request:

(error, handle) = reservation-create(resource-name, resv-desc);

Assuming there is no error, the reservation has been made. It can be queried at any time to
find out the status of the reservation, such as if it has started:

(error, status) = reservation-status(handle);

There is also an asynchronous event delivery service that can inform a program about reser-
vation related events, both simple state and more complex state. These events are sent by the
resource manager. An example of a simple state event would be the information stating that the
reservation time has begun. An example for a complex state would be the notification that the
application is sending data faster than the reservation allows.

When a program is ready to use a reservation, it sometimes needs to inform GARA of the last-
minute information that was not previously available. For example, a network reservation needs
to provide the port numbers used by the TCP or UDP connection so that the network routers can
provide QoS guarantees, but these port numbers are often not known in advance. Providing this
information is known as binding the reservation. The binding information is provided as a textual
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description, similar to the reservation request, then given to GARA:

bind_params = "(endpoint-a-port=1234)" + "(endpoint-b-port=5678)";
error = reservation-bind(handle, bind\_params);

When the program is done with a reservation, it can be cancelled:

error = reservation-cancel(handle);

Note that the information passed within a bind request is always related to the requested type
of service. GARA uses RSL to provide a generic interface. As much as possible, these parameters
are kept consistent in GARA, but they must change to reflect the underlying properties of the
QoS. Beyond this difference though, GARA present a uniform interface to the underlying QoS
providers.

7.1.5 An Implementation for the Globus Toolkit

The current implementation of GARA uses the Globus Toolkit as a foundation. It was initially
implemented as part of Globus 1.1.3, although a port to Globus 2.x is available. Note that the
results of the EU-funded Grid Interoperability Grid Project (GRIP) led by FZ-Jülich can be used
as a basis for the incorporation of Globus services into a UNICORE-based Grid. This conveniently
gives a roadmap for application initiated network services in both frameworks: UNICORE and
Globus.

The four layers of the GARA architecture shown in Figure 7.1 map closely to the layers of the
Globus Toolkit, as shown in Figure 7.3. The GARA API, which resides in the remote access layer,
corresponds closely with the Globus Resource Allocation Manager (GRAM) API. The resource
interface layer is the Globus gatekeeper interface. The gatekeeper is responsible for authenticating
and authorizing all GRAM and GARA interactions with a system. The local resource access layer
and the local resource managers do not have exact analogies in the Globus Toolkit, but were
implemented completely within the GARA framework.

Application
Information Service

(Globus MDS)

Uniform, remote acess
(GARA API)

Local Resource Layer
(LRAM)

Local Resource managers

QoS Agent

Grid Security Infrastructure (GSI)

Globus Gatekeeper

Figure 7.3: The GARA architecture from Figure 7.1 as it is implemented within Globus.

Because the protocol for communication with the gatekeeper and the security mechanisms
were already completely existing within the Globus Toolkit, we were able to easily leverage them
without any loss of generality or flexibility in the overall architecture of GARA.
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Security

Globus uses the Grid Security Infrastructure (GSI) . The GSI normally uses public key cryptog-
raphy. Users have private keys that they never share, and public keys (called certificates) that
anyone can view. An important aspect of GSI is that it allows users to delegate credentials. To
do this, a user can create a proxy certificate which has a new public and private key and is signed
by the user’s private key. However, it usually has a much shorter life time, generally on the order
of twelve to twenty-four hours. This proxy certificate can then be used for authentication. If the
proxy should happen to be compromised, it will be useful for a much shorter time than the user’s
private key.

The Gatekeeper Protocol

GARA uses GSI to authenticate with the gatekeeper. After authentication, the gatekeeper passes
the network connection to another program called the GARA service. This GARA service uses
the Local Resource Manager (LRAM) API to interact with the local resource managers. Each
GARA API call is a transaction with the gatekeeper, so each call benefits from the security and
remote access capability.

The GARA API allows users to request callbacks that inform the user when changes to the
reservation occur. These do not use the gatekeeper for callbacks, but retain the connection orig-
inally opened to the gatekeeper by redirecting the sockets to another program that provides the
callbacks.

Mapping of Service Requests to Resource Managers

As mentioned above, the GARA service uses the LRAM API. This is similar to the GARA API, but
it does not provide remote access or security. It does provide an abstract interface to the resource
managers so that the GARA service does not require intimate knowledge of different resource
managers. Instead, the LRAM API knows the details of speaking to the resource managers.

The LRAM is implemented as a series of libraries that can be used to communicate with dif-
ferent resource managers. While it was written in C, it is essentially an object-oriented framework
that allows for abstract interfaces to a variety of implementations.

Existing Resource Managers

Several resource managers have been built:

• Network Resource Manager: This uses Differentiated Services, as described above.

• Computer Resource Manager: This resource manager was implemented just in the
LRAM layer because it was an interface to the Portable Batch System (PBS) which provides
advance reservations. Because of the semantics of PBS advance reservation matched those
of GARA reservations, PBS itself is used as a resource manager. To use the reservation,
GARA extended the Globus GRAM interface to aid in claiming the reservation: this allowed
users to merely provide the reservation handle when submitting a job, and the reservation
was correctly used.

• CPU Resource Manager: This uses the Dynamic Soft-Real Time (DSRT) scheduler that
allows us to guarantee a percentage of the CPU to an application. At the time, DSRT
did not provide advance reservations, so we built a hybrid resource manager that provides
advance reservations to DSRT.

• Graphic Pipeline Resource Manager: This resource manager provides advance reser-
vations for graphic pipelines on a Silicon Graphics system.
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• Prototype Resource Managers: Various prototype resource managers exist. This in-
cludes a disk space resource manager, a resource manager that provides exclusive access to
a remote cache service, and a CPU resource manager that used priorities.

7.2 MPLS-related Improvements

We now briefly describe the steps performed for prototyping an MPLS-aware resource manager
for GARA.

7.2.1 Adding topology information

Admission control is an essential building block for service provisioning based on the Differentiated
Services architecture. GARA uses a State Repository that is responsible for the bookkeeping of
reservations. In detail, it uses a slot-table model where all reservations are placed in a co-ordinate
system based on the start- and end-time (x-axis) and their requested amount of the service class
(y-axis). The latter is bandwidth, as an absolute value that is related to the maximum amount of
bandwidth allowed for this class (configuration parameter). Reservations are thus stored in forms
of rectangles in a co-ordinate system. Whenever a reservation request arrives, it must be able to
place the related rectangle in the coordinate system without any overlap; otherwise the reservation
exceeds the dedicated service amount for at least a small period of time.

In its simplest form, a single slot-table is used to control the admission of service requests.
This State Repository is extended by a model in such a way that the Bandwidth Broker maintains
a slot-table per link. Every reservation request that has a particular ingress and egress point
to the controlled domain must now somehow be consistently mapped to the related path in the
topology. To support this dynamic mapping, an additional abstraction called ”traffic trunk” was
introduced. A traffic trunk connects an ingress and an egress router with a particular level of
service, i.e. a particular Per-Domain Behavior (PDB). Hence, a traffic trunk is the persistent
representation of an accepted service request. Note that a trunk is always uni-directional. It only
provides guarantees for packets traversing from the source downstream to the destination. Any
upstream guarantees have to be requested separately. This vision of a traffic trunk nicely fits to
the view of a Label Switched Path in MPLS.

For the State Repository the introduction of traffic trunks means that it has to persistently store
their attributes. Trunks represent the unit of interest for Bandwidth Brokers, as they represent
the granularity of interest in both environments: end- and transit-domains. Network reservations
are always represented by traffic trunks. Whenever the reservation is instantiated or the State
Repository is updated, traffic trunks are dynamically mapped to the topology using an admission
control procedure which follows the shortest-path routing decisions done by the IP control plane.

We incorporated the PAB-topology into the modified GARA-codebase by using the following
configuration file:

Router zam576 192.168.32.241
RouterLogin login pw enable pw1
Interface ATM1/0/0.1 192.168.32.9/30 1
InterfaceSpeed 150M full-duplex1
Interface FastEthernet0/0 192.168.31.9/301
InterfaceSpeed 100M full-duplex1
Interface FastEthernet0/1 192.168.32.241/301
InterfaceSpeed 100M full-duplex1

Router zam577 192.168.35.9
RouterLogin login pw enable pw
Interface FastEthernet0/0 192.168.32.242/30
InterfaceSpeed 100M full-duplex
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Interface FastEthernet0/1 192.168.35.9/30
InterfaceSpeed 100M full-duplex
Interface ATM1/0.1 192.168.32.17/30
InterfaceSpeed 150M full-duplex
Interface ATM4/0.1 192.168.32.25/30
InterfaceSpeed 150M full-duplex

Router zam578 192.168.34.9
RouterLogin login pw enable pw
Interface FastEthernet0/0 192.168.34.9/30
InterfaceSpeed 100M full-duplex
Interface FastEthernet0/1 134.94.173.106/16
InterfaceSpeed 100M full-duplex
Interface ATM1/0.1 192.168.32.10/30
InterfaceSpeed 150M full-duplex
Interface ATM4/0.1 192.168.32.18/30
InterfaceSpeed 150M full-duplex
Interface GigabitEthernet2/0 192.168.32.233/30
InterfaceSpeed 1000M full-duplex
Interface POS3/0 192.168.32.33/30
InterfaceSpeed 150M full-duplex

Router zam579 192.168.33.9
RouterLogin login pw enable pw
Interface FastEthernet0/0 192.168.33.9/29
InterfaceSpeed 100M full-duplex
Interface FastEthernet0/1 134.94.204.17/28
InterfaceSpeed 100M full-duplex
Interface GigabitEthernet2/0 192.168.32.234/30
InterfaceSpeed 1000M full-duplex
Interface POS3/0 192.168.32.34/30
InterfaceSpeed 150M full-duplex
Interface ATM1/0.1 192.168.32.26/30
InterfaceSpeed 150M full-duplex

# Links between routers
Link full-duplex zam576 zam577 100M 1
Link full-duplex zam576 zam578 155M 1
Link full-duplex zam577 zam578 155M 1
Link full-duplex zam577 zam579 155M 1
Link full-duplex zam578 zam579 155M 1
Link full-duplex zam578 zam579 1000M 1

Note that an additional (legacy) configuration file is used to describe the association between
ingress-egress links and the related interface name.

7.2.2 The Explicit-Route object

So far, the described modifications do not allow the incorporation of traffic engineering mechanisms
as they are analyzed with the PAB-project. The resource manager performed admission control
by following the routing decisions of the network. Combining this with the bandwidth reservation
mechanisms offered by Cisco’s automatic bandwidth adjustment mechanism, the admission control
can be done in advance.
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The active use of the explicit route object in the RSVP-TE messages, however, allows for an
incorporation of flexible and efficient traffic engineering algorithms. Here, the resource manager
is not just following the routing decisions of the network. Instead, it enforces a particular route
by the use of the explicit route object.

Whenever a new service request arrives, it is dynamically mapped to the underlying topology.
A particular function was introduced to GARA that handles this mapping. In detail, the function
searches the network graph for a valid path, validates for each link that the requested capacity is
still available over the particular time interval, and finally creates an explicit route object encoding
used during service provisioning.

7.2.3 Service Provisioning

GARA’s service provisioning interface uses the command line interface of the edge router. A
particular TCL/Expect script is used to automate a telnet session that performs the related
configuration steps. Incorporating MPLS functionality to GARA means that this interface must
be updated according to the CLI steps to be performed.

In detail, the updated script:

• Creates an explicit route object

• Creates a tunnel interface

• Creates a route-map entry

• Creates appropriate packet classifiers

• Creates an appropriate packet marker

• Sets the tunnel interface as path for traffic in the route-map

• Assigns the route-map to the related ingress interface
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Advanced Network Management

The network resource manager in a prototype version uses a static configuration file containing
a description of the network topology. This can lead to unwanted effects when the network map
changes and this fact is not recognized by the running resource manager. It is then of great
importance to keep the network topology and other network related information up-to-date. The
network topology can be deduced from the link state database of the Open Shortest Path First
(OSPF) protocol which is usually included in a Management Information Base (MIB) maintained
by a router. This information from the MIB can be remotely accessed using the Simple Network
Management Protocol (SNMP). These standards are supported by the routers in the DFN network
as well by the CISCO 7200 routers in the testbed of the PAB project. The network monitoring
was implemented in Java classes. In the future it is planned to extend the functionality of the
software by the ability to configure the routers and not only to monitor them. Integration of the
passive and active controlling functions in one class will simplify the implementation of advanced
mechanisms for QoS provisioning in IP/MPLS networks.

8.1 SNMP-based Monitoring

8.1.1 MIB and SNMP

A MIB is a database organized in a hierarchical way. All items in this database are addressed
by the sequence of numbers separated by dots, similarly to a file disk location, which is given by
a sequence of directories (separated by slash or back-slash - depending on the operating system)
terminated by the name of the file. Thus all items from one thematic group of the MIB database
have addresses with the same prefix (like 1.3.6.1 for the Internet, 1.3.6.1.2.1.4 for IP).

The MIB database can be accessed remotely with the help of SNMP. In its basic version 1
”SNMP v1”, which was implemented in the developed software, five operations are defined, see
Figure 8.1:

• get

• get-next

• get-response

• set

• trap

The first two operations get and get-next are used to request data. An answer comes with
the get-response message. The set operation is foreseen for modifying the variables in the MIB
database. It is only possible when the access to the database is not write-protected. In fact,

93



94 Advanced Network Management

the CISCO implementation of the MIB does not support modification of the items by the set
command.

Sending of trap messages is initiated by the system where a MIB database is installed. It
helps the SNMP manager to be up-to-date after any change in the network status. It should be
stated, however, that the SNMP messages are transported on UDP which does not guarantee the
delivery of packets.

The newer version of the protocol ”SNMP v2c” introduced the new get-bulk command which
allows to send a big number of MIB items in a single SNMP message. However, the simple authen-
tication procedure, which is based on sending an unencrypted password - so called ”community
string” - is directly adopted from ”SNMP v1”. It should be noted that there are also other variants
of SNMP referred to as version 2. However ”SNMP v2c” described here is the most widely spread
and popular one.

The latest version ”SNMP v3” is the most advanced one. It implements sophisticated security
algorithms for user authentication and data encryption.
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Figure 8.1: The communication between the SNMP manager on a remote host and the MIB
database via SNMP. Five types of messages: get, get-next, get-response, set and trap can be
exchanged in case of the protocol version 1.

8.1.2 Java Implementation

The monitoring code was written in Java (version 1.4.1) for portability reasons. The software
has a layered structure, see Figure 8.2. At the bottom there is Westhawk’s Java SNMP Stack
class library (free-ware software downloaded from the www.westhawk.co.uk site) which was used
to organize the communication with the routers via SNMP. The stack supports all three versions
of SNMP, described in the previous section. Although the current tests were made with the
most simple one, SNMP version 1, the final product also supports the functionality of the most
advanced, SNMP version 3. On top of Westhawk’s Stack the Network Class Library (current
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version: 2.1) was developed which abstracts the elements like MIB databases, routers, network
topology, MPLS tunnels, etc. in Java classes. This library offers building blocks for creating higher
level applications controlling network state. In the next section the Network Monitoring program
is presented as an example of an application using the Network Class Library.

The content of the MIB database is represented by the MIB object which is responsible for
regular updates and which can pass the information to the higher level objects: Router and
Topology. They contain lists of interfaces, MPLS tunnels, active links, etc. The Testbed object
contains all Router objects and the Topology object and serves the information relevant to the
network domain, like a global list of links and their states, a list of all MPLS tunnels, the topology
of the network, etc. Applications built on the top of the Network Class Library will use the
Testbed object as a basic source of information about the network domain. At this level all the
details concerning SNMP communication with hardware are hidden in lower layers.

Due to the nature of the OSPF routing protocol, all routers in the domain should have the full
and consistent information about the network topology within the domain. So, the choice of the
router delivering this information is arbitrary and in the performed tests the router zam576 was
selected. Since the addresses of all other routers in the domain can be obtained from the topology
database, the only parameters which the Testbed class requires as input data is the IP address of
zam576 and the access passwords (community strings) for the SNMP service (which are chosen to
be common for all routers in the domain).

One of the methods of the Testbed object can create the configuration string for the resource
manager in the format described in Section 7.2.1.

The objects from the Network Class Library are updated periodically with the programmed
refresh time but this process can be also triggered by the application or by receiving a trap message.
Thus, the software can quickly react on changes of the network parameters.

The current version of the Network Class Library makes use of the following MIB sub-databases:

• 1.3.6.1.2.1.1 - general system information like, router’s name, location, administrator, etc.,

• 1.3.6.1.2.1.2 - information related to physical properties of router’s interfaces,

• 1.3.6.1.2.1.4.20 - information related to the router’s IP layer,

• 1.3.6.1.2.1.14.4 - OSPF link state database,

• 1.3.6.1.3.95 - CISCO information about MPLS tunnels,

• 1.3.6.1.4.1.9.9.109.1.1.1.1.3 − 5 - three values characterizing the CPU load of the router’s
processor.

8.1.3 Network Monitoring Application

Based on the Network Class Library, described in the previous section, the application was created
for visualization of the network topology and MPLS tunnel layout, see Figure 8.3. In the left panel
the list of MPLS tunnels is given. The bright grey color denotes the active tunnels while the dark
grey color denotes the tunnels which were configured but for some reasons are not operational,
e.g. due to link failure. The panel next to right shows the details for the selected tunnel. Here,
the content of the Explicit Route Object is shown as well as the list of links and interfaces used by
the tunnel. The most right panel displays the network topology and the path used by the selected
tunnel. The operational interfaces are shown as grey spots near the routers. Other colors are
reserved for not operational or administratively down interfaces. Links are represented by lines
connecting interfaces. If a given link is advertised by the routing protocol, then the line ends with
an arrow. The selected tunnel path is shown by arrows placed along the lines representing links.
Additionally, the CPU load of the routers is given. The interface related information appears in
a rectangular field if the mouse pointer is close to the interface spot.

This example application shows some possibilities of using the designed Java classes to monitor
the network domain. It can be easily extended to monitor other parameters of the network.
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Figure 8.2: The architecture of the software. For low level communication via SNMP Westhawk’s
SNMP Stack is used. The data from MIB databases is represented by objects shown as rectangles.
The application at the highest level uses the Testbed as a basic source of information about the
network

8.1.4 Software Integration

The presented software is still being developed for the PAB project to include the possibility of the
automatic network configuration, including MPLS tunnel set-up. Then the network monitoring
functions will be completed with management possibilities. However, already at the current stage
the monitoring system can be integrated with the existing network resource manager since the
latter can read the topology information prepared by the Testbed object. The new version of
the Java class library will allow to build much more sophisticated applications on top of it, which
will be able to dynamically reconfigure the network according to user requests or to control and
optimize it automatically.

8.2 Architecture

The Network Class Library is a set of Java classes but only few of them are intended to be created
directly by a programmer. These special classes can be grouped into following categories:

• Communication with routers. There are two Java classes in this group:

– MIB. It represents a set of entries in a router’s MIB database. The meaning of those
entries is transparent to the MIB class. Important are only their MIB addresses and
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Figure 8.3: A screen shot of the network monitoring application. See description in the text.

assigned values. All SNMP communication details are hidden from a programmer in
the implementation of the MIB class which uses the Westhawk’s SNMP Stack software,
distributed as a free-ware.

– CLI. It represents a Command-Line Interface (CLI) communication process. This class
has methods to perform commands in the routers EXEC and CONFIGURATION
modes. Its implementation uses the The Java Telnet Applet being a free-ware soft-
ware which is distributed under terms of the GNU General Public License as published
by the Free Software Foundation.

• Network representation. There are three Java classes in this group as listed below. All
of them use an object of the MIB class as a basic source of information about a network.
Additionally, a CLI object is used by some Router methods.

– Topology. This class represents a network’s topology. It contains lists of objects
describing OSPF Link State Advertisement (LSA) messages of different types.

– Router. This class represents a router. It allows to extract a lot of router-related
information like e.g. the number of interfaces, their states and configurations. One of
its methods gives access to a MIB object associated with the router.

– Testbed. This class represents a network domain, i.e. a set of routers, links, MPLS tun-
nels, etc. Some of its methods return Router or Topology objects related to particular
routers in a testbed or the topology respectively.
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• Tools. Classes from this group can be useful for a programmer using the Network Class
Library.

– TaskManager. This class can be helpful in performing tasks, represented by the Task
class and its subclasses, which block the execution of a current thread. For this purpose
the TaskManager uses its own thread for executing tasks. Moreover, it implements a
task waiting list.

– Task*. These classes describe tasks to be performed by the TaskManager.

– OutputQoS. This class can be useful in obtaining QoS parameters from a policy map
configuration object of the PolicyMapCLI class. See the Java documentation for details.

Objects of other classes, i.e. those objects which cannot be created directly by a programmer,
can be returned by methods of some other objects, e.g. Interf object representing a router
interface is returned by the Router.getInterf() method.
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Figure 8.4: Schematic drawing showing relations between objects from the Network Class Library,
a network testbed installed at the Research Center Jülich and a user application, see Section 8.4.
MIB and CLI objects are used as building blocks for SNMP and CLI communication. Topology
and Router objects represent OSPF messages and routers respectively.

The relations between Network Class Library objects are shown in Figure 8.4. In the next
subsections the classes from this library will be described in detail.
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8.2.1 MIB class

The MIB class implements an interface to a MIB database maintained by a given router. It has two
constructors: one for SNMP version 1 and the second for SNMP version 3. In both cases, the object
communicates at first with the router using the IP address passed to its constructor. However, it
can happen later that this address is not reachable due to e.g. link failure. To be prepared for
such cases the MIB object maintains a list of alternative router’s addresses. Every time the current
address is not accessible a new address from the list is tested until an accessible one is found. The
access address which is currently used is returned by the getAccessInterfaceAdress() method.

A programmer is usually interested only in some subset of the whole MIB database maintained
by the router. Thus, the lookAtOid() method is used to specify which MIB entries should be
monitored by the software. The mentioned method takes two arguments: a common prefix of the
MIB addresses and a time interval between periodically contacting the router.

As mentioned above the router is being contacted periodically with a predefined frequency. Ad-
ditionally, a programmer can force an immediate update of the object by invoking the
setUpdateNow() or the refresh() method. The first one exits before the update is done (what
can be monitored by the isUpdateNow() method) while the second blocks the execution of the
current thread until all MIB entries are re-read from the router’s MIB.

A programmer can extract the MIB entries with the getMIBItemList() method which returns
the MIBItemList object. The latter class implements two useful methods: getMIBItem() and
getMIBSublist() which return a value for a complete MIB address or a list of values for a given
MIB address prefix.

The MIB class implements recording of SNMP trap messages and sending of trap events no-
tifications to other objects1. A single trap message can contain many MIB entries which are
represented by an object of the MIBItemListOffline class. The list of received trap messages
is returned by the getTrapMIBList c() method and the oldest trap message is returned by the
getTrapMIBSubList() method.

8.2.2 CLI class

The CLI class allows communication with routers via the Cisco Command-Line Interface. An
object of this class is used in the Router object implementation. The CLI constructor expects an
IP address to contact a router and two passwords necessary to access the system.

The class implements two groups of methods for executing commands in the EXEC and CON-
FIGURATION modes respectively: execCommand2() and execCommand3(). These methods return
strings with the history of telnet sessions. The isError() method can be applied to check whether
a given command was successfully executed or not.

A timeout for communication can be set with the setTimeout() method (the default value is
10 s).

8.2.3 Topology class

An object of the Topology class contains lists of OSPF Link State Advertisement messages of
different types, received by a given router. A MIB object associated with this router is passed as
an argument to the Topology constructor.

It should play no role, which router in the network domain serves the topology information.
This is because of the flooding mechanism of OSPF advertisements - every router should see the
same set of messages.

The getLSA1 c(), getLSA2 c(), and getLSA5 c() methods return lists of objects representing
LSA messages of type 1, 2, and 5 respectively. This is sufficient to build the topology information
of the network domain.

1The mechanism of sending trap event notifications uses a Observable-Observer model from the standard Java
library
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In the Network Class Library a Topology object is one of the members of the Testbed class,
see Section 8.2.5.

The detailed description of the OSPF protocol and the format of LSA messages can be found
in RFC 1583.

8.2.4 Router class

The Router class represents information related to a given router. An appropriate MIB object has
to be passed to the Router constructor. A programmer can access this object later by invoking
the getMIB() method. The MIB object constitutes a basic source of information for the Router
class except the router’s configuration text which is obtained with the help of a CLI object. The
latter is created dynamically in execCommand2() and execCommand3() methods.

Most of the Router content is created in the update() method2. The most relevant information
related to the router can be returned by the following methods:

• getSysName() - returns the name of a router,

• getSysDescr() - returns a text containing the system description,

• getInterf c() - returns a list of Interf objects representing the router’s interfaces,

• getTunnel c() - returns a list of Tunnel objects representing the MPLS tunnels configured
at this router,

• getLSP c() - returns a list of LSP objects representing the Label Switched Paths passing
through this router,

• getConfigFile() - returns a string with the complete router’s configuration.

See the Java documentation for the full set of available methods.

8.2.5 Testbed class

This class represents a network domain. To create a Testbed object one needs to know the access
address of only one router in the domain together with the appropriate parameters for SNMP and
CLI access. These parameters are passed to one of the constructors of the Testbed class.

Below one can find a brief description of the various tasks performed by the Testbed construc-
tor.

• Learning the network topology. An access address of one of the routers (one of the
constructor’s arguments) is used to create a MIB object which is then passed to a Topology
object.

• Creating a list of routers. IP addresses of all routers in a network domain are known
from the Topology object. Associated MIB objects are created and finally passed to the
constructors of Router objects.

• Invoking the update() method.

In turn, the update() method, which can be invoked by a programmer at any time, performs
the following tasks:

• Updating topology and router information. The update() method of the Topology
object and the update() methods of all Router objects are invoked. It is also checked if
any new routers are advertised by the Topology object. In this case the list of routers is
extended to include new machines.

2 Note that the constructor does not invoke the update() method.
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• Creating a list of internal links. A list of Router2Router objects, describing internal
links in the network domain, is created.

• Creating a list of external links. A list of Router2External objects, describing external
links going out of the network domain, is created.

• Creating a list of MPLS tunnels. A list of Tunnel2 objects, describing MPLS tunnels
established in the network domain, is created.

Below one can find a list of the most relevant methods implemented in the Testbed class:

• getRouter c() - returns the list of Router objects representing routers in a network domain,

• getTopology() - returns the Topology object representing the OSPF messages flooded in
the network domain,

• getInternalLink c() - returns the list of Router2Router objects representing the links
between routers in the network domain,

• getExternalLink c() - returns the list of Router2External objects representing the links
going outside the network domain,

• getTunnel c() - returns the list of Tunnel2 objects representing the MPLS tunnels config-
ured within the network domain,

• makeTunnel() - creates an MPLS tunnel,

• update() - invokes the update() method of the Topology and Router objects and creates
updated lists of internal links, external links and MPLS tunnels.

See the Java documentation for the full set of available methods and their arguments.

8.3 Simple examples

In this section the basic functionality of the ÄMIB, Router and Testbed classes is presented and
illustrated with simple examples, which were tested with the network testbed installed at the
Research Center Jülich. These examples, however, are not intended to replace the full Java
documentation of the Network Class Library.

8.3.1 Configuration of Cisco routers

The presented software communicates with routers using SNMP in version 1 or 3. Both options are
supported by the latest versions of the Cisco operating system, however the remote systems must
be first appropriately configured for both accepting SNMP requests and sending SNMP traps.
The configuration steps are partially different for SNMP version 1 and SNMP version 3. See Cisco
OS documentation for the full description of the configuration commands and their parameters.

SNMPv1

SNMP version 1 is based on a very primitive security mechanism with the community string being
a kind of password used in MIB access authorization. However, this string can be easily extracted
from the SNMP packets since it is sent not encrypted. The following command executed in the
router CONFIGURATION mode enables responding to SNMPv1 requests.

zamxyz(config)#snmp-server community xxx ro
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The xxx string above is a community string which should be identical with a string from an
SNMP request. Only then the request will be answered. The ro option causes that the access to
the MIB database will be read-only.

On the other hand the command

zamxyz(config)#snmp-server host 10.10.10.10 yyy

causes that a router is ready to send traps to the IP address 10.10.10.10 with the community
string yyy. An snmp-server enable traps (...) command specifies what kind of traps will
be sent. For example:

zamxyz(config)#snmp-server enable traps snmp linkdown linkup

initiates trap sending in situations when any link is shut down or restored. See Cisco docu-
mentation for the full list of available options.

SNMPv3

SNMP version 3 offers much more advanced security than SNMP version 1 with its community
string based concept. In SNMP version 3 every message sent over a network can be encrypted and
signed with a special hash code. Thus, a potential intruder cannot decrypt a message or modify
it without knowing appropriate secret keys.

A router which offers MIB access through SNMP version 3 must maintain a database of users
which are authorized to contact the MIB. Each user belongs to a group and for every group the
access rights to the MIB database are defined. The secret keys used by security procedures (one for
encryption/decription and one for calculating hash codes) are calculated from the users’s password
and the SNMP identity number assigned to the router.

First of all the router should have assigned an engineID number. One does it with the com-
mand as shown in the example below:

zamxyz(config)#snmp-server engineID local 0000000902000005DD531800

Here, the parameter standing behind the word local is the engineID number which identifies
the router in the SNMP communication. Now, a new user can be introduced. The command below
executed in the router CONFIGURATION mode introduces a new user to the user database.

zamxyz(config)#snmp-server user userx groupx v3 auth md5 authpassword
priv des56 privpassword

For security reasons above command will not be shown in the routers configuration file. Here,
the user name is userx and it belongs to a group groupx. The authpassword is used to calcu-
late a secret key for MD5 (option md5) authentication procedures (option auth). Similarly, the
privpassword is used to calculate a secret key for DES56 (option des56) encryption/decryption
procedures (option priv)3.

For a complete configuration one has to define a group, the same as typed above during user
definition.

zamxyz(config)#snmp-server group groupx v3 auth

For a group definition one specifies the security level. Here auth means that authentication
procedures must be applied when sending/receiving SNMP messages.

Next, to allow sending SNMPv3 traps one has to configure the router similarly as in this
example:

zamxyz(config)#snmp-server host 10.10.10.10. version 3 auth userx

where 10.10.10.10 indicates the IP address of the trap receiver. To define which kind of trap
messages should be sent use the same command as described in the previous subsection related to
the SNMPv1 configuration.

3Some versions of Cisco IOS support only authentication without message encryption
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8.3.2 Getting a list of MPLS tunnels - the Router object

The Java program presented here creates a Router object representing one of the routers in the
testbed. This router has been configured to be a head of two MPLS tunnels. The code below
shows how to use the Network Class Library to get certain information about those tunnels.

import fzjuelich.testbed.*; // 0
import java.lang.Thread;
import java.util.*;

class TestRouter{
static public void main(String[] args){

MIB mib = new MIB("192.168.34.9", 161, "xxx", "Standard", true); // 1
Router router = new Router(mib); // 2

while(true){
try{

router.update(); // 3

List list = router.getTunnel_c(); // 4
Iterator it = list.iterator(); // 5

String routerName = router.getSysName(); // 6

System.out.println("======================="); // 7
System.out.println("Router: " + routerName);

while(it.hasNext()){ // 8
Tunnel tunnel = (Tunnel)it.next(); // 9
String tunnelSource = tunnel.getSrc(); // 10
String tunnelDestination = tunnel.getDst(); // 11
System.out.println("Tunnel from " + tunnelSource + // 12

" to " + tunnelDestination);
};

Thread.sleep(15000); // 13

}catch(Exception e){ // 14
System.out.println("Exception!!!");

};
}

}
}

Below some lines of the program are commented.

• // 0 - The import commands specify packages which should be loaded. One of them is the
fzjuelich.testbed package containing the Network Class Library.

• // 1 - The MIB object is created. Its constructor needs 5 arguments:

– ”192.168.32.241” is the IP address of the router, where a MIB database is maintained.

– 161 is the IP port number for SNMP communication.

– ”xxx” is the community string, necessary when accessing the MIB database via SNMP.
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– ”Standard” is the string defining the MIB access type.
– true informs that this object will monitor SNMP traps.

• // 2 - The Router object representing the router is created. Its constructor takes the mib
object as an argument.

• // 3 - The update() method builds the internal data structures, like e.g. a list of interfaces
or MPLS tunnels.

• // 4 - The list of Tunnel objects representing MPLS tunnels is extracted from the router
object.

• // 5 - The Iterator object is created. It simplifies programming a loop over the tunnels,
see // 8.

• // 6 and // 7 - The system name is extracted from the router object and printed.

• // 8 - The loop over the Tunnel objects.

• // 9 - The Tunnel object is extracted.

• // 10, // 11 and // 12 - The source and destination address for the current tunnel are
extracted and printed.

• // 13 - The thread waits for 15 s.

• // 14 - The catch() function processes possible InterruptedException exceptions which
can be thrown by the Thread.sleep() function.

The execution of the TestRouter program results in the following output. Next to the messages
generated by the MIB constructor one can see the lines which are printed inside the program’s
infinite loop. During the first iteration the requested data are still not mapped from the MIB
database to the MIB object, what is indicated by the "??" string and the empty list of tunnels
(tunnel information is not printed at all). Only the next iterations bring the more informative
printouts: the name of the router and the end points of the tunnels.

user@zamxyz:~/zam/rcontrol> java TestRouter
MIB: MIB()SnmpContext[host=192.168.34.9, port=161, socketType=Standard,
community=xxx]

=======================
Router: ??
=======================
Router: zam578
Tunnel from 10.10.10.78 to 10.10.10.76
Tunnel from 10.10.10.78 to 10.10.10.77
=======================
Router: zam578
Tunnel from 10.10.10.78 to 10.10.10.76
Tunnel from 10.10.10.78 to 10.10.10.77
(...)

8.3.3 Executing arbitrary commands - the Router object

This subsection presents a way of execution Command-Line Interface commands by means of the
execCommand2 and execCommand3 methods of the Router class. They give access to the EXEC
and CONFIGURATION modes of the CLI respectively. Below is the printout of an example code.
The program prints the status of the FastEthernet 0/0 interface, shuts it down, prints the status
again and finally restores the interface from the shutdown state.
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import fzjuelich.testbed.*; // 0

class TestRouter2{
static public void main(String[] args){

MIB mib = new MIB("192.168.32.241", 161, "xxx", "Standard", true);// 1

Router router = new Router(mib); // 2

router.setCLIPassword1("yyy"); // 3
router.setCLIPassword1("zzz");

System.out.println("");
System.out.println("...........................step_1...");
String out1 = router.execCommand2("show interfaces " + // 4

"FastEthernet 0/0 description");
System.out.println(out1);

System.out.println("");
System.out.println("...........................step_2...");
String out2 = router.execCommand3("interface FastEthernet 0/0", // 5

"shutdown");
System.out.println(out2);

System.out.println("");
System.out.println("...........................step_3...");
String out3 = router.execCommand2("show interfaces " + // 6

"FastEthernet 0/0 description");
System.out.println(out3);

System.out.println("");
System.out.println("...........................step_4..."); // 7
String out4 = router.execCommand3("interface FastEthernet 0/0",

"no shutdown");
System.out.println(out4);

}
}

The course of the program is analyzed below. The most important lines are commented.

• // 0 - The import command specifies the fzjuelich.testbed package containing the Net-
work Class Library.

• // 1 - The MIB object is created. Its constructor needs 5 arguments:

– ”192.168.32.241” is the IP address of the router, where a MIB database is maintained.

– 161 is the IP port number for SNMP communication.

– ”xxx” is the community string, necessary when accessing the MIB database via SNMP.

– ”Standard” is the string defining the MIB access type.

– true informs that this object will monitor SNMP traps.

• // 2 - The Router object representing the router is created. Its constructor takes the mib
object as an argument.

• // 3 - The two passwords for CLI communication are set.
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• // 4 and // 5 - The execCommand2() method executes a command in the EXEC
mode of the Command-Line Interface. This particular command prints the status of the
FastEthernet 0/0 network interface.

• // 6 and // 7 - The execCommand3() method executes a command in the CONFIGU-
RATION mode of the Command-Line Interface. The commands from the discussed example
cause that the FastEthernet 0/0 network interface is administratively shut down or reac-
tivated respectively.

The result of the program execution is seen below. The first four lines come from the construc-
tor of the MIB object. Then a history of the communication with the router is printed for every
step.

In the first step the command "show interfaces FastEthernet 0/0 description" is ex-
ecuted and the text describing the state of the interface is printed. One can see that the
FastEthernet 0/0 interface (Fa0/0) is currently active (Status: up) and the software pro-
cess handling the line protocol of this interface confirms that the interface is usable (Protocol
description: up).

In the second step the FastEthernet 0/0 interface is administratively shut down. One can
verify it by looking at the printout of the third step: the information Status: admin down
indicates that the shutdown command was executed on this interface (in the third step) and
Protocol description: down means that the line protocol concerns the interface as not usable.

In the last step the shutdown command is removed from the FastEthernet 0/0 configuration.

user@zamxyz:~/zam/rcontrol> java TestRouter2
MIB: MIB() SnmpContext[host=192.168.32.241, port=161, socketType=Standard,
community=xxx]

...........................step_1...

zam576 line 3

User Access Verification

Password:
zam576>enable
Password:
zam576#terminal length 0
zam576#show interfaces FastEthernet 0/0 description
Interface Status Protocol Description
Fa0/0 up up
zam576#

...........................step_2...

zam576 line 4

User Access Verification

Password:
zam576>enable
Password:
zam576#terminal length 0
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zam576#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
zam576(config)#interface FastEthernet 0/0
zam576(config-if)#shutdown
zam576(config-if)#

...........................step_3...

zam576 line 3

User Access Verification

Password:
zam576>enable
Password:
zam576#terminal length 0
zam576#show interfaces FastEthernet 0/0 description
Interface Status Protocol Description
Fa0/0 admin down down
zam576#

...........................step_4...

zam576 line 4

User Access Verification

Password:
zam576>enable
Password:
zam576#terminal length 0
zam576#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
zam576(config)#interface FastEthernet 0/0
zam576(config-if)#no shutdown
zam576(config-if)#

8.3.4 Network topology information - the Testbed object

The program discussed in this subsection uses the Testbed object to extract network topology
information which is then printed to the standard output. Note that the format of this output
can be immediately used by the modified GARA version.

import fzjuelich.testbed.*; // 0
import java.lang.Thread;
import java.util.*;

class TestTestbed{

public static void main(String[] args){

Testbed tb = new Testbed("192.168.32.241", "xxx", "yyy", "zzz"); // 1
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while(true){
try{

Thread.sleep(1000); // 2
}catch(InterruptedException e) {

System.out.println("Exception");
};
tb.update(); // 3
System.out.println("============================================");
System.out.println("# Routers");

List routerList = tb.getRouter_c(); // 4
synchronized(routerList){ // 5

Iterator it = routerList.iterator(); // 6
while(it.hasNext()){ // 7

Router rr = (Router)it.next(); // 8

System.out.println("Router \t" + rr.getSysName()); // 9
System.out.println("RouterLogin \t" + "yyy zzz");

List interfList = rr.getInterf_c(); // 10
synchronized(interfList){ // 11
Iterator it2 = interfList.iterator(); // 12

while(it2.hasNext()){ // 13
Interf interf = (Interf)it2.next(); // 14
String ip = interf.getIpAdEntAddr(); // 15
if(!ip.equals("???")){

if(interf.getIfOperStatus().equals("1")){ // 16

System.out.println("Interface \t" + // 17
interf.getIfDescr() + " " +
interf.getIpAdEntAddr() + "/" +
MIB.mask(interf.getIpAdEntNetMask()));

String speedStr = interf.getIfSpeed(); // 18
long speed = 0;
if(speedStr!=null)

speed = (Long.valueOf(speedStr)).longValue();
else

speed = -1;
System.out.println("InterfaceSpeed \t"

+ speed/(1000*1000) + "M"); // 19

};
};

};
};
System.out.println("");

};
};

List internalLinkList = tb.getInternalLink_c(); // 20
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synchronized(internalLinkList){ // 21
Iterator it = internalLinkList.iterator(); // 22
System.out.println("");
System.out.println("# Links between routers");
while(it.hasNext()){ // 23

Router2Router r2r = (Router2Router)it.next(); // 24
Interf srcInterf = r2r.getSrcInterf(); // 25
Interf dstInterf = r2r.getDstInterf(); // 26

// if both interfaces up
if(srcInterf.getIfOperStatus().equals("1") && // 27
dstInterf.getIfOperStatus().equals("1")){

System.out.print("Link ");
System.out.print(r2r.getSrc().getSysName() + " " + // 28

r2r.getDst().getSysName());
String speedStr = r2r.getSrcInterf().getIfSpeed(); // 29
long speed = 0;
if(speedStr!=null)

speed = (Long.valueOf(speedStr)).longValue();
else

speed = -1;
System.out.println(" " + speed/(1000*1000) + "M"); // 30

}
}

}
}

}

The program is analyzed below and the most relevant lines of the code are commented.

• // 0 - The import commands specify the packages which should be loaded. One of them
is the fzjuelich.testbed package containing the Network Class Library.

• // 1 - The Testbed object is created. Its constructor takes two arguments:
”192.168.32.241” is the IP address of one of the routers in the testbed and ”xxx” is
the community string which is used for authentication in SNMP connections. ”yyy” and
”zzz ” are the two passwords for CLI communication.

• // 2 - Every iteration in the infinite loop starts with the Thread.sleep(1000) command
which stops the execution of the current thread for 1 s.

• // 3 - The update() method causes that the tb object is refreshed with the current content
of the MIB objects.

• // 4 - The routerList object represents a list of Router objects in the testbed.

• // 5 - This synchronization guarantees that only one thread is allowed to work with the list
at any particular time.

• // 6 and // 7 - The Iterator object extracted from the routerList helps to program a
loop over routerList elements.

• // 8 - List objects work only with Object elements. Since the elements are in fact Router
objects, the explicit type projection operator (Router) must be applied.
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• // 9 - The router’s name and the passwords for the CLI communication are printed.

• // 10 - The interfList object represents a list of Interf objects assigned to the rr object.

• // 11 - This synchronization guarantees that only one thread is allowed to work with the
list at any particular time.

• // 12 and // 13 - The Iterator object extracted from the interfList helps to program a
loop over interfList elements.

• // 14 - List objects work only with Object elements. Since the elements are in fact Interf
objects the explicit type projection operator (Interf) must be applied.

• // 15 - The IP address of the interface is extracted.

• // 16 - This block is executed only if the interface is active.

• // 17 - Printout of the interface name, IP address and the mask length (number of 1-bits
in the mask).

• // 18 - speedStr is a link speed in bits per second.

• // 19 - Printout of the link speed in megabits per second.

• // 20 - The internalLinkList object represents a list of internal links (Router2Router
objects) in the testbed.

• // 21 - This synchronization guarantees that only one thread is allowed to work with the
list at any particular time.

• // 22 and // 23 - The Iterator object extracted from the internalLinkList helps to
program a loop over internalLinkList elements.

• // 24 - List objects work only with Object elements. Since the elements are in fact
Router2Router objects the explicit type projection operator (Router2Router) must be
applied.

• // 25 and // 26 - Source and target interface objects are extracted: srcInterf and dstIn-
terf.

• // 27 - The condition is checked whether the source and target interfaces are both active.

• // 28 - Printout of the source and target router names.

• // 29 - Extracting the speed of the source interface in bits per second.

• // 30 - Printout of the speed of the source interface in mega bits per second.

The course of the TestTestbed program is analyzed below. At first constructors of MIB objects
send information about addresses of the contacted interfaces, IP port numbers used, socket types
and community strings for SNMP communication. There are four routers in the testbed thus five
MIB object are created, compare with Figure 8.4.

Next, the router sections (# Routers) include some router parameters like community strings
(RouterLogin), interface names, addresses and speeds. Next, the list of links (# Links between
routers) contains the basic link parameters: the name of the source router, target routers and
their speed in mega bits per second.
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PAB@zam233:~/zam/rcontrol> java TestTestbed
MIB: MIB() SnmpContext[host=192.168.32.241, port=161, socketType=Standard,
community=xxx]
MIB: MIB() SnmpContext[host=192.168.32.241, port=161, socketType=Standard,
community=xxx]
MIB: MIB() SnmpContext[host=192.168.32.242, port=161, socketType=Standard,
community=xxx]
MIB: MIB() SnmpContext[host=192.168.32.233, port=161, socketType=Standard,
community=xxx]
MIB: MIB() SnmpContext[host=192.168.32.234, port=161, socketType=Standard,
community=xxx]
============================================
# Routers
Router zam576
RouterLogin yyy zzz
Interface FastEthernet0/1 192.168.32.241/30
InterfaceSpeed 100M
Interface Loopback0 10.10.10.76/32
InterfaceSpeed 4294M
Interface ATM1/0.1-aal5 layer 192.168.32.9/30
InterfaceSpeed 149M

Router zam577
RouterLogin yyy zzz
Interface FastEthernet0/0 192.168.32.242/30
InterfaceSpeed 100M
Interface FastEthernet0/1 192.168.35.9/29
InterfaceSpeed 100M
Interface Loopback0 10.10.10.77/32
InterfaceSpeed 4294M
Interface ATM1/0.1-aal5 layer 192.168.32.17/30
InterfaceSpeed 149M
Interface ATM4/0.1-aal5 layer 192.168.32.25/30
InterfaceSpeed 149M

Router zam578
RouterLogin yyy zzz
Interface POS3/0 192.168.32.33/30
InterfaceSpeed 155M
Interface FastEthernet0/0 192.168.34.9/30
InterfaceSpeed 100M
Interface FastEthernet0/1 134.94.173.106/21
InterfaceSpeed 100M
Interface GigabitEthernet2/0 192.168.32.233/30
InterfaceSpeed 1000M
Interface Loopback0 10.10.10.78/32
InterfaceSpeed 4294M
Interface ATM1/0.1-aal5 layer 192.168.32.10/30
InterfaceSpeed 149M
Interface ATM4/0.1-aal5 layer 192.168.32.18/30
InterfaceSpeed 149M

Router zam579
RouterLogin yyy zzz
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Interface POS3/0 192.168.32.34/30
InterfaceSpeed 155M
Interface FastEthernet0/1 192.168.33.17/30
InterfaceSpeed 100M
Interface GigabitEthernet2/0 192.168.32.234/30
InterfaceSpeed 1000M
Interface Loopback0 10.10.10.79/32
InterfaceSpeed 4294M

# Links between routers
Link zam576 zam577 100M
Link zam576 zam578 149M
Link zam577 zam576 100M
Link zam577 zam578 149M
Link zam578 zam576 149M
Link zam578 zam577 149M
Link zam578 zam579 155M
Link zam578 zam579 1000M
Link zam579 zam578 155M
Link zam579 zam578 1000M
(...)

8.3.5 Support for SNMPv1 and SNMPv3

SNMP, first introduced in the late eighties, quickly became the most widely-used network man-
agement protocol in TCP/IP based networks. In its initial version, named SNMPv1, it has some
deficiencies of security mechanisms. Here, authentication is based on a single password, known
as a community string which is included in SNMP packets so a potential intruder can get it by
monitoring network traffic, see Figure 8.5

The lack of more advanced security features in SNMPv1 resulted in intensive works on the
next version of the protocol: SNMPv2. However, there was no agreement about how security
should be assured. The two competing solutions were called SNMPv2u and SNMPv2*. Finally,
the currently most advanced and general version SNMPv3 was launched.

All examples discussed so far used the simplest, version 1 of SNMP, however, the presented
software supports both version 1 and 3. The choice is determined by the constructors used. Thus,
the MIB object can be initialized in two ways:

• MIB(String _host,
int _port,
String _community,
String _socketType,
boolean _useTrapListener)

- The constructor for SNMPv1, where host is the IP address of the SNMP agent to be con-
tacted, port is the UDP port to be used (usually 161), community is a kind of password
in the SNMPv1 security model, socketType determines the kind of socket used (usually
Standard), and the logical variable useTrapListener can activate trap listening function-
ality of the MIB object.

• MIB(String host,
int port,
String _socketType,
boolean _useTrapListener,
String _contextName,
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Figure 8.5: The screen dump from the ethereal program used to monitor network traffic. The
SNMPv1 community string can be easily identified as myPassword string.

String _userName,
int _authenticationProtocol,
String _userAuthenticationPassword,
String _userPrivacyPassword,
boolean _useAuthentication,
boolean _usePrivacy)

- The constructor for SNMPv3, where the parameters host, port, socketType and
useTrapListener have the same meaning as for the SNMPv1 MIB constructor. Addition-
ally, contextName defines the SNMPv3 context name (usually an empty string), userName
should be identical with the user name defined during SNMPv3 configuration of the Cisco
router, authenticationProtocol chooses a protocol used by authentication procedures,
userAuthenticationPassword and userPrivacyPassword passwords are used to generate
secret keys used by authentication and encryption procedures, logical variables
useAuthentication and usePrivacy are used to choose an appropriate security mech-
anisms which should be applied.

Also the Testbed object, which uses internally MIB objects has two constructors:

• Testbed(String _routerAddress0,
String _community,
String _pass1,
String _pass2)

- the constructor for SNMPv1, where routerAddress0 is any valid IP address of any router
in the network domain represented by Testbed object, community is a community string
used by SNMPv1 to communicate with all routers in the domain, pass1 and pass2 are
two passwords giving access to the router via the CLI interface.

• Testbed(String _routerAddress0,
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String _contextName,
String _username,
int _authenticationProtocol,
String _userAuthenticationPassword,
String _userPrivacyPassword,
boolean _useAuthentication,
boolean _usePrivacy,
String pass1,
String pass2)

- the constructor for SNMPv3, where routerAddress0, pass1 and pass2 parameters have
the same meaning as for the SNMPv1 Testbed constructor. The meaning of the other param-
eters: contextName, username, authenticationProtocol,
userAuthenticationPassword, userPrivacyPassword, useAuthentication and
usePrivacy is the same as for the SNMPv3 MIB constructor described above in this sub-
section.

8.4 Network Controlling Application

The Network Class Library offers building blocks for creating higher level libraries or applications.
A Display program is an example of an application built on the top of the Network Class Library.
It can be used for:

• visualization of the network topology,

• presentation of the current status and configuration of routers,

• administration of MPLS tunnels,

• configuration of the Differentiated environment.

The Display program must be invoked with two parameters: an IP address of the access inter-
face and a string identifying the version of SNMP to be used (v1 for SNMPv1 or v3 for SNMPv3).
The program’s main window contains a set of radio buttons for selecting type of display. The
MPLS tunnels button is used to display a list of tunnels, a text with their basic parameters and
a panel with the graphical representation of the network topology including tunnels’ courses. By
selecting other radio buttons placed in the same raw one invokes panels with different content.
All of them contain a text field with an appropriate information depending on the section cho-
sen. Thus, the Router configurations panel allows to retrieve router configurations, the Trap
messages panel reports received SNMP trap messages, the Logs panel contains the history of
the Command-Line Interface communication with routers and the MIBs panel allows to monitor
the content of MIB databases installed on different routers.



Chapter 9

Conclusions

The provision of well-defined QoS guarantees in IP-based backbone networks is a challenge, par-
ticularly with respect to scalability and manageability. The PAB-project successfully addressed
this issue proposing scalable service provisioning mechanisms together with advanced network
management functions.

The MPLS architecture offers the basis for advanced traffic engineering mechanisms that extend
the concepts of the Differentiated Services architecture. The conducted experimental evaluation
can be used as a basis for deploying this technology. However, the project revealed a significant
complexity that needs to be solved by appropriate operational tools.

Our Java-based management framework offers a first starting point to address this issue. A
particular benefit of the implementation is that it offers opportunities for integration into fu-
ture Grid environments that implement the emerging Open Grid Services Architecture (OGSA)
standard. While the project successfully demonstrated the integration of on-demand services in
current Grid environments the migration towards OGSA has been identified as a relevant future
research and development target.

In addition, the PAB-project developed a new analytical approach to calculate hard service
guarantees that can be used in Service Level Agreements. The implemented framework facilitates
admission control procedures that are similar to those applied by the Integrated Services model,
however, taking scalable aggregate scheduling into account.

In proposing solutions for managing service guarantees in IP-based networks, the outcomes of
the PAB-project can be used as a building block for future network environments. The applicability
of MPLS concepts also in optical networks fosters this.
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