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Abstract 

 

Interpretation of high and very high resolution reflection seismic data from the western 

Black Sea shelf yielded a seismic stratigraphic model of the Late Quaternary deposits on the 

southwestern Black Sea shelf. This model was combined with borehole information to carry 

out a regional subsidence analysis, so that the influence of tectonics and sediment 

compaction could be ruled out in the estimation of sea-level changes in the Black Sea. 

 

Mio-Pliocene sediments form the baseline of the interpretation. On top of it four 

Quaternary seismic stratigraphic units were identified on the western Black Sea shelf; they 

are named in chronological order Unit 4 to Unit 1 (U4 – U1). Pliocene deposits are built up by 

gently basinward dipping layers of relatively high and approximately uniform thickness. 

Buried graben structures attest to the influence of extensional tectonics until the Upper 

Pliocene. Later, strong erosion left a rugged surface on the inner and middle shelf that was 

later overlain by a thin layer of Quaternary to Holocene sediments. The Pliocene is followed 

by the oldest observed Quaternary seismic sequence (Unit 4, U4); it comprises layers of 

Lower Quaternary age that dip towards the basin at a steeper angle than those of the 

Pliocene. Within U4 the oldest of three Quaternary shelfedge delta systems in the study area 

was found, that supposedly marks an Early Quaternary sea-level lowstand. A well-developed 

angular unconformity marks the transition to the overlying Unit 3 (U3). In the lower part of 

U3, interpreted coastal onlaps constrain a sea-level lowstand at this time. Prograding layers 

deposited during the succeeding transgression and highstand build up the upper part of the 

unit. A subsequent falling sea-level led to the development of another major unconformity; 

followed by the deposition of a succession of deltaic lobes on the outer shelf (Unit 2, U2) 

during the lowstand. The units U4, U3, and U2 are erosionally truncated by a shelf-wide 

regional unconformity and are overlain by sediments of the youngest Unit 1 (U1). This unit 

was formed during and since the last glacial lowstand. 

 

Minor internal unconformities attest to high-order sea-level fluctuations within U1 that 

overprint the general transgressive trend since the last glacial maximum (LGM). These 

unconformities divide U1 into three subunits (U1-A to U1-C in chronological order). U1-A 

comprises a prograding shelf-edge delta system partially overlain by shore-parallel dunes 

deposited during low sea-levels at the last glacial maximum. The younger subdivisions U1-B 

and U1-C were deposited during the postglacial sea-level rise and the recent highstand. 

Sediments of subunit U1-B fill small topographic lows on the rugged erosional top surface of 

the units U3 and U2, while U1-C forms a landward-thickening package of retrogradational 
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wedges that cover large areas of the present-day shelf. In some areas, dune-like features 

occur in subunit U1-C that resemble in shape and size the dunes observed in U1-A. It can be 

speculated that these dunes mark two phases of sea-level lowstand: the first during and 

shortly after the last glacial maximum, and the second during the post-Early Holocene after 

the sedimentation of subunit U1-B. 

 

Lowstand seismic indicators such as topset-to-foreset transitions of shelf-edge deltas or 

coastal onlaps within the mapped seismic units are used to reconstruct the uppermost 

Quaternary sea-level fluctuations in the Black Sea. To deduce past sea-levels from these 

lowstand indicators, the influence of tectonic and sedimentary subsidence must be removed. 

To quantify tectonic subsidence and to assess its regional trend, a subsidence analysis was 

carried out along two idealized profiles, one crossing the southwestern shelf from the 

northern Turkish sector to the southern Romanian sector and a second crossing the 

northwestern shelf from the southern Romanian Sector to the Ukrainian sector offshore 

Crimea. 

 

The first profile shows that tectonic subsidence in the Bulgarian sector during the 

Quaternary increased in general linearly from NNE to SSW. Tectonic activities on the shelf off 

central Bulgaria increased during the deposition of unit U1. Along the second profile, 

subsidence during the Quaternary was analysed at different water depth levels. The results 

show an increasing trend of subsidence towards the deep basin in accordance with the 

model of an Atlantic-type margin subsiding at a constant rate about a fixed hinge line. 

Regional tectonic features such as the Peceneaga Camena and Sulina Tarkinkut faults divide 

the Quaternary sedimentary cover of the northwestern Black Sea shelf into blocks with 

significantly different subsidence rates; the highest values are found in the vicinity of the 

Viteaz Canyon. The southwestern and northeastern parts of the profile have been less 

affected by subsidence, with the least influence observed in the northeast. 

 

The reconstruction of sea-level lowstands led to the following Quaternary seismic 

stratigraphic model for the western Black Sea shelf: The oldest seismic stratigraphic unit U4 

is of Early Quaternary age and contains a shelfedge delta system indicative of a sea-level 

lowstand. This system corresponds most probably to the Günz Glacial (~900 ka). Results of 

subsidence analysis extrapolated to account for the relatively landward position of the 

lowstand indicator suggest that sea-level was at a position approximately comparable to that 

of the present-day. Coastal onlaps mark a sea-level lowstand during the deposition of the 

succeeding unit U3, which was very likely developed during the Mindel Glacial (~500 ka); the 
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sea-level at this time was –140 m. The deltaic sequence found in unit U2 is assigned to the 

sea-level lowstand during the Riss Glacial (~150 ka) that reached a minimum sea-level of 

about -125 m. Another lowstand was reached around the LGM at 20 ka; here levels as low 

as -116 m can be assumed. This lowstand led to the deposition of the shelfedge delta 

system within subunit U1-A. 

 

The level of the Black Sea – at this time a freshwater lake disconnected from the global 

ocean - rose during the global warming in late glacial and Holocene times. Subunit U1-B 

found at depths < -85 m is interpreted to have formed during a minor phase of sea-level 

stillstand. Its deposition is possibly related to meltwater pulses between 18 and 15.5 ka and 

stopped after the sea-level fell below -90 m. During this post-glacial lowstand, coastal 

sedimentary features formed on the outer shelf. The rising global sea-level breached the 

Bosphorus sill around 8.4 ka when marine water entered the Black Sea. The subsequent 

transgression must have been rapid enough to preserve the lowstand coastal sedimentary 

structures. The retrogradationally stacked packages of the youngest subunit U1-C formed 

during the Holocene transgression, indicating at least slower phases of sea-level rise on the 

way to the present conditions. 
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Zusammenfassung 

 

Hoch und sehr hoch auflösende reflexionsseismische Messdaten aus dem westlichen 

Schwarzen Meer wurden wurden interpretiert, um ein seismo-stratigraphisches Modell für die 

quartäre Sediemtationsgeschichte des südwestlichen Schelfs des Schwarzen Meers erstellen 

zu können. Durch eine Kombination der Ergebnisse dieser Interpretation mit 

Bohrungsbefunden konnte eine qualitative und quantitative Analyse der regionalen 

Subsidenzgeschichte durchgeführt werden. Diese Analyse ermöglichte eine um die Einflüsse 

der Effekte von tektonischer Aktivität und Sedimentkompaktion bereinigte Quantifizierung 

von Meeresspiegelschwankungen im Schwarzen Meer während des Quartärs. 

 

Ablagerungen des Mio-Pliozän bilden die stratigraphische Basis der Interpretation der 

reflexionsseismischen Messdaten. Oberhalb dieser Basis konnten vier seismo-stratigraphische 

Einheiten des Quartärs auf dem westlichen Schelf des schwarzen Meeres identifiziert werden. 

Diese Einheiten wurden in chronologischer Reihenfolge als Unit 4 – 1 bezeichnet (U4 – U1). 

Ablagerungen des Pliozän bilden sanft beckenwärts einfallende Schichten von relativ hoher 

und praktisch konstanter Mächtigkeit. Verschüttete Grabenstrukturen bezeugen den Einfluss 

extensionaler tektonischer Prozesse bis in das obere Pliozän. Starke Erosion auf dem inneren 

und mittleren Schelf kennzeichnet den Übergang zum Quartär und hinterliess eine 

ausgeprägt unebene Oberfläche der Pliozänen Ablagerungen. Auf dieser lagern heute eine 

dünne Schicht Sedimente des Quartärs und Holozäns. Dem Pliozän folgt Unit 4 (U4), diese 

umfasst Sedimente des ältesten Quartärs. Sie fallen steiler in Richtung Becken ein als die 

Schichten des Pliozäns und ihre Durchschnittsmächtigkeit ist geringer. Innerhalb von U4 

konnte das älteste von insgesamt drei Shelfedge-Deltasystemen im Quartär beobachtet 

werden, das einen frühquartären Meeresspiegeltiefstand anzeigt. Eine deutlich ausgeprägte 

Winkeldiskontinuität markiert den Übergang zur nächstjüngeren Einheit Unit 3 (U3). Im 

älteren Teil von U3 konnten coastal onlaps beobachtet werden, die eine Periode mit 

niedrigem Meeresspiegel kennzeichnen. Progradierende Ablagerungen der nachfolgenden 

Transgression und Meerespiegel-Hochstand machen danach den jüngeren Teil von U3 aus. 

Ein erneut fallender Meeresspiegel führte dann zur Ausbildung einer weiteren regionalen 

Diskontinuität und im folgenden zur Ablagerung von Unit 2 (U2). In dieser Einheit befindet 

sich eine weitere Abfolge von deltaischen Sedimentschüttungen, die sich abgelagert haben, 

während sich der Meeresspiegel in der Nähe des zyklischen Tiefstands befand. Teile der 

älteren Sequenzen U4, U3 und U2 wurden später durch Erosion beseitigt und auf der dabei 

entstandenen, den gesamten Schelf betreffenden Diskontinuität konnte sich die jüngste 
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untersuchte Einheit Unit 1 (U1) ablagern. U1 kann zeitlich dem letzten eiszeitlichen Maximum 

sowie der Periode im unmittelbaren Anschluss zugeordnet werden. 

 

Untergeordnete interne Diskontinuitäten innerhalb von U1 sind das Ergebnis von 

Meeresspiegelschwankungen höherer Ordnung, die den generellen transgressiven Trend seit 

der letzten globalen Vereisungsperiode überdecken. Diese Diskontinuitäten unterteilen U1 in 

drei Untereinheiten (U1-A – U1-C) in chronologischer Reihenfolge. Die älteste Untereinheit 

U1-A besteht aus einem progradierenden Shelfedge-Deltasystem, entstanden während des 

letzten eiszeitlichen Maximums. Dieses Deltasystem wird in Teilen von küstenparallelen 

Dünen überlagert, die ebenfalls U1-A zugeordnet werden. Die beiden jüngeren 

Untereinheiten U1-B und U1-C wurden während des nacheiszeitlichen Meeresspiegelanstiegs 

und des bis in die heutige Zeit andauernden Hochstands abgelagert. Die Sedimente der 

Untereinheit U1-B füllen dabei kleinräumige topographische Senken in der unebenen, 

erodierten Oberfläche der älteren Einheiten U3 und U2, während U1-C von einem Paket sich 

landwärts verdickenden, retrogradierenden, keilförmigen Körpern aufgebaut ist, die weite 

Teile des heutigen Schelfgebietes im westlichen Schwarzen Meer bedecken. In manchen 

Gebieten konnten wiederum konservierte Dünenzüge beobachtet werden, die nach Größe 

und äußerer Form denen in U1-A beschriebenen ähneln. Es kann spekuliert werden, dass 

diese Dünensysteme zwei getrennte Phasen mit niedrigen Meeresspiegelständen 

widerspiegeln: eine erste noch während oder kurz nach dem letzten eiszeitlichen Maximum 

und eine zweite nach dem ältesten Holozän und Ablagerung von U1-B. 

 

Indikatoren für Meeresspiegeltiefstände so wie topset-to-foreset Übergänge in Shelfedge-

Deltasysytemen oder coastal onlaps innerhalb der kartierten seismo-stratigraphischen 

Einheiten wurden als Kalibrierungspunkte für die Rekonstruktion quartärer 

Meeresspiegelschwankungen herangezogen. Um vergangene Meersspiegelstände anhand 

von Tiefstandindikatoren festlegen zu können, muss der potentielle Einfluss tektonischer 

Prozesse und sedimentärer Subsidenz bestimmt und herausgerechnet werden. Um den Anteil 

tektonisch bedingter Subsidenz zu quantifizieren und einen regionalen Trend zu bestimmen, 

wurde eine Subsidenzanalyse entlang zweier idealisierter Profile durchgeführt. Das erste liegt 

auf dem südwestlichen Schelf und verbindet den nördlichen Türkischen Sektor des 

Schwarzen Meer mit dem südlichen Rumänischen Sektor und das zweite Profil durch den 

nordwestlichen Schelf vom südlichen Rumänischen Sektor in den Ukrainischen Sektor 

westlich der Krimhalbinsel. 
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Eine Analyse des ersten Profils zeigt, dass die tektonisch bedingte Subsidenz im 

Bulgarischen Sektor während des Quartärs mehr oder minder linear von NNE to SSW 

ansteigt; besonders starke tektonische Aktivität ist indiziert während der Ablagerung von U1. 

Entlang des zweiten Profils wurde die quartäre Subsidenz in verschiedenen Wassertiefen 

bestimmt. Die Ergebnisse zeigen zunehmende Subsidenzbeträge mit ansteigender 

Wassertiefe, entsprechend der Modellvorstellung für Atlantic-type Kontinentalränder an 

denen Subsidenz mit konstanten Raten um eine räumlich fixierte hinge line auftritt. Grosse, 

regionale Strukturen, wie die Peceneaga Camena und Sulina Tarkankut Störungssysteme 

zerteilen die quartäre Abfolge auf dem nordwestlichen Schelf in ausgedehnte Blöcke mit 

signifikanten Unterschieden in den beobachteten Subsidenzraten; die höchsten Werte 

können für die Umgebung des Viteaz Canyons angenommen werden, während die 

südwestlichen und nordöstlichen Teile des Profils auf eine geringere Beeinflussung durch 

Subsidenz hindeuten. Die geringsten Subsidenzbeträge wurden im Nordosten beobachtet. 

 

Die Rekonstruktion von Meeresspiegeltiefständen führte zum im Folgenden 

beschriebenen quartären seismo-stratigraphischen Modell für den westlichen Schelf im 

Schwarzen Meer: Die älteste seismo-stratigraphische Einheit U4 enstand während des frühen 

Quartärs und enthält ein Shelfedge-Deltasystem, das einen Meeresspiegeltiefstand zur Zeit 

seiner Bildung anzeigt. Dieses System korreliert vermutlich mit der Günz-Kaltzeit (~900 ka). 

Extrapolation (auf Grund der relativ weit auf dem inneren Schelf gelegen Position des 

Deltasystems) von Ergebnissen der Subsidenzanalyse legt einen Paläomeeresspiegel nahe, 

der ungefähr dem heutigen entspricht. Coastal onlap Reflektorkonfigurationen markieren 

einen Meeresspiegeltiefstand während der Sedimentation der nachfolgenden Einheit U3; 

entsprechend der Zuordnung von U4 kann U3 also der Mindel-Kaltzeit (~500 ka) zugeordnet 

werden, mit einem Meerespiegel zur Zeit der Bildung von U3 von –140 m. Das nächstjüngere 

Deltasystem in U2 kann der Riss-Kaltzeit (~150 ka) zugeordnet werden; für diese Periode 

wird ein Meeresspiegeltiefstand von ca. -125 m angenommen. Ein weiterer 

Meeresspiegeltiefstand wurde schliesslich zur Zeit des letzten eiszeitlichen Maximums mit 

-116 m erreicht. Die Entstehung des Shelfedge-Deltasystems in U1-A kann hiermit in 

Verbindung gebracht werden. 

 

Der Meeresspiegel des Schwarzen Meeres – zu dieser Zeit ein Süsswassersee ohne 

Verbindung zu anderen Meeresgebieten – stieg im Zuge der globalen Klimaerwärmung 

während der Endphase der letzten Eiszeit und während des Holozäns. Die Untereinheit U1-B 

ist auf Tiefen grösser als -85 m beschränkt und kann mit untergeordneten Phasen von 

Meeresspiegelstillstand in Verbindung gebracht werden. Die Ablagerung dieser Einheit ist 
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vermutlich das Produkt von pulsartig eingetragenem Schmelzwasser in das Schwarze Meer 

zwischen 18 und 15 ka und endete, als der Meerespiegel unter -90 m gefallen war. Während 

dieses nacheiszeitlichen Meeresspiegeltiefstands entstanden für Küstengebiete typische 

Sedimentkörper wie z.B. Dünen auf dem äusseren Schelf. Der weiterhin ansteigende globale 

Meeresspiegel erreichte schliesslich um 8.4 ka die für eine Verbindung zum Ozean nötige 

Höhe und Meerwasser konnte in das bis dahin mit Süsswasser gefüllte Schwarze Meer 

eindringen. Die nun folgende Transgression muss schnell genug stattgefunden haben um 

zumindest einen Teil der in sub-aerischen Küstengebieten entstandenen Strukturen zu 

erhalten. Die retrograd abgelagerten Sedimentpakete der jüngsten Untereinheit U1-C 

entstanden im weiteren Verlauf der Holozänen Transgression und indizieren zumindest 

mehrere deutlich verlangsamte Phasen des Meeresspiegelanstieges auf dem Weg zu den 

heute vorliegenden Verhältnissen. 

 



 Rezumat  

 11

Rezumat 

 

Interpretarea de date seismice de mare și foarte mare rezoluție de pe șelful vestic al 

Mǎrii Negre a evidențiat un model seismico-stratigrafic de depozite ale Cuaternarului Trȃziu 

pe șelful sud-vestic al Mǎrii Negre. Acest model a fost utilizat ȋmpreunǎ cu date de sondǎ 

pentru o analizǎ de subsidențǎ regionalǎ, astfel ȋncȃt influența proceselor tectonice și a 

compactǎrii cu sedimente putȃnd fi excluse ȋn estimarea fluctuațiilor nivelului mǎrii. 

 

Avȃnd ca bazǎ formațiunea Mio-Pliocenǎ, patru unitǎți seismico-stratigrafice au fost 

identificate ȋn cadrul Cuaternarului de pe șelful vestic al Mǎrii Negre; ȋn ordine cronologicǎ, 

acestea au fost denumite Unit 4 (U4) – Unit 1 (U1). Depozitele pliocene sunt formate de 

strate ușor ȋnclinate ȋn direcția bazinului, cu grosimi mari și relativ uniforme. Prezența 

structurilor de graben ȋngropat atesteazǎ influența proceselor tectonice pȃnǎ ȋn Pliocenul 

Tȃrziu. Ulterior, eroziunea puternicǎ a dus la formarea unei suprafețe inegale pe șelful mediu 

și extern, care mai tȃrziu a fost suprapusǎ de un strat subțire de depozite cuaternar-

holocene. Pliocenul a fost urmat de prima secvențǎ seismicǎ cuaternarǎ observatǎ. (Unit 4, 

U4); aceasta conține strate de vȃrstǎ Cuaternar Inferior, care sunt ȋnclinate ȋn direcția 

bazinului la un unghi mai mare decȃt al depozitelor pliocene. Ȋn cadrul unitǎții U4 a fost 

observat cel mai vechi dintre cele 3 sisteme deltaice de margine de șelf din area de studiu, 

care probabil marcheazǎ un lowstand al Cuaternarului Inferior. Tranziția cǎtre unitatea U3 

este marcatǎ de o discontinuitate unghiularǎ bine dezvoltatǎ. La partea bazalǎ a unitǎții U3 

au fost identificate onlap-uri costale, confirmȃnd existența unei perioade de lowstand, ȋn 

timp ce strate progradante, depuse ȋn timpul perioadelor ulterioare de transgresiune și 

highstand, caracterizeazǎ partea superioarǎ a unitǎții. Coborȃrea ulterioarǎ a nivelului mǎrii a 

condus la formarea urmǎtoarei discontinuitǎți majore; ȋn timpul lowstand-ului corespunzǎtor 

a ȋnceput depunerea unitǎții U2, caracterizatǎ de o succesiune de lobi deltaici pe șelful 

extern. Unitǎțile U4, U3 și U2 sunt marcate de o discontinuitate regionalǎ de trunchiere 

erozionalǎ prezentǎ pe ȋntreg șelful. Aceste unitǎți sunt suprapuse de sedimente ale celei mai 

tinere unitǎți, U1. Unitatea U1 a fost formatǎ ȋn timpul ultimului lowstand glaciar. 

 

Ȋn cadrul unitǎții U1 pot fi observate discontinuitǎți interne minore, care evidențiazǎ 

tendința generalǎ de transgresiune ȋncepand cu maximul ultimului glaciar. U1 a fost ulterior 

divizatǎ ȋn 3 subunitǎți (ȋn ordine cronologicǎ, de la U1-A pȃnǎ la U1-C). Subunitatea U1-A 

este formatǎ din sisteme deltaice progradante de margine de șelf, parțial suprapuse de dune 

paralele cu plaja. U1-B și U1-C au fost depuse ȋn timpul ridicǎrii postglaciare a nivelului mǎrii 

și a highstand-ului recent. Sedimente ale subunitǎții U1-B au fost depuse sub formǎ de mici 
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depresiuni topografice la partea superioarǎ a suprafeței erozionale a unitǎților U3 și U2, ȋn 

timp ce U1-C formeazǎ un pachet de pene retrogradaționale ȋngroșate ȋn direcția uscatului, 

care acoperǎ arii extinse ale șelfului actual. Ȋn anumite zone, formațiuni ȋn formǎ de dune au 

fost observate ȋn cadrul subunitǎții U1-C, care se identificǎ ȋn formǎ și mǎrime cu dunele 

descrise mai sus. Presupunem cǎ aceste dune marcheazǎ douǎ faze ale lowstand-ului 

nivelului mǎrii: prima ȋn timpul și imediat dupǎ maximul ultimului glaciar, iar cea de-a doua ȋn 

timpul perioadei care a urmat Holocenului Timpuriu, dupǎ sedimentarea subunitǎții U1-B. 

Indicatori seismici ai perioadei de lowstand, cum ar fi tranziții de la topset la foreset ale 

sistemelor deltaice de margine de șelf sau onlap-uri costale identificate ȋn unitǎțile seismice, 

au fost interpretate pentru reconstituirea fluctuațiilor nivelului mǎrii din timpul Cuaternarului 

Trȃziu ȋn Marea Neagrǎ. Pentru a deduce paleo-nivelul mǎrii din acești indicatori de 

lowstand, s-a luat ȋn considerare influența proceselor tectonice  și a subsidenței sedimentare; 

pentru a cuantifica subsidența tectonicǎ și a-i evalua tendința regionalǎ, s-a realizat o analizǎ 

de subsidențǎ de-a lungul a douǎ profile, unul traversȃnd șelful sud-vestic, de la sectorul 

nord turc pȃnǎ la sectorul sud romȃnesc, iar celǎlalt traversȃnd șelful nord-vestic, de la 

sectorul sud romȃnesc pȃnǎ la sectorul ucrainean din Peninsula Crimeea. 

 

Primul profil aratǎ cǎ subsidența tectonicǎ ȋn sectorul bulgar a avut o evoluție liniarǎ ȋn 

timpul Cuaternarului, crescȃnd, ȋn general, de la NNE la SSW. Se presupune o activitate 

tectonicǎ intensǎ pe șelful central bulgar ȋn timpul depunerii unitǎții U1. De-a lungul celui de-

al doilea profil, analiza de subsidențǎ a fost realizatǎ pentru toatǎ perioada cuaternarǎ la 

diverse adȃncimi ale apei. Se observǎ o creștere a subsidenței ȋn direcția bazinului, ceea ce 

este ȋn concordanțǎ cu modelul unei margini de subsidare de tip Atlantic. Formațiuni 

tectonice regionale, cum ar fi faliile Peceneaga-Camena și Sulina-Tarkinkut, ȋmpart secțiunea 

cuaternarǎ de nord-vest ȋn blocuri cu diferențe semnificative ale ratelor de subsidențǎ; valori 

maxime ale ratei de subsidențǎ au fost identificate ȋn apropierea Canionului Viteaz. Pǎrțile de 

sud-vest și nord-est au fost mai puțin afectate de subsidențǎ, cea mai scǎzutǎ influențǎ fiind 

sesizatǎ ȋn nord-est. 

 

Reconstituirea lowstand-urilor nivelului mǎrii a condus la urmǎtoarea clasificare a 

unitǎților seismico-stratigrafice ȋn Cuaternarul de pe șelful vestic al Mǎrii Negre. Cea mai 

veche unitate seismico-stratigraficǎ, U4, este de vȃrstǎ cuaternar-timpurie și conține un 

sistem deltaic de margine de șelf, indicȃnd un lowstand al nivelului mǎrii. Acest sistem a fost 

atribuit perioadei glaciarului Günz (~900 MA). Rezultatele analizei de subsidențǎ au fost 

extrapolate pentru a lua ȋn considerare poziția relativ apropiatǎ de țǎrm a indicatorului de 

lowstand, iar nivelul corespunzǎtor al mǎrii a fost estimat a fi aproximativ comparabil cu 
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nivelul actual al mǎrii. Onlap-urile costale marcheazǎ un lowstand ȋn perioada depunerii 

unitǎții U3, acumulatǎ probabil ȋn timpul glaciarului Mindel (~500 MA); nivelul mǎrii a fost la 

acea perioadǎ de -140 m. Secvența deltaicǎ gǎsitǎ ȋn unitatea U2 a fost atribuitǎ lowstand-

ului nivelului mǎrii din timpul glaciarului Riss (~150 MA), corespunzǎtor unei adȃncimi a apei 

de 125 m. Un alt lowstand a avut loc ȋn jurul LGM, la 20 MA, care a atins 116 m ȋn adȃncime 

și care a dus la depunerea lui A (subunitatea U1・ -A). 

 

Ȋn timpul incǎlzirii globale de la sfȃrșitul glaciarului și Holocenului, nivelul Mǎrii Negre a 

crescut ca urmare a condițiilor climatice. Subunitatea U1-B a fost interpretatǎ ca fiind 

formatǎ ȋn timpul unor faze minore de stillstand ale nivelului mǎrii și a fost gǎsitǎ la o 

adȃncime de peste 85 m. Depunerea subunitǎții U1-B este probabil legatǎ de etapele de 

topire a apei dintre 18 și 15.5 MA și s-a oprit dupǎ ce nivelul mǎrii a scǎzut din nou sub 90 

m. Ȋn timpul acestui lowstand post-glaciar,  pe șelful extern s-au depus formațiuni 

sedimentare de coastǎ. Creșterea globalǎ a nivelului mǎrii a atins Strȃmtoarea Bosfor la 

aproximativ 8.4 MA, cȃnd apa marinǎ a pǎtruns ȋn Marea Neagrǎ; transgresiunea care a 

urmat trebuie sǎ fii fost suficient de rapidǎ pentru a fi pǎstrat formațiunile de coastǎ formate 

ȋn timpul lowstand-ului precedent. Pachetele retrogradaționale ale subunitǎții U1-C s-au 

format ȋn timpul transgresiunii holocene, indicȃnd faze ușoare de ridicare a nivelului mǎrii 

care au condus la condițiile actuale. 
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1. Introduction 

 

Among the marginal seas of the world, the Black Sea takes up a special position with a 

unique, almost isolated geographical position: It covers an area of more than 400,000 km² 

and is connected to the global oceans only through a chain of narrow and shallow sea straits 

via the Marmara Sea and the Mediterranean Sea. 

 

The Black Sea has been the subject of numerous scientific investigations since the first 

bathymetric and sedimentological studies carried out by Andrusov in 1890 (Andrusov, 1890). 

Examples of important early research efforts are the expeditions of the American R/V Atlantis 

II in 1969 (Degens & Ross, 1970, 1974) and R/V Knorr in 1988 (Murray, 1991). In 1995, the 

Black Sea was the target of the Deep Sea Drilling Project (DSDP Leg 42B) and several deep 

holes were drilled in the Black Sea Basin for scientific purposes (Ross et al., 1978).  

 

These groundbreaking research programs focused mainly on the youngest sedimentary 

history, geochemistry, development and structure or the hydrographical regime of the Black 

Sea. They demonstrated that the Black Sea is one of the most interesting areas for 

paleoenvironmental research: Because of its geographical isolation, any change in the basin 

itself as well as in the adjacent land areas evokes a particularly sensitive reaction. This leads 

in turn to paleoenvironmental records of unprecedented detail. 

 

One project that takes advantage of this high-resolution opportunity is the ASSEMBLAGE 

project (ASSEssMent of the BLAck Sea sedimentary system since the last Glacial Extreme; 

Section 1.1). It provides the framework for the present dissertation. The ASSEMBLAGE 

project benefited from results from three German-Romanian-Russian research cruises carried 

out in the western Black Sea off Romania in 1992, 1993 and 1994 (e.g., Wong et al., 1994), 

from the German-Russian project GHOSTDABS (Gas Hydrates: Occurrence, Stability, 

Transformation, Dynamics and Biology in the Black Sea) west of the Crimean Peninsula, the 

Ukraine, as well as from the French-Romanian projects BLASON 1 and 2 (BLAck Sea Over the 

Neoeuxinian) carried out between 1996 and 2001. 

 

1.1 The ASSEMBLAGE project 

 

ASSEMBLAGE (Fig. 1.1) is a multi-national, multi-disciplinary research project organized 

as a cooperation of 14 European universities and research institutions from France, 

Germany, Romania, Spain, Italy and Bulgaria. The project was funded by the European 
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Union within the Fifth Research and Development Framework Program (1998 to 2002) under 

the key action ‘Sustainable Marine Ecosystems’ in the larger thematic group ‘Energy, 

Environment and Sustainable Development’; one of four in the framework program. 

 

 

 

Fig. 1.1: ASSEMBLAGE project logo 
 

The four central scientific questions tackled by the project are: 

 

1. What are the history of and the factors controlling the connection between the 

Mediterranean and the Black Sea? 

 

2. What do we know about the architecture and growth pattern of the sedimentary 

systems in the northwestern Black Sea, including the Danube prodelta and the 

Danube-Dniestr and Dniepr deep-sea fans? 

 

3. What can be derived from the sedimentary record on past global changes regarding 

the climate, the structure and functioning of different ecosystems, and sea-level 

variation? 

 

4. How are gas hydrate occurrences distributed and is a preliminary economic 

evaluation possible? 

 

The project was organized into 10 work packages. They cover a broad spectrum of 

research topics from geomorphology, geochemistry, stratigraphy and geophysics through gas 

hydrate research to hydrographical and sedimentary modeling. 
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This study is a part of the work package “Seismic and Sequence Stratigraphy”, in which a 

sequence stratigraphic model of the southwestern Black Sea since the last glacial maximum 

was established through the combination of geophysical measurements and geological 

observations. 

 

1.2 The aim of this study in the context of recent Black Sea research 

 

The response of the Black Sea to environmental changes that occurred after the last 

glacial maximum is the subject of a lively scientific debate during the past 20 years. An issue 

of particular interest is sea-level changes associated with global warming in post-glacial 

times. Figure 1.2 shows a graphical comparison of the Black Sea region during the last 

glacial and the present situation, illustrating the dramatic loss of dry land due to rising sea-

levels. 

 

The development of the Black Sea region moved into the center of attention of not only 

the scientific community but also of the general public after Ryan et al. (1997) published a 

study on the northern Black Sea and suggested a ‘catastrophic’ event in the Black Sea 

region: The rising post-glacial sea-level breached the Strait of Bosphorus and inflowing 

marine waters re-filled the Black Sea Basin in a catastrophically short time, transforming the 

giant freshwater lake with a water level of around -150 m into the modern Black Sea. 

 

This event is supposed to have contributed to the myth of ‘Noah’s flood’ (Mestel, 1997), 

because the catastrophic flood that occurred around 7100 years before present inundated 

the living space of early human settlers on the Black Sea shelves. Their memory of this event 

found its way into the myths of the ancient population along the Black Sea coast and finally 

into the biblical story of Noah. 

 

The hypothesis quickly found its supporters and dissenters, and the controversy is still 

not resolved today. The significant rise of the water level in the Black Sea after the last 

glacial is in itself undisputed, but the timing and characteristics remain controversial. Several 

studies support the flood hypothesis (e.g., Lericolais et al., 2006; Ryan et al., 2003; Algan et 

al., 2002; Uchupi & Ross, 2000; Ballard et al., 2000; Ryan & Pitman, 1999; Brown, 1999; 

McInnis, 1998). Others disagree, however, some even arguing that it was in fact the Black 

Sea that breached the Bosphorus and waters have been flowing into the Marmara Sea during 

the early Holocene (e.g., Hiscott et al., 2007; Konikov et al., 2007; Yanko-Hambach, 2006, 

2004; Konikov, 2005, 2004; Lavchenkov & Kadurin, 2005; Kerey et al., 2004; Chepalyga et 
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al., 2002; Kaminski et al., 2002; Aksu et al., 2002a; Hiscott & Aksu, 2002; Aksu et al., 1999, 

Aksu et al., 1995a, b). 

 

 
 

Fig. 1.2: Graphical reconstruction of environmental changes in the Black Sea region since the last 
glacial maximum. The upper panel shows a recent satellite image of the Black Sea and its 
surroundings. The lower panel reconstructs the region at the time of the last glacial maximum, 
showing the vast dry shelf areas of the northwestern and western Black Sea. Depending on the much 
disputed timing of the sea-level change that lead to the present picture, the circumstances shown in 
the lower panel might have lasted much longer than the last glacial and the transition might have 
taken place in a ‘catastrophic’ flooding event. Source for satellite imagery and paleogeographic 
reconstruction: http://daac.gsfc.nasa.gov. 
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The work presented here aims at adding further pieces to the puzzle of the youngest 

geological history of the Black Sea, so that the existing models of sea-level development can 

be better verified or refuted. By establishing a link to the underlying geology as well as to 

environmental changes that occurred in the Black Sea and its surrounding areas, it is hoped 

that our results may be considered less controversial. 
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2. The Black Sea region  

 

2.1 Geography, climatology 

 

The Black Sea covers an area of approximately 423,000 km2 between the southeastern 

European and northwestern Asian mainlands. Its extents are about 1,000 km in the east-

west direction and about 600 km from north to south. 

 

Six states border the Black Sea: Ukraine and Russia to the north, Georgia to the east, 

Turkey to the south and Romania and Bulgaria to the west. Their political boundaries and 

the some important geographical features of the region such as the main rivers or mountain 

ranges are shown in Fig. 2.1. 

 

 
 

Fig. 2.1: Topographic map of the Black Sea and the surrounding countries with their main 
geographical features: Mountain ranges, rivers, sea straits. Political boundaries are drawn in red. 
Abbreviation: MS – Marmara Sea. 

 

A number of Alpine mountain chains surround the Black Sea, namely the Caucasian and 

Crimean mountains in the north, the Pontides in the south and the Balkans in the west. 

Narrow and shallow straits connect the Black Sea to the Mediterranean: The Bosphorus strait 
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connects the Black Sea and the Marmara Sea, and the Dardanelles connect the Marmara and 

Mediterranean Seas. The Kerch Strait in the north is the connection to the Sea of Azov, an 

extremely shallow sea area (average depth 13 m) between Russia and the Ukraine. 

 

The western Black Sea lies in the transition area between three climatic zones: (1) a 

temperate continental climatic zone that dominates the northern Black Sea and the eastern 

Danube lowlands with savannah grasslands and <600 mm yr-1 precipitation, (2) a humid 

climatic regime of the mid-latitudes in southeastern Europe with temperate mixed forests 

and a precipitation of >1000 mm yr-1 typical of the western Black Sea, and (3) Mediterranean 

climate which prevails in the southwestern Black Sea towards the Sea of Marmara (Mudie et 

al., 2002). 

 

2.2 Hydrology, physical oceanography 

 

The volume of the Black Sea is about 534,000 km3. Several major European rivers drain 

into the northwestern Black Sea, namely the Danube in Romania and Dniepr, Dnjestr and 

Bug in the Ukraine. The Danube is Europe’s second largest river and is by far the largest 

source of freshwater input into the Black Sea. The mean annual freshwater discharge of the 

Danube was about 190.7 km3 yr-1 before damming in 1972 (Iron Gates 1) and 1984 (Iron 

Gates 2; Panin & Jipa, 2002, 1998; Bondar et al., 1991). In total, the freshwater input via 

rivers amounts to ~370 km3 yr-1 (Tab. 2.1). This inflow shows clear seasonal variations with 

peak levels in April and May. 

 

 
 

Tab. 2.1: Length, drainage basin size, freshwater input and sediment load of river systems draining 
into the Black Sea, from Panin & Jipa (1998).  
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The drainage basin of the Danube covers an area of more than 817.000 km2. Together 

with large areas of eastern Europe that are drained by the Dniepr and the Don, and parts of 

northern Turkey and Georgia drained by numerous smaller rivers, the complete drainage 

basin has an area of 2,300,000 km2 (Degens et al., 1978). It covers in total about 20% of 

central and eastern Europe (Fig. 2.2; UNESCO 1993, 1969). 

 

Today there is a yearly net export of ~300 km3 yr-1 water from the Black Sea to the 

Mediterranean across the Bosphorus Strait and the Dardanelles, because precipitation over 

the Black Sea (~300 km3 yr-1) and freshwater input via rivers (~350 km3 yr-1) exceed the 

regional evaporation of ~350 km3 yr-1 (Özsoy et al., 1995). 

 

 
 

Fig. 2.2: Drainage basin of the Black Sea; from Gillet (2004). The large river systems Danube, 
Dniestr-Bug, Dniepr and Don situated to the north and northwest of the Black Sea drain about 20% of 
central and eastern Europe. A number of rivers in northern Turkey and Georgia contribute to a much 
smaller extent (compare Tab. 2.1). 

 

Because of the narrow outlet through the Bosphorus Strait, the Black Sea level follows 

the inter-annual variations of the freshwater input to ~50 cm (Özsoy et al., 1995, 1996). 

Smaller-scale sea-level oscillations occur in response to variations in barometric pressure 

(Özsoy et al., 1996). The Black Sea-level lies on average 30 cm (±10 cm) above the level of 

the Sea of Marmara (Beşiktepe et al., 1994) and the Marmara Sea-level is approximately 5-

27 cm above the level of the northern Aegean Sea (Bogdanova, 1969). 
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Fig. 2.3: Schematic surface-water circulation in the Black Sea (from Oğuz et al., 1993). 
Abbreviations: SE – Sevastopol Eddy, CrE – Crimea Eddy, CE – Caucasus Eddy, BE – Batumi Eddy, KE 
– Kizihrmak Eddy, SiE – Sinop Eddy, SaE – Sakarya Eddy, BoE – Bosphorus Eddy. 

 

2.3 Physiography 

 

There are four main physiographic provinces in the Black Sea Basin: The continental 

shelf, the slope, the basin apron and the abyssal plain (Mamaev & Musin, 1997). Fig. 2.4 

shows the principal bathymetry of the Black Sea Basin, the spatial distribution of the four 

physiographical provinces is shown in Fig. 2.5. 

 

The continental shelf in the Black Sea is in most areas delineated by the 100 m isobath 

(Degens & Ross, 1974). In front of the Danube mouth it reaches a depth of 120, on the 

northern shelf offshore of the Crimea Peninsula and at the outlet of the Sea of Azov, it 

extends to a depth of 130 m. Locally around the Viteaz Canyon (Fig. 2.4) even 140 m (south 

of the Canyon) or 170 m (north of the Canyon) are reached; most likely because of recent 

tectonic movements. The western and the northwestern shelves are wide, reaching 140 km 

off the Danube mouth and a maximum width of 190 km off western Crimea. Near the Kerch 

Strait (Fig. 2.1) the shelf is about 40 km wide. The southern and eastern shelves are much 

narrower: From 20 km to almost 0 km in the southeastern corner of the Black Sea. 
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Fig. 2.4: Simplified bathymetry of the Black Sea basin. The red lines give the 100, 500, 1500 and 
2000 m isobaths; the red dot marks the deepest point within the present-day Black Sea basin at a 
water depth of 2,206 m. A and B mark the position of the Danube and Dniepr/Dniestr deep sea fans in 
the northwestern Black Sea, C marks the Don/Kuban fan in the northeastern Black Sea. 
 

The continental slope is usually steep (~2.5%; Ross et al., 1974) and highly dissected 

by canyons, especially in the areas with narrow shelves in the eastern and southern Black 

Sea. The slopes of the northwestern and northern Black Sea are less steep, high fluvial 

sediment input leads instead to the deposition of sedimentary fans: The Danube and the 

Dniepr/Dniestr fan systems are situated on the northwestern slope, the Don/Kuban fan lies 

off the Kerch Strait that connects the Black Sea and the Sea of Azov. 

 

Terrestrial sediments are deposited on the basin apron. It is less steep than the slope, 

gradients range from 0.1% to 2.5% and its width is a function of sediment input, with 

maximum values reached in the sedimentary fans of the northwestern Black Sea. 

 

The central Black Sea Basin is characterized by the flat abyssal plain with slope 

gradients of less than 0.1%. The deepest point of the Black Sea lies in the western part of 

the abyssal plain; it has a water depth of 2,206 m. 
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Fig. 2.5: Distribution of the four physiographical provinces continental shelf, slope, basin apron and 
abyssal plain in the Black Sea. After Mamaev & Musin (1997). 
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3. Regional Geology 

 

3.1 Introduction 

 

For an overview of the tectonics and sedimentary geology in the Black Sea region, a 

stratigraphic classification that differs from the Mediterranean standard during Oligo-Pliocene 

times is used. The nomenclature is shown in Tab. 3.1. 

 

 
 

Tab. 3.1: Geological timescale of the Cenozoic era. Fields underlain in yellow give the stage classi-
fication used in this study. For the western Black Sea, regional stages that differ from the Mediter-
ranean nomenclature are used for the Oligo-Pliocene. After Gillet et al. (2003).   
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3.2 Regional tectonic framework 

 

The Black Sea Basin was formed by back-arc extension when oceanic crust of the Tethys 

Ocean was subducted along its northern margin during Triassic to Miocene times (Okay et 

al., 1994; Görür, 1988; Zonenshain & Le Pichon, 1986; Degens et al., 1986; Dercourt et al., 

1986; Letouzey et al., 1977; Boccaletti et al., 1974; Adamia et al., 1974). 

 

 
 

Fig. 3.1: Recent large-scale tectonic regime of the Black Sea region; from Banks & Robinson (1997). 
Red lines with thrust marks give Alpine (Tertiary) compressive fronts, blue dashed lines give 
Cimmeride (Jurassic) thrusts. Green lines with downthrown marks give the extensional and strike-slip 
boundaries of the Western and Eastern (EBS) Black Sea Basins. Black lines with a dash-double-dot 
signature mark the superimposed Cimmeride (Vardar-Karakaya) and Alpine (Izmir-Ankara-Erzincan, 
IAE) suture zones and the North Anatolian Fault System (NAF). Abbreviations: GC – Gorniy Crimea; 
MBSH – Mid-Black Sea High; OS – Odessa Shelf; PCF – Peceneaga Camena Fault; SR – Shatsky Ridge. 
 

The Black Sea basin is separated structurally in two sub-basins with different timing and 

orientation of extension: The western and eastern Black Sea basins (Fig. 3.1; Okay et al., 

1994; Finetti et al., 1988; Ross et al., 1974). The western Black Sea basin has an oceanic 

basement and a sedimentary cover of up to 19 km thickness whereas the basement of the 

eastern Black Sea basin is formed by continental crust and 10-12 km thick sediments. These 
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two parts are separated by a strike-slip system along the Mid Black Sea Ridge and Andrusov 

Ridge which are made of continental crust and a 5-6 km thick sedimentary cover. 

 

The plate tectonic development of the Black Sea region is decisively influenced by the 

stepwise closure of the Tethys Ocean and the subsequent collision between the African and 

Eurasian plates. Snapshots of the plate tectonic history since the Triassic are shown in Fig. 

3.2. 

 

  
 

Fig. 3.2: The three panels A-C show the plate tectonic development of the Mediterranean and Black 
Sea regions since the Late Triassic (210 ma, panel A) through the Middle Cretaceous (100 ma, panel 
B) to the Late Miocene (6 ma, panel C). Abbreviations: AO – Alpine Ocean, Ap – Apulia, BSB – Black 
Sea Basin, CB – Caspian Basin, CO – Carpathian Orogeny, Ib – Iberia, MP – Moesian Platform, NA – 
North America, Py – Pyrenees, PO – Pindos Ocean, Sa – Sakarya, Za – Zargos. Picture reference: 
http://jan.ucc.nau.edu/~rcb7/paleogeographic_alps.html. 
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3.3 Development of the Black Sea Basin 

 

3.3.1 Pre-rift development 

 

The Pre-Triassic units of the Black Sea region comprise a metamorphic basement of 

former Proterozoic-Early Paleozoic sediments and granitoids (Robinson et al., 1996). These 

are overlain by Paleozoic sedimentary rocks, mainly Silurian to Lower Devonian shales, 

Devonian to Carboniferous carbonates and coal-bearing clastic sediments of Upper 

Carboniferous age. Heterogeneous Permian deposits such as continental clastics, limestones, 

evaporites and volcanics exist on the Moesian Platform; in other areas the Permian is 

represented by a major unconformity (Robinson et al., 1996).  

 

Red continental clastics of the Triassic follow the Permian hiatus, sometimes with 

intercalated limestones of Middle Triassic age. Late Triassic flysch sedimentation and 

ophiolitic volcanics indicate opening of an oceanic back-arc basin as the Neotethys subducted 

northward. This basin still existed during the Early Jurassic and is characterized by continued 

flysch deposition in widespread areas in the Pontides, Bulgaria, Romania and Crimea. The 

Middle-Upper Jurassic Cimmeride Orogeny that took place when the Cimmeride continent 

and Gondwana split up led to another regional unconformity (Robinson et al., 1996). 

 

Subsequent closure of the back-arc basin was completed by the Early Cretaceous and 

microplate collision led to a compressive, magmatic event (Robinson et al., 1996; Ustaömer 

& Robertson, 1994) that can be clearly recognized in the Strandzha Range of Bulgaria 

(Chatalov, 1990), in Northern Dobrogea (Visarion et al., 1990) and on the Crimean Peninsula 

(Karantsev, 1982). In the Neocomian, uniform carbonate sedimentation started throughout 

the entire Black Sea region. It was only interrupted locally by evaporite deposition off the 

Bulgarian and Romanian coasts (Robinson et al., 1996). 

 

3.3.2 Timing and mechanism of the Black Sea basin opening 

 

A number of models for the development of the Black Sea Basin exist in the literature. 

Figure 3.3 shows exemplarily the tectonic reconstruction of the development of the western 

Black Sea basin by Banks & Robinson (1997). It is compared to others in the text below. 

 

The opening of the present-day Black Sea basin started during the Upper Cretaceous 

when rifting occurred on the northern side of an island arc that was formed during the 
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northward subduction of the Neotethys. The western Black Sea basin is considered to be 

older than its eastern counterpart (Banks & Robinson, 1997; Fig. 3.3). It started to rift during 

Late Barremian and continued until Albian or Cenomanian (Görür, 1988). 

 

 
 

Fig. 3.3: Regional tectonic reconstructions of the development of the western Black Sea basin by 
Banks & Robinson (1997). PCF: Peceneaga Camena Fault, v and + are volcanics and intrusives. The 
upper panel (A) restores the western Black Sea region during the Late Jurassic following the 
Cimmeride compression after the closure of Triassic back-arc basins such as the Kure and Artvin 
basins. The incipient positions of the western Black Sea boundary faults are marked in red. Panel B 
shows the reconstruction for the Late Cretaceous after the western Black Sea basin opened but prior 
to the onset of Alpine compression (dashed red lines with thrust marks). The eastern Black Sea basin 
(incipient position marked with a dashed green line) is thought to have opened later during the 
Paleocene-Eocene. 
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The timing of the opening of the eastern Black Sea basin is less certain, rifting probably 

started during the Middle Paleocene; both parts became connected in their post-rift phase 

during the Pliocene (Banks & Robinson, 1997). A second model (Nikishin et al., 2003) differs 

slightly from this scenario. It suggests an opening period of about ten million years between 

the Cenomanian and the Coniacian for both the western and eastern Black Sea basins. 

 

The western Pontides south of the western Black Sea basin have a stratigraphy similar to 

the Moesian Platform on the Romanian and Bulgarian shelves (Banks & Robinson, 1997; 

Săndulescu, 1978) and are thus considered to be a part of the Moesian and Scythian 

platforms that rifted across the western Black Sea to its present-day position (Banks & 

Robinson, 1997; Okay et al., 1994). 

 

During the Late Eocene-Oligocene, the western Pontides became affected by 

compressional tectonics, implying the presence of two strike-slip transfer margins on the 

eastern and western sides of the western Black Sea (Banks & Robinson, 1997, Fig. 3.3; Okay 

et al., 1994; Görür, 1988). The exact location of these transfer margins is a subject of 

debate. According to Banks & Robinson (1997, Fig. 3.3) the western transfer margin is 

located across Thrace between Strandzha and the western Pontides, although the exact 

position cannot be distinguished because of an Eocene sedimentary cover. Its offshore 

prolongation also cannot be followed clearly because of the obfuscating influence of the 

Tertiary compressive deformation fronts of Strandzha and the Balkanides (Banks & Robinson, 

1997; Dachev et al., 1988). 

 

In the eastern part of the western Black Sea Basin, Okay et al. (1994) suggested a 

transfer margin that continues from the North Kilia Depression southward to the present-day 

depocenter of the western Black Sea basin. Banks & Robinson (1997) however did not find a 

corresponding fault on seismic lines along the proposed track and assumed a more easterly 

position close to the southwestern edge of the Andrusov Ridge. 

 

3.3.3 Post-rift development 

 

A post-rift sedimentary fill of more than 10 km fills the Black Sea basin today. Because 

the western Black Sea Basin is considerably older than its eastern counterpart, the largest 

thickness values are reached here (Robinson et al., 1996). A compiled depth map of the 

break-up unconformity in the Black Sea Basin giving the thickness distribution of the post-rift 

sedimentary fill is shown in Fig. 3.4.  
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When subduction of the Neotethys came to a halt during the Early Tertiary, a tectonically 

quiet phase observable in the sedimentary record of both sub-basins set in. From the Late 

Paleocene to Middle Eocene, carbonate sedimentation occurred in the shelf areas, whereas 

clastic turbidites deposited in the deeper basins. Throughout this time, both the Pontides and 

the Caucasus region were dominated by extensional tectonics (Nikishin et al., 2003, 2001; 

Yilmaz et al., 1997). 

 

 
 

Fig. 3.4: Depth map to the break-up unconformity of the western and eastern Black Sea basins based 
on the interpretation of >50,000 km of reflection seismic profiles (modified after Robinson et al., 
1996). The resulting surface is strongly diachronous as the two sub-basins are not of the same age: It 
is probably Late Cretaceous in the west and Uppermost Eocene in the east (Robinson et al., 1996). 

 

The tectonic regime turned from extension to compression in the southern Pontides 

during Late Cretaceous and in areas of the Greater Caucasus since the Paleocene. By the 

Late Eocene, the entire Black Sea region became affected by compressive tectonics. This 

development is manifested in folding of the Balkanides, inverted half-graben structures of 

the Pontides, as well as minor inverted features on the Romanian shelf and in the Gulf of 

Odessa (Robinson et al., 1996). 
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Widespread basaltic, alkali-basaltic and andesitic volcanism and volcaniclastic flysch 

sedimentation mark a phase of strong subsidence in the deep basin during the Eocene 

(Nikishin et al., 2003). 

 

Since the Oligocene, several compressive phases have been recorded in the Caucasus-

Black Sea-Pontides region; these are associated with the collision between the European and 

Arabic plates (Nikishin et al., 2003; Dercourt et al., 1993). Uplift in the Carpathians during 

the Upper Miocene led to shoaling of the Black Sea Basin with a maximum water depth of 

only several hundred meters (Robinson et al., 1996; Ross, 1978). 

 

 
 

Fig. 3.5: Panel A: Modeled thickness distribution of post-rift sediments along a NNW-SSE tending 
profile through the western Black Sea basin modified after Robinson et al. (1995). The white line on 
the inset gives the profile location; numbers give the ages of simulated stratigraphic markers in Ma: 
Top-Albian (97), Top-Cretaceous (65), Top-Eocene (35), Intra-Sarmatian (10) and End-Pliocene (2). 
The lower panels give the basement subsidence (green curves) and water-loaded tectonic subsidence 
(red curves) for the basin margin (panel B) and basin center (panel C). After Robinson et al. (1995). 
 

To verify the geological interpretations described above, the syn-rift and post-rift 

sedimentation and subsidence histories of the western Black Sea basin was modeled 
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(Robinson et al., 1995). The resulting stratigraphic distribution in the western Black Sea 

basin is shown in Fig. 3.5 along with subsidence curves for the time interval since the Middle 

Cretaceous. 

 

The model predicts a rapid syn-rift basement subsidence in the central part of the basin, 

leading to only poorly developed syn-rift sediments and a paleo-water depth of about 5,000 

m at the end of the rifting. The early post-rift phase was characterized by sediment by-pass 

at the basin margins and subsequent high sedimentation rates in the basin center. The high 

sediment supply at the basin center could compensate for the post-rift thermal subsidence 

and the sediments started to fill up the basin towards the sea-level. This trend continued 

until the Upper Miocene. The rising sediment load in the basin had the effect of an increasing 

tectonic subsidence and thus basement subsidence, leading to a rapid deepening of the 

western Black Sea up to around 2,800 m until the Pliocene. 

 

The effects of water replacement by sediments on subsidence ceased during the Upper 

Pliocene, nevertheless further basement subsidence was required to create accommodation 

space for the thick Quaternary sedimentary succession in the western Black Sea. The 

increase in sediment supply and associated loading might be related to glaciation of most of 

the catchment area in northern Europe or the beginning of the contribution of the Danube to 

the Black Sea basin fill. 

 

3.4 Structural units surrounding the western Black Sea Basin 

 

Figure 3.6 shows the regional structural units that surround the Black Sea basin area 

today. These are separated by major strike-slip fault systems in the northern part of the 

Black Sea and by the thrust fronts of the Balkans and the Pontides in the western and 

southern Black Sea respectively. A short summary according to Dinu et al. (2002) is given 

below; the order of description of the units is counterclockwise from north to south. 

 

3.4.1 East European Platform 

 

The Black Sea basin is located at the southern rim of the East European Platform (Fig. 

3.6). Extending from the Ukrainian mainland onto the northwestern shelf, the East European 

Platform consists of an 8-10 km thick sediment cover over a pre-Riphean (Late Proterozoic) 

basement of gneiss, granite-gneiss and granitoids (Dinu et al., 2002). This cover was 

developed in three major cycles separated by tectonic uplift and subsequent erosion 
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(Seghedi et al., 2004; Paraschiv, 1985; Pătruliuş & Iordan, 1974; Iliescu, 1974; Macarovici, 

1971; Barbu et al., 1969). 

 

The oldest cycle is of Paleozoic age and was deposited between the Late Vendian and 

the Devonian. It consists of Late Vendian to Ordovician coarse siliciclastics, Silurian graptolite 

shales and Early Devonian black limestones that are succeeded by quartz sandstones. The 

second cycle comprises Cretaceous to Mid-Eocene sediments: shallow marine clastics, 

evaporates and limestones of the Lower Cretaceous, and Upper Cretaceous terrigenous 

clastics and limestones. The deposition of the second sedimentary cycle shows frequent, 

short interruptions. The third and youngest cycle was deposited during the Tertiary after the 

Kossovian marine transgression. Clastic sediments and carbonates interbed with air-fall tuffs 

and evaporites (Seghedi et al., 2004). 

 

 
 

Fig. 3.6: Main tectonic units surrounding the Black Sea modified after Dinu et al. (2002). 
Abbreviations: PDD – Pre-Dobrogean Depression; NKD – North Kilia Depression; SSR – Suvorov-Snake 
Island Depression; BR – Bubkin Ridge; HD – Histria Depression; BD – Burgas Depression; KD – 
Karkinit Depression; KR – Kramsky Ridge; SCO – South Crimea Orogen; KTD – Kerci-Taman 
Depression; SD – Sorokin Depression; TB – Tuapse Basin; ATD – Achara-Trialet Depression; NAF – 
North Anatolian Fault. 
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3.4.2 Scythian Platform 

 

The Scythian Platform is located in the northeastern Black Sea south of the East 

European Platform (Fig. 3.6). Several sedimentary cycles of several hundred to 5,000 m 

thickness occurred on the Scythian Platform between Lower Jurassic and Neogene times. 

Sandstones and limestones intercalate, sometimes intrusive and effusive rocks occur as well 

(Dinu et al., 2002). The sedimentary cover of the Scythian Platform overlies a Proterozoic to 

Paleozoic basement that underwent tectonic deformation around the Triassic-Jurassic 

boundary (Dinu et al., 2002; Nishikin et al., 2001, 2003; Milanovsky, 1991; Muratov, 1969). 

 

3.4.3 North Dobrogea Orogen 

 

Between the Scythian Platform in the north and the Moesian Platform (described below) 

in the south is the North Dobrogea Orogen (Fig. 3.6). The structural base of this unit is a 

Permo-Triassic rift basin with a continental siliciclatic depositional environment that changed 

to carbonate-dominated sedimentation during the Lower Scythian (Seghedi at al. 2004). 

Upper Triassic inversion tectonics led to the deposition of terrigenous turbidites when the 

Hercynian basement in the western part of the North Dobrogea Orogen was uplifted along 

the inverted syn-rift extensional faults (Seghedi et al., 2004). After a tectonically quiescent 

period, inversion movements continued from Early Cretaceous to Albian times. During the 

Upper Cretaceous, shallow marine sediments were deposited throughout the North Dobrogea 

Orogen (Seghedi et al., 2004). 

 

3.4.4 Moesian Platform 

 

Most of the Romanian and parts of the Bulgarian shelves are the offshore continuation of 

the Moesian Platform (Fig. 3.6); its two main structural units are Central Dobrogea in the 

north and the Southern Dobrogea in the south. Both were deformed by Late Variscan 

tectonic movements (Nikishin at al., 2003; Banks, 1997; Okay et al.; 1994). The basement of 

the Moesian Platform consists of Archean to Paleoproterozoic metamorphic complexes; a 

Late Proterozoic volcano-sedimentary sequence occurred also in Southern Dobrogea. 

 

A Paleozoic to Cenozoic suite of sedimentary rocks developed on the northern Moesian 

Platform: Upper Cambrian to Middle Devonian marine clastics, Middle Devonian to Lower 

Carboniferous carbonates and a Carboniferous paralic coal-bearing clastic series. Permo-

Triassic rocks are of the Germanic facies: A lower and an upper clastic sequence are 
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separated by carbonates. The Middle Jurassic is represented by detrital sediments. These are 

followed by calcareous deposits of Upper Jurassic to Barremian age. During the Late 

Cretaceous, marly limestones developed. The Tertiary reflects a shallow marine to terrestrial 

evolution of the basin: Limestones of the Eocene are followed by progressively more detrital 

rocks of the Badenian to the Pleistocene. A Quaternary loess layer overlies discontinuously 

the older units (Seghedi et al., 2004). 

 

The composition of the southern part of the Moesian Platform is somewhat different: a 

folded Paleozoic basement is overlain by up to 5 km of Mesozoic to Quaternary, dominantly 

shallow marine sediments (Dabovski et al., 2004). The Paleozoic deposits comprise Late 

Ordovician to Devonian shales and carbonates and a locally developed cover of coal-bearing 

Carboniferous formations and red Permian sandstones (Dabovski et al., 2004; Haydoutov & 

Yanev, 1997). The oldest Mesozoic sediments are Lower to Middle Triassic carbonates 

followed by terrigenous or calcareous sediments of Jurassic to Cretaceous age. The Lower 

Tertiary (Paleogene) is, depending on location, continental or marine; the Upper Tertiary 

(Badenian to Pontian) is only locally present as marine sediments of a transitional zone 

between the Central and Eastern Parathethys (Dabovski et al., 2004). 

 

3.4.5 Balkans 

 

The Balkans was formed by Alpine folding and thrusting due to the collision between the 

Moesian Platform in the north and the Rhodope Massif to the south (Fig. 3.6). Three north-

vergent thrust units were formed: Fore-Balkan, Stara Planina and Srednogorie (Dinu et al., 

2002; Banks, 1997). 

 

3.4.6 Rhodope Massif 

 

The southern continuation of the Balkans is the Rhodope Massif (Fig. 3.6) which is mostly 

made up of Precambrian to Paleozoic units that have been deformed first by Variscan and 

later by Mesozoic (pre-Maastrichtian) movements (Nikishin et al., 2003; Banks, 1997; Burg et 

al., 1996). 

 

3.4.7 Western Pontides 

 

The Western Pontides are situated on the Asian side of the Bosphorus bordering the 

southwestern and southern Black Sea (Fig. 3.6). They are formed by a crystalline Late 
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Proterozoic basement with granitoids that have been dated to an age of 590 to 560 Ma 

(Stephenson et al., 2004; Chen et al., 2002; Ustaömer & Rodgers, 1999). Early Ordovician to 

Late Carboniferous sedimentary rocks overlie the basement. 

 

 
 

Tab. 3.2: Middle-Late Quaternary stratigraphic stages in the Black Sea region and their 

correlation to Alpine stages of central Europe; compiled by Winguth (1998) after Romanescu (1996), 

Koreneva & Kartashova (1978), Ross (1978) and Degens & Ross (1972). 

 

In the eastern part of the Western Pontides, the Carboniferous series comprises coal 

deposits of economic importance (Stephenson et al., 2004; Dean et al., 2000; Görür et al., 

1997). The oldest Mesozoic sediments are thick terrigenous sandstones and Triassic 

conglomerates. They are unconformably overlain by Jurassic sandstones and limestones 

followed by a thick series of Lower Cretaceous turbidites, of which the latter are possibly 

related to the opening of the Western Black Sea Basin (Stephenson et al., 2004; Sunal & 

Tüysüz, 2002; Tüysüz, 1999; Görür, 1988). Late Mesozoic to Tertiary sedimentation can be 
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traced until the Eocene; chalks were deposited during the Maastrichtian and the Paleocene, 

while thick turbidites followed in the Eocene (Stephenson et al., 2004). 

 

3.5 Quaternary geology of the western Black Sea 

 

As in the case of the Tertiary (Tab. 3.1), regional stage names are used in the Qua-

ternary stratigraphy of the Black Sea. The regional stratigraphic chart for the Quaternary and 

the correlation to Alpine stages of central Europe are shown in Tab. 3.2. 

 

The base of the Quaternary in the Black Sea Basin was drilled at two DSDP sites (380 

and 381; Schrader, 1978; Ross, 1978). Correlation of seismic data with these DSDP holes 

and with petroleum exploration wells indicates a maximum Quaternary thickness of 2,000 m 

(Finetti et al., 1988) to 2,500 m (Robinson et al., 1995) in the central basin. Wong et al. 

(1994) also found more than 2,000 m of Late Pleistocene to Recent sediments in the Danube 

and Dniepr fan complexes. 

 

Below, the Quaternary geology of the Danube Delta/northwestern shelf, southwestern 

shelf and slope/deep basin is described separately, while the geological history since the last 

glacial maximum is described in Chapter 3.6. 

 

3.5.1 Danube Delta and northwestern shelf 

 

The most important source of freshwater and sediments in the Black Sea Basin is the 

Danube river system which discharges to the northwestern shelf (Tab. 2.1). The course of 

the Danube follows roughly the chain of former Paratethys basins: from the Vienna Basin 

through the Pannonian and Dacic basins to the Euxinian Basin/Black Sea. The present-day 

Danube is the result of the joining of several paleo-river systems with differing flow 

directions (e.g., from the Carpathians westwards into the Pannonian Basin and eastwards 

into the Dacic Basin). They are thought to form a single, eastward flowing river that drains 

into the Black Sea since the Late Pliocene – Early Quaternary (Marović et al., 1997; Banu, 

1967; Posea, 1964; Ianovici et al., 1960). Since that time, the Danube has been building 

Europe’s second largest delta (after the Volga Delta in the Caspian Sea) in northeastern 

Romania and southwestern Ukraine. Geologically it is situated in the southern part of the 

Predobrogean Depression, which has been repeatedly affected by strong subsidence and 

sediment accumulation since the Paleozoic (Pătruţ et al., 1983; Fig. 3.7). The Predobrogean 

Depression is separated from the North-Dobrogea Orogen in the south by the St. George 
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Fault Zone that strongly influences the course of the Danube in the southern part of the 

delta (Panin & Jipa, 2002).  

 

 
 

Fig. 3.7: Geological cross-section through the Danube Delta region according to Pâtrut et al. (1983). 
White line in the inset gives the approximate profile location. Abbreviations: SGF – St. George Fault, 
BF – Bolgrad Fault, BAF – Baimaclia-Artiz Fault.  
 

Sediment deposition and with it delta building occurs only during sea-level highstands 

when just a fraction of the sediments delivered reaches the open Black Sea. Subsequent 

lowstands, however, lead to a seaward shift of the depocenter and sediments are 

transported through the Viteaz Canyon into the sedimentary fans on the northwestern Black 

Sea slope and beyond (Chapter 3.5.2). Most of the sediments accumulated during the 

previous delta-building phase are eroded during sea-level lowstands, so that the present-day 

Danube Delta surface is largely a product of the Holocene highstand (Chapter 3.6.3.2). High-

resolution seismic data show that the thickness of the delta sediments ranges between 10 

and 350 m (Panin & Jipa, 2002; Spânoche & Panin, 1997). 

 



 Chapter 3 – Regional Geology  

 40

Sediments that actually reach the northwestern Black Sea during periods of high sea-

level is transported southward sub-parallel to the coast; these sediments are mostly 

deposited on the western shelf as well (compare the water circulation model in Fig. 2.3; 

Panin, 1989; Shimkus & Trimonis, 1974; Zenkovitch, 1960). 

 

Quaternary sedimentation on the northwestern Black Sea shelf was quiet and has only to 

a minor extent been affected by syn-sedimentary tectonics. The transitions to the underlying 

Romanian and Dacian (Tab. 3.1) deposits are conformable (C. Konerding, 2006). The 

thickness distribution of the combined Romanian/Quaternary section on the northwestern 

shelf based on the interpretation of industrial reflection seismic data and wells is shown in 

Fig. 3.8. It increases slowly basinward from 0 m in coastal areas south of the Danube Delta 

to about 600 m on the upper continental slope (C. Konerding, 2006). Compared to the older 

formations, only a few northeast-southwest trending fault systems (mostly Oligocene or 

older in age and later reactivated during the Pontian) have been active in the Quaternary. 

They produced offsets on the order of a few meters to tens of meters and are separated by 

northwest-southeast trending transfer faults (Fig. 3.8; C. Konerding, 2006). 

 

 
 

Fig. 3.8: Thickness distribution and tectonics of the combined Romanian-Quaternary section on the 
northwestern Black Sea shelf off Romania. From C. Konerding (2006). The interpretation is based on 
industrial seismic lines (drawn in grey). The red dotted line gives the approximate position of the 
present-day shelf edge along the 100 m isobath for orientation. 
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The combination of the Romanian and Quaternary into one single unit is a common 

practice for the Romanian sector of the Black Sea, especially in industrial borehole 

descriptions or seismic interpretations. A subdivision is difficult because the sedimentological 

and depositional characteristics of the Romanian and Quaternary units are highly similar. In 

contrast, in the Bulgarian and Ukrainian sectors, the Quaternary and Pleistocene units are 

generally separated and a unit of Romanian age is normally not distinguished. 

 

3.5.2 Slope and deep basin 

 

The deep-sea fans built up by the rivers Danube, Dniestr, Bug and Dniepr (Figs. 3.9 and 

2.4) are the largest Quaternary geological features of the western Black Sea. According to 

Paluska & Degens (1979) these rivers started to drain into the Black Sea during the 

Chaudian (Günz glaciation), thus providing an upper limit for the age of the fan system. The 

deep-sea fans have been divided in two individual systems: the Danube fan and a fan 

system fed by Dniestr, Bug and Dniepr (named Dniepr Fan hereafter). These two fans 

slightly interfinger (Winguth et al., 2000); approximate boundaries have been mapped by 

Wong et al. (1994) and Popescu et al. (2001) and are shown in Fig. 3.9. 

 

Deep sea fan development is controlled mainly by sea-level change, and the cyclicity of 

falling and rising water levels is responsible for the development of the typical deep sea fan 

sequences (Weimer, 1990): During highstands, when the coastline is located far landward of 

the shelfedge, delta systems at the river mouths serve as the depocenter of fluvial 

sediments, leaving the slope and basin sediment-starved. When the sea-level starts to fall, 

the depocenter moves seaward towards the shelfedge. Rapid deltaic sedimentation at the 

shelfedge results in overpressuring of the prodelta and slope sediments. Sediment failure 

and the subsequent mass transport processes characterize this early stage of sequence 

development and lead to important deposits on the slope. 

 

When the retrograding canyons at the shelfedge become connected to the incised fluvial 

valleys on the shelf, channelized turbidity flow starts to form channel-levee systems on the 

slope. In this way, the deepsea fan becomes the main depositional system during sea-level 

lowstands: Coarse sediments remain in the channels or forms lobes at the channel mouths, 

finer sediments build up the levees and overbank deposits. At times of rising sea-level and a 

landward migrating depocenter, the incised channels are filled with finer sediments, whereas 

the slope and the deep basin are dominated by hemipelagic sedimentation. 
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Fig. 3.9: 3D view of a digital elevation model (for a description of the database see Section 4.1.3) of 
the western Black Sea and surrounding land areas with major rivers that drain into the northwestern 
Black Sea. Sediments are transported through canyons and channel systems into the sedimentary 
fans. Red dashed lines give the approximate boundaries of the Danube and Dniepr fans on the 
seafloor as mapped by Popescu et al. (2001). 

 

Based on seismic stratigraphic interpretation of profiles crossing the Danube and Dniepr 

fans, Winguth et al. (2000) established a regional sea-level curve for the northwestern Black 

Sea (Fig. 3.10) and deduced a sedimentary and stratigraphic model for it. According to this 

model, the Danube fan is built up by six seismic sequences that have been dated by 

correlation with the global SPECMAP δ18O curve of Imbrie et al. (1984, Fig. 3.10). This 

correlation yielded an age of approximately 900 ka for the oldest fan sediments in the 

Danube fan, whereas sedimentation in the Dnieper fan started about 100 ka later. The 

duration of the Quaternary water level cycles in the northwestern Black Sea found by 

Winguth et al. (2000) varies between 50 and 130 ka, thus they were interpreted to be 5th 

and 6th order cycles in the sense of Fulthorpe (1991) and Carter et al. (1991). 
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Fig. 3.10: The left panel shows the regional sea-level curve of Winguth et al. (2000) for the last 
~900 kyr in the northwestern Black Sea; the middle and right panels give the SPECMAP δ18O curve 
(Imbrie et al., 1984) and isotope stages for comparison. 

 

The youngest of the channel-levee systems that together built up the younger portion of 

the Danube fan is the most outstanding bathymetric feature on the recent western slope of 

the Black Sea (Danube channel in Fig. 3.9). It is directly connected to the Viteaz Canyon and 

developed below a water depth of 800 m during the Neoeuxinian (marine isotope stage 2, 

Fig. 3.10), the last sea-level lowstand in the Black Sea. 

 

This youngest channel-levee system was internally subdivided into four sedimentary 

cycles, each of which starts with channel bifurcation, followed by deposition of HARP units 

(High Amplitude Reflection Packets as described by Flood et al. (1991) in the Amazon Fan) 

and subsequent development of a new channel path (Popescu et al., 2001). Channel 

avulsion and bifurcation need not be directly linked to water level fluctuations, since 

according to this model more than one channel formed during a single phase of low sea-
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levels. The northward migration pattern from one cycle to the next implies that the process 

is most likely a result of the Coriolis effect (Popescu et al., 2001). 

 

3.5.3 Southwestern Shelf 

 

Seismic stratigraphic studies carried out on the southwestern Black Sea shelf showed 

that five distinct seismic sequences (named Unit 5 to 1 in chronological order; Fig. 3.11) 

separated by four unconformities make up the sedimentary record since the Middle Eocene 

(Aksu et al., 2002). 

 

The four older seismic stratigraphic units 5-2 offlap towards the preset-day shelfedge so 

that older units occur landward of their respective younger successor. These units are 

truncated by the youngest regional unconformity and are overlain by Unit 1 (Aksu et al., 

2002).  

 

 
 

Fig. 3.11: Geological map of the southwestern Black Sea and northwestern Turkey, assembled by 
Aksu et al. (2002); the red dashed lines give the present-day shoreline. The onshore area is compiled 
from map sheets by Sakinç et al. (1999), Ternek (1964) and Tokay (1964). The offshore units have 
been mapped by Aksu et al. (2002) using seismic stratigraphic methods. Yellow dots give the position 
of the two exploration wells Igneada and Karadeniz on the Turkish shelf. 
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A generalized depositional pattern of the seismic stratigraphic units found on the 

southwestern shelf is shown in Fig. 3.12. According to Aksu et al. (2002), the stratigraphic 

and sedimentary classification of the seismic units is as follows: The oldest sequence (Unit 5) 

is spatially restricted to the inner and middle shelf, to a water depth less than 75 m. It 

consists of slightly to moderately folded and faulted Mesozoic volcano-sedimentary deposits. 

The overlying unconformable Unit 4 is made up of Eocene to Miocene sediments that are 

less affected by tectonics. Units 3 and 2 consist of relatively undeformed north-dipping 

clinoforms; they occur between 75 and 90 m water depth on the present-day outer shelf. 

Unit 3 is supposed to be of Miocene to Pliocene age, Unit 2 contains uppermost Pliocene to 

Quaternary sediments with a conformable transition from Pliocene to Quaternary. The 

youngest Unit 1 differs from the older sequences in its depositional characteristics. It was 

divided into four subunits: The stratigraphically lowest parts of Unit 1 (Subunit 1A) are 

restricted to an area close to the present-day shelfedge. They are made up of stacked, 

oblique-prograding packages deposited conformably on top of Unit 2. In contrast, the 

subunits 1B to 1D form a thin veneer of sediments unconformably overlying the older units 

on most of the southwestern shelf. 

 

 
 
Fig. 3.12: Generalized stratigraphic and depositional pattern on the southwestern Black Sea shelf. 
Five distinct seismic stratigraphic units (units 5-1; for a stratigraphic classification see Fig. 3.11) 
separated by four regional seismic unconformities have been identified. From Aksu et al. (2002). 

 

The seismic architecture of Subunit 1A was interpreted to resemble lowstand shelfedge 

delta lobes, as they have been found in many other parts of the world (e.g., Hiscott, 2001; 

Aksu et al., 1999; Chiocci et al., 1997; Anderson et al., 1996). Four distinct delta lobes have 

been identified and attributed to times of glacially lowered sea-levels during the Quaternary. 

The youngest delta lobe has thus been deposited during the last glacial maximum, at a sea-

level of about -110 m (constrained by the topset-foreset transition of the deltaic sediments; 
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Aksu et al., 2002). The younger subunits 1B-1D overlie the youngest regional unconformity, 

their characteristics are described in detail in section 3.6.3.4. 

 

3.6 Late-glacial to Holocene development of the Black Sea 

 

3.6.1 Paleoceanography 

 

During the last glacial (Surozhian / Middle Würm, 50-40 ka; Tab. 3.2) marine conditions 

characterized the Black Sea as the sea-level stood close to the present level (-10 to 0 m; 

Popov, 1975). The salinity was also comparable to present-day values (Ostrovskiy et al., 

1977), and it is likely that the deep waters in the Black Sea contained a high content of 

hydrogen sulfide leading to formation of sapropel and pyrite (Neprochnov, 1980). 

 

The Surozhian transgression can be divided into two phases, a first phase that reached 

approximately -10 m and a later phase that might have reached values slightly above the 

present level (Ostrovskiy et al., 1977). Deposits bearing Surozhian fauna have been found in 

marine terraces at a height of 15 – 20 m along the Caucasian coast. In other areas around 

the Black Sea, they occur at lower elevations (e.g., in the Kerch Strait, Karkinit Bay and 

Peninsula, Gallitzin Rise, Shagan Lagoon; Trashchuk & Bolivets, 1978; Shnyukov & 

Trashchuk, 1976; in the Danube Delta; Panin, 1983). 

 

The Neoeuxinian period follows the Surozhian at around 25 ka (Tab. 3.2). It is 

characterized by a strong regression leading to an isolation of the Black Sea and increasingly 

fresher waters in the basin; the depositional transition from the so-called ‘Tarkankut Layers’ 

which still contain marine fauna to the ‘Karkinit Horizon’ that contains brackish fauna and 

only a few marine remnants marks this development (Ostrovskiy et al., 1977). During the 

last glacial maximium (~19 – 15 ka) the Black Sea had turned into a freshwater lake with a 

salinity of 3-7 ‰ and well-oxygenated, H2S-free waters (Nevesskaya, 1965). 

 

Many researchers suggest a drastic sea-level drop during the Neoeuxinian to values 

between -90 m to -150 m, a detailed overview is given in the following section. This was 

accompanied by a distinct basinward advance of the shoreline in the Black Sea region and 

widely exposed shelf areas. During this time, tributary rivers such as the Danube and the 

Dniepr cut deep valleys (to a depth of -90 m) into the outer shelf (Popescu et al., 2004; 

Ryan et al., 2003). 
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After the last glacial maximum, a period of warming began that lasts until today. With 

the glacial ice caps in Scandinavia and the Alps beginning to shrink, melt water input led to a 

rapidly increasing water level in the Black Sea. The general trend towards a warmer climate 

was not linear, phases of relatively warm climate such as the Bølling/Allerød (13-11 ka) or 

the early Holocene around 9 ka alternate with colder periods during the Younger Dryas (11-

10 ka) or around 8.2 ka (the so-called ‘8.2 ka Event’). This climatic variability finds its 

expression in paleoenvironmental proxies such as pollen assemblages or fauna communities. 

Table 3.3 shows a synthesis of the principal stratigraphic scheme derived from research 

along the Black Sea coasts and on the shelf (Fedorov, 1978) as well as on the slope and 

deep basin (Sherbakov & Babak, 1979) with additional stratigraphic and paleoenvironmental 

information from Filipova-Marinova (2004), Shopov et al. (1992), Todorova (1989) and 

Fedorov (1988). 

 

The most severe changes in the Black Sea occurred however after the re-connection 

between the Black Sea and the Mediterranean was established. Around 9-7.5 ka a two-way 

water exchange developed and inflowing Mediterranean waters started to transform the 

Neoeuxinian Lake into an anoxic brackish basin (Panin & Popescu, 2007). The timing and 

characteristics of the Early Holocene connection between the Mediterranean and the Black 

Sea are discussed in detail in the following section. 

 

3.6.2 Connections to adjacent sea areas 

 

It is crucial for an understanding of the youngest geological development of the Black 

Sea to establish a model that explains the timing and the mechanisms of the connection 

between the Black Sea and the adjacent seas: with the Mediterranean Sea via the Sea of 

Marmara in the west and with the Caspian Sea in the east. 

 

3.6.2.1 Mediterranean Sea and Marmara Sea 

 

Several different scenarios have been proposed in the past for the reconnection of the 

Black Sea with the Mediterranean Sea. These include a continuous outflow of Black Sea 

waters into the Sea of Marmara during glacial and Holocene times (Degens & Ross, 1974; 

Lane-Serff et al., 1997), as well as an evaporative sea-level drawdown of the Black Sea 

during glacial times, leading to a decoupling from the Mediterranean at a level of -90 m to -

110 m (Chepalyga, 1984), or -100 m to -110 m (Görür et al., 2001; Demirbag et al., 1999), 
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or -110 m (Aksu et al., 2002), or -140 m (Ryan et al., 1997) or as much as -150 m (Winguth 

et al., 2000). 

 

Until the beginning of the 1990’s, the rate of rise in the level of the Black Sea after the 

last glacial lowstand was considered to be slow and analogous to that postulated for the 

Mediterranean Sea. A connection between them was established between 9 and 7.5 ka, and 

the Mediterranean and the Black Sea reached the same level soon thereafter. Joint Russian-

American research carried out in 1993 led to the so-called ”Noah’s flood hypothesis”, with 

very rapid (“catastrophic”) flooding of the Black Sea with Mediterranean waters at about 7.5 

ka (Ryan et al., 1997). Memories of this event are thought to form the basis of the biblical 

story of Noah, since the living space of early settlers along the Black Sea coast was 

supposedly inundated during the flooding. 

 

In the catastrophic flood hypothesis, the Black Sea level was because of meltwater input 

high enough in early post-glacial times to allow outflow via the Sea of Marmara into the 

Aegean Sea. Before around 12 ka, the retreat of the Scandinavian ice sheets led to a 

redirection of meltwaters into the North Sea. Without meltwater input and under an 

increasingly cold and dry climate in the Black Sea region during the Younger Dryas (11-10 

ka), the Black Sea level fell again to a lowstand. The Mediterranean sea-level, however, was 

rising at the same time, reaching the Bosphorus sill depth around 7.5 ka. The sill depth 

assumed in this model is with -35 m relatively close to its present-day depth of -32 m. This 

assumption, however, is by no means undisputed (see below for a comparison of different 

models). 

 

Ryan et al. (1997) postulated a massive intrusion of Mediterranean waters into the Black 

Sea at about 7.5 ka, with input rates several hundred times higher than the largest known 

waterfalls. The idea of a flooding event in the Black Sea is mainly based on three facts: 

Firstly, cores reveal a buried erosional surface on the broad northern continental margin 

reaching below the shelf break (Evsylekov & Shimkus, 1995; Major, 1994). Secondly, 

indicators of sub-aerial exposure were found to a depth of 123 m, giving evidence to a Black 

Sea level well below the Bosphorus bedrock sill at -70 m (Algan et al., 2001; Gökasan et al., 

1997). Thirdly, a uniform marine mud drape was deposited onto the subaerial surface. This 

drape shows no thickness variations in depressions or on the crest of dunes and no signs of 

landward-directed onlap (Ryan, 2004). Therefore, the transgression must have been rapid 

enough to preserve the former land surface from intense erosion and to keep the time for 

syn-transgressive sedimentation too short for the development of retrogradational 
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depositional features. Findings supporting at least a rapid and abrupt reconnection between 

the Marmara Sea and the Black Sea have also been published by Major et al. (2006, 2002), 

Giosan et al. (2005), Sidall et al. (2004), and Myers et al. (2003). In Contrast, Hiscott et al. 

(2006, 2002) and Aksu et al. (2002a) contradicted the rapid reconnection model and 

proposed a non-catastrophic, gradual process. 

 

 
 

Fig. 3.13: Summary of lithologies and fossil record found in sediments of the last 15,000 years in the 
Marmara Sea correlated to calibrated radiocarbon dating; from McHugh et al. (2008). The main 
paleoceanographic characteristics of the Marmara Sea are described on the left, black arrows on the 
right mark the main events in the oceanographic development. 
 

To understand the timing of the connection between the Marmara and Black seas and to 

verify the possibility of a rapid flooding in the Black Sea, the sill depth of the Bosphorus 

Strait at the time of connection must be known (Myers et al., 2003; Sperling et al., 2003; 

Major et al., 2002). The present-day depth of the Bosphorus sill is -32 m, but other values 

for the past sill depth have also been suggested. A deep Bosphorus sill of -80 m, for 

example, would allow a connection of the Black and Marmara Seas as early as 14 ka (Major 
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et al., 2002) and a shallow sill of -35 m would be required to create the ‘Noah’s flood’ 

scenario around 8.4 ka (Ryan et al., 2003). Sperling et al. (2003) suggested a sill depth 7 m 

higher than today, as it would fit best to the salinity evolution of the Marmara and Aegean 

Seas at around 8.7 ka. Yaltirak et al. (2002) showed that for the reconnection of the 

Marmara Sea and the Mediterranean through the Dardanelles Strait, the timing cannot be 

addressed as a function of sea-level change alone. Tectonic uplift induced by local compres-

sion associated with a restraining bend in the western segment of the North Anatolian Fault 

has most likely played an important role as well (Fig. 3.6). A similar influence should not be 

ruled out for the Bosphorus Strait (Yaltirak et al., 2002). 

 

Findings in the Marmara Sea do mostly not add much support for between the Back Sea 

and the Marmara Sea, as A more-or-less constant outflow of Black Sea waters into the 

Marmara Sea rather than a ‘catastrophic’ mode of reconnection is concluded in many studies 

in the Sea of Marmara (McHugh et al., 2008; Hiscott et al., 2007, 2002; Kerey et al., 2004; 

Kaminski et al., 2002; Aksu et al., 2002a, 2002 b). Figure 3.13 shows a compiled lithological 

column for Marmara Sea sediments younger than 15-16 ka together with a reconstruction of 

the major events during the development of the Black Sea – Marmara Sea – Mediterranean 

corridor as proposed by McHugh et al. (2008). This reconstruction allows for a lake stage in 

the Marmara Sea during glacial times with a Marmara Lake that was supplied by glacial melt-

waters from the Black Sea between ~15.5 and 14.5 ka. During the Bølling/Allerød (14.5–13.0 

ka), warmer conditions were assumed that probably prevailed until marine waters incurred 

around 12 ka. At this time, the Black Sea was supposedly either isolated or spilling into the 

Marmara Sea at a low rate. The Younger Dryas (11.5–10.5 ka) is marked by a time of sea-

level stillstand that ended once strong outflow from the Black Sea was established at ~9.2 

ka, leading to the development of a two-layer circulation between the Marmara Sea and the 

Black Sea (Major et al., 2006; Murray, 2006; Fontanier et al., 2003, 2002; Evans et al., 2002; 

Schonfeld, 2001, 1997; Kaminski et al., 2001; den Dulk et al., 2000). This modern mode of 

connection was well-established around 6 ka when the Marmara Sea level had reached 

approximately the present-day shoreline (McHugh et al., 2008). 

 

Most of the models described above consider inflow into the Black Sea basin after the 

connection to the Mediterranean was established. An opposing scenario has also been 

suggested: Aksu et al. (2002a) assumed that a positive water balance drove the Black Sea 

level above the Bosporus sill depth at around 11.4 to 12.8 ka and Black Sea waters flowed 

into the Sea of Marmara. Evidence for this scenario comes from westward directed cross-

stratification of deposits in the western Marmara Sea (Aksu et al., 1999), and the existence 
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of a subaqueous delta system south of the Bosphorus Strait in the Marmara Sea (Hiscott et 

al., 2007, 2002; Aksu et al., 2002a, 2002b). Eriș et al. (2007) doubted the significance of the 

latter features for the reconstruction of outflow from the Black Sea or sea-level changes and 

attributed the deposition of the delta system to increasing sediment supply from local river 

systems during a time when the Holocene sea had almost reached its current level. 

 

3.6.2.2 Caspian Sea 

 

Another important factor that controls the water balance in the Black Sea Basin is the 

connection to the Caspian Sea in the east (Grosswald & Hughes, 2002; Kroonenberg et al., 

1997). This connection is established through the Manych Depression that is situated today 

at a height of 25 m above sea-level (Mangerud et al., 2001; Popov, 1983). Former beach 

terraces indicate that the highest lake level in the Caspian Sea during deglaciation was at 

+50 m and would therefore allow for flooding of the Manych Depression (Kroonenberg et al., 

1997). During the last glacial, huge ice masses blocked rivers from flowing into the Arctic 

Ocean and meltwater was directed instead southward through the Baltic Basin and via the 

Volga river system into the Caspian Sea (Mangerud et al., 2004). 

 

3.6.3 Late glacial and Holocene geology 

 

3.6.3.1 Stratigraphy 

 

A unified regional stratigraphic chart for late glacial and the transition to the Holocene for 

the Black Sea is still lacking. Various stratigraphic models based on bio- and lithostratigraphy 

have been proposed; a compilation by Ryan et al. (2003) is shown in Fig. 3.14. 

 

A common feature to all the stratigraphic schemes is the separation of an older 

freshwater stage in the Black Sea from a younger marine stage that began around 7 ka and 

lasts until today. The base of the marine stage is defined by the first appearance of 

Mediterranean species in Black Sea sediments and this level is also used most often to define 

the beginning of the Holocene – an age assignment several thousand years younger than the 

conventional Pleistocene/Holocene boundary of around 10.5 ka. 

 

Shimkus et al. (1978; Fig. 3.14, Panel 7) resolved this problem by introducing a 

freshwater early Holocene unit (HLI) that began synchronously with the global standard and 

is separated at 7.2 ka from the marine Middle and Late Holocene units (HLII, HLIII). The 
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stage HLI corresponds to the Upper Neoeuxine in other stratigraphic schemes and the first 

appearance of molluscs such as Dreissena rostriformis bugensis, Monodacna caspia or 

Dreissena polymorpha regularis within it marks the onset of salinization (Sherbakov & Babak, 

1979). Research on deep basin cores showed that the first sign of an increasing content of 

the heavier oxygen isotope 18O appeared at a similar level; it was dated to ~8.5 ka by 

interpolation (Fig. 3.14, Panel 5; Degens & Ross, 1974; Deuser, 1972). 

 

 
 

Fig. 3.14: Regional stratigraphic models for the past 25 ka compiled by Ryan et al. (2003). Panel 1: 
Stages commonly used for continental and marine stratigraphic correlation (Skiba et al., 1976; Kuprin 
et al., 1974; Popov, 1973; Popp, 1969). Panel 2: Stratigraphy based on distinct strata observed in 
outcrops and cores (Dimitrov, 1982; Nevesskaya, 1965); nev – Neoeuxine, bg – Bugaz bed, vt – 
Vityazevskian beds, kl – Kalamitian beds, dj – Djemenitian beds. Panel 3: OBS – Old Black Sea Beds, 
NBS – New Black Sea Beds (Markov et al., 1965; Nevesskaya, 1965). Panel 4: Stratigraphy of the 
Neoeuxinian deposits (Sherbakov & Babak, 1979). Panel 5: Lithostratigraphy of basin floor cores 
(Degens & Ross, 1974). Panel 6: Lithostratigraphy of cores from northern and western Black Sea 
shelf (Shopov et al., 1986). Panel 7: Stratigraphy derived from diatoms and pollen in deep basin 
sediments (Shimkus et al., 1978). Panel 8: Pollen assemblage zones in deep water cores from the 
western Black Sea (Atanassova, 1995); IP – Dominance of herbs and grasses (dry, cold climate), IIPA – 
Enlargement of oak forests, IIPB – Oak forest maximum, IIPC – Enlargement of herb communities, IIPD 
– Formation of ‘Longoz Forests’ along river valleys. 
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3.6.3.2 Development of the Danube Delta 

 

The present-day Danube Delta was formed during the Late-Pleistocene sea-level 

highstands (Karangatian, Surozhian; Tab. 3.2) and during the Holocene; possible earlier 

stages of delta evolution in the Lower Quaternary are missing due to erosion during phases 

of sea-level lowstands. The geomorphology of the Danube Delta is controlled by the 

interaction of influence of the Danube river system (sediment and water discharge, flow 

energy) and the Black Sea (wave energy, currents, sea-level changes). 

 

 
 

Fig. 3.15: Post-glacial development of the Danube Delta and coastline migration after Panin (1997). 
Arrows give the progradation or retreat directions for the different delta lobes. The white-framed inset 
gives the map location. Reference for underlying Landsat imagery: http://upload.wikimedia.org/ 
wikipedia/commons/d/d0/Danube_delta_Landsat_2000.jpeg 
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A continuous succession of prograding delta lobes was formed in the Danube Delta 

(Panin & Popescu, 2007; Noakes & Herz, 1983; Panin et al., 1983; Panin & Panin, 1967) with 

the beginning of the process dating possibly as far back as 12,000 years (Panin et al., 1983). 

A more recent study suggests, however, a much younger origin (less than 6,000 years 

according to Giosan et al., 2006). Based on geomorphologic, structural, textural, 

geochemical, mineralogical and faunal analyses and in particular extensive 14C dating of 

Danube Delta sediments, the main developmental stages of the delta can be established and 

combined into chronological models of the delta development (Fig. 3.15, 3.16; Giosan et al., 

2006; Panin, 1997; Panin, 1989; Noakes & Herz, 1983; Panin et al., 1983; Panin; 1974). Two 

different models are described below: The ‘older’ scenario after Panin et al. (1983) and the 

‘younger’ based on Giosan et al. (2006). 

 

The delta history proposed by Panin et al. (1983) comprises the following stages: 

Starting with the Leţea-Caraorman initial spit that was active between 11.7 and 7.5 ka, the 

St. George I Delta developed between 9 and 7.2 ka (progradation rate 3-5 m/yr). The Sulina 

Delta developed later between 7.2 and 2 ka (progradation rate 6-9 m/yr), since then the 

coastline in the Sulina Delta area retreats at a rate of 5-6 m/yr to its present-day position. 

Sediment deposition moved to the St. George II Delta and to the Chilia Delta; the former 

started to develop around 2.8 ka and the latter about 2.5 ka. The St. George II Delta 

progrades at a rate of 8-9 m/yr, and the Chilia Delta at 8-10 m/yr. The southernmost delta 

lobes are those of the Cosna-Sinoie Delta, they developed between 3.5 and 1.5 ka. 

 

These observations have been interpreted as evidence against a sea-level lowstand 

during the Younger Dryas and a subsequent flooding of the Black Sea in the sense of Ryan 

et al. (1997, 2003). They point instead to a sea-level highstand close to the present level at 

around 11.7 ka with no signs of ‘catastrophic’ events afterwards, mostly because such events 

would have left gaps in the progradation of the delta lobes that have not yet been found 

(Panin & Popescu, 2007). 

 

The chronological model described above, however, is questioned by a recent 

reassessment of the history of the Danube Delta carried out by Giosan et al. (2006). 

Through more refined dating methods and careful sample selection in coastal deposits of the 

deltaic region, ages for the different delta lobes and barriers have been obtained that are 

several thousand years younger than previously reported. 
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Giosan et al. (2006) link the inception of the open-coast Danube Delta to the deposition 

of the most landward beach ridges in the St. George I delta lobe and date these features to 

5.21 ka ± 210 yr. The end of the development of the St. George I lobe and the transition to 

the Sulina lobe is dated to 3.64 ka ± 140 yr. The Sulina delta lobe underwent a phase of 

rapid growth until approximately 2 ka that might be related to humid climate conditions in 

the Danube drainage basin and thus increased river discharge (Barber et al., 2004).Growth 

of the Sulina Delta came to an end at approximately 1.7-2 ka when the buildup of the St. 

George II delta began. The youngest delta lobe in the Danube Delta system is the Chilia lobe 

that did not become active before 1.2 ka (Giosan et al., 2006). 

 

 
 

Fig. 3.16: Comparison of two chronological models for the development of the different lobes and/or 
barriers in the Danube Delta (after Giosan et al., 2006). The lower model (red bars) was proposed by 
Panin et al. (1983) and dates the earliest features (Danube Bayis baymouth barrier) back to more 
than 12,000 years. The upper model (green bars) in contrast was based on the findings by Giosan et 
al. (2006). Here, the development of the Danube Delta started much later (less than 6,000 years 
before present) with the St. George I Delta. 

 

Because of the much younger age assignments compared to the model of Panin (1997), 

the development of the Danube Delta as proposed by Giosan et al. (2006) is does not have 

any direct implications on the catastrophic Black Sea flood hypothesis. However, it gives 

insight into the Late Holocene relative sea-level history in the Danube Delta. The sea-level 

was modeled to be relatively stable within an interval of +1.5 m to -2 m during the past 

~5000 years without any signs of large-amplitude short-term variations. This apparently 

contradicts older basin-wide sea-level reconstructions that feature an Old Black Sea 

highstand (~4.5 ka) and a younger, Phanagorian lowstand (~2.5 ka; e.g. Chepalyga, 1984), 

as well as archeological findings from around the Black Sea where submerged settlements 

imply rising sea-levels. To make all sea-level reconstructions comparable and to allow 
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compiling a basin-wide sea-level history for the Black Sea, the influence of local factors such 

as differences in the regional tectonic development needs to be taken into account (Giosan 

et al., 2006). 

 

3.6.3.3 Sedimentary record in the Black Sea basin 

 

The sedimentation in the Black Sea basin is significantly influenced by input from the 

Danube (Section 2.2). Other large rivers of the region such as Dniepr, Dniestr or Don play 

today only a minor role in sediment delivery to the Black Sea, their importance, however, 

might have been higher during the last deglacial (Bahr et al., 2005). Measurements on 

sediment cores from deeper parts of the Black Sea slope or basin provide uninterrupted 

records of the sedimentary history. Based on stable isotope and grain size measurements as 

well as XRF-scans (measurement of bulk intensities of major chemical elements; Fig. 3.17) 

on gravity cores from a transect crossing the lower shelf to the middle slope, Bahr et al. 

(2005) could create such a continuous record of the main sedimentary characteristics in the 

northwestern Black Sea for the past 30,000 years. 

 

The sediments on the upper Black Sea slope can be subdivided into three typical units 

(Panel 5, Fig. 3.14; Degens & Ross, 1974). These are, in chronological order: The lacustrine 

Unit III of homogenous to centimeter-scale laminated muddy clay, and the marine units II 

and I, both of Holocene age. Unit II is made of sapropelic sediments and the youngest Unit I 

consists of finely laminated coccolith ooze. The two younger units together have a more-or-

less constant thickness of 45 cm. On the lower slope, the Holocene units are largely missing. 

The sedimentary record found in cores on the Black Sea slope reflects the hydrological and 

paleoenvironmental variations in the region since the last glaciation and is summarized 

below. 

 

Stable climatic conditions characterize the last glaciation (28.5-18 ka). The low sea-level 

at that time led to a progradation of the Danube Delta towards the deeper basin. 

Subsequently, sediments on the western Black Sea slope have a relatively high sand content. 

 

Between 18 and 15.5 ka, a characteristic series of four reddish clay layers was deposited 

on the slope. These have been linked to pulses of meltwater from the Scandinavian ice sheet 

that seemed to have reacted very sensitively to high-latitude climate variations. The 

Scandinavian meltwater is thought to have entered the Black Sea through the Caspian Sea, 

where brownish ‘chocolate clays’ have been described (e.g., Kroonenberg et al., 2001) and 
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interpreted to be the sedimentary equivalent of the red clay layers of the Black Sea (Bahr et 

al., 2005; Ryan et al., 2003). The red layers correlate to time intervals of slightly increased 

δ18O (measured in the GRIP ice core; Fig. 3.17) and thus warmer climatic conditions. 

Geochemical characteristics of the red layers such as a reduced Mn content support stronger 

freshwater input, an increased Ti/Ca ratio within the red layers shows an associated increase 

in terrigenous sediment input (Fig. 3.17). 

 

 
 

Fig. 3.17: Correlation of red clay layers (R4-R1 in chronological order) in the Black Sea to the oxygen 
isotope record of the GRIP ice core, indicating their deposition in times of relatively warm climate. Also 
plotted are Mn-intensity, Ti/Ca ratio and the spectral red/blue ratio. From Bahr et al. (2005). 

 

After the deposition of the red clays, sedimentation in the Black Sea developed mainly in 

response to climate variations. Authigenic calcite precipitation through enhanced 
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phytoplankton activity characterizes the sedimentation in lakes under warmer climatic 

conditions (Bahr et al., 2005; Leng & Marshall, 2004). Such conditions prevailed during the 

Bølling/Allerød (Tab. 3.3) and later during the Early Holocene; high calcite contents 

characterize sedimentation during these periods. Colder conditions in contrast led to reduced 

calcite contents and relatively high amounts of terrigenous material in the sediments. Two 

phases of cool climate interrupt the warming trend, first the Younger Dryas (Tab. 3.3) and 

later the ‘8.2 ka Event’ (section 3.6.1). Sedimentation during these intervals is predominantly 

clastic. 

 

3.6.3.4 Depositional systems on the shelf and upper slope 

 

The depositional pattern of late glacial to Holocene sediments in the Black Sea primarily 

reflects the water-level changes that occurred during that period. Several models derived 

from the analysis of very high-resolution seismic reflection profiles and dated sediment cores 

have been proposed and are described below. 

 

The depositional model of Aksu et al. (2002) for the Lower Quaternary of the 

southwestern Black Sea is presented in section 3.5.3. According to the nomenclature 

established there, the uppermost Quaternary is represented by the seismic stratigraphic unit 

1 (Figs. 3.11 and 3.12); the oldest of its subunits (1A) is interpreted to be made up of four 

lowstand systems tracts deposited during times of low sea-levels towards and at the last 

glacial maximum (section 3.5.3). The post-glacial to Holocene sea-level rise is manifested in 

the transgressive subunits 1B and 1C, and the youngest subunit 1D is formed by a Holocene 

highstand systems tract (Aksu et al., 2002). The transgressive systems tracts that follow 

glacial sedimentation consist of back-stepping, internally seaward-prograding parasequences. 

The deposits of subunit 1B have been interpreted to be barrier islands (Fig. 3.12) or beaches 

based on their geometry and seismic facies as well as similarity to deposits described 

previously (e.g., Aksu et al., 1999; Kraft et al., 1987). 

 

Subunit 1C is characterized by mound shaped sediment ridges, sediment waves or 

current-generated marine bars; some sediment bodies within subunit 1C have also been 

interpreted as mud volcanoes. These deposits are spatially arranged in clusters of parallel 

ridges at progressively shallower water depths, resembling sedimentation during rising sea-

levels. The shorelines were stable when sediment supply and sea-level rise kept pace with 

each other and jumped landward when the rate of sea-level rise exceeded the rate of 

sediment supply (Aksu et al., 2002). 
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Subunit 1D comprises the youngest sediments on the Black Sea shelf. It forms a thin 

veneer of sediments that unconformably overlies the older morphology. The onset of the 

deposition of this subunit is interpreted as the maximum flooding surface towards the 

present sea-level highstand (Aksu et al., 2002). 

 

The model of Aksu et al. (2002) does not favor the idea of a catastrophic flooding of the 

Black Sea shelf (section 3.6.2). The original concept of Ryan et al. (1997) that includes a 

catastrophic flood is the basis for a competing depositional model described below. Major 

(2002) created a set of graphical snapshots that summarize the depositional development in 

agreement with this model. They are shown in Fig. 3.18 for comparison. 

 

After the last glacial maximum around 15 ka (Panel A, Fig. 3.18), meltwater from the 

Eurasian ice sheet and the Alpine ice dome led to rising sea-levels and finally to an overflow 

from the Caspian Sea into the Black Sea and from the Black Sea into the Mediterranean. 

Between 13.4 and 11 ka (Panel B, Fig. 3.18) the sea-level decreased during times of climatic 

aridity leading to forced-regression type sedimentation on the slope. The lowest sea-level 

thought to be reached during this regression was -105 m. Erosion through wave action and 

sub-aerial exposure led synchronously to the formation of a sedimentary unconformity on 

the upper slope and shelf (Panel C, Fig. 3.18). 

 

The water balance in both Black Sea and Caspian Sea basins switched from evaporation 

to precipitation during the colder climate of the Younger Dryas (11 ka – 10 ka; Panel D, Fig. 

3.18). The water level of the Caspian Sea was driven above the sill of the Manych 

Depression and Caspian waters spilled into the Black Sea. In the Black Sea itself, a 

freshwater layer with Dreissena coquina was deposited up to a level of 30 m below the 

present-day sea-level. The global sea-level was at this time more than 20 m below the Black 

Sea. Transgressive systems tracts were deposited during this interval leading to coastal 

onlap over the unconformity that formed before (Panel D, Fig. 3.18). 

 

Panel E (Fig. 3.18) shows the situation at 8.5 ka after the climate warmed during the 

Early Holocene. This new phase of aridity and evaporation in the Black Sea region drove the 

sea-level down to values around or even below the present-day shelfedge. The Dreissena 

coquina that developed with inflow of Caspian freshwater during the colder Younger Dryas 

was eroded and shell fragments together with calcareous beach sands and quartz sand from 

dried riverbeds on the shelf formed aeolian coastal dunes. 
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Fig. 3.18: Post-glacial development of the Black Sea shelf in six idealized panels (A-F, in 
chronological order). Dotted lines and arrows give the development of the sea-level at the time the 
‘snapshot’ was taken. The cross-sections are based on interpretation of seismic reflection profiles and 
sediment cores from the outer Ukrainian shelf. From Major (2002). 
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According to Ryan et al. (2003), the last transgression in the Black Sea started at 8.4 ka 

after the rising global sea-level led to a connection between the Mediterranean and the Black 

Sea. The result is shown in the present-day snapshot of Panel F (Fig. 3.18). The transition 

from brackish to marine waters in the Black Sea can be followed in the sedimentary record 

between 8.4 and 7.1 ka: a thin drape sheet of muddy sediments that lacks signs of coastal 

onlap and is uniformly distributed over the conserved coastal landscape of the Early 

Holocene developed till today (Panel E, Fig. 3.18). These characteristics of the Holocene 

sedimentation after the last transgression gave rise to the idea of a particularly rapid, 

possibly ‘catastrophic’, flooding event in the Black Sea. 
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4. Data and Methods 

 

4.1 Data 

 

This study is based primarily on the interpretation of reflection seismic data and 

borehole/gravity core information. The data used are discussed below.  

 

4.1.1 Reflection seismic data 

 

Reflection seismic data from the western Black Sea from various sources, recorded with a 

variety of instruments between the 1980s and 2002, were available to the ASSEMBLAGE 

project. A part of them was used in this study (see the compilation of profile tracks in Fig. 

4.1). A short overview of the different surveys and their main recording parameters – as far 

as they are publicly known – is given below. 

 

4.1.1.1 BLASON 

 

In the French-Romanian research project BLASON, two reflection seismic surveys were 

carried out covering almost the entire western Black Sea (Fig. 4.1). During the cruise 

BLASON I in 1998, approximately 4,500 km of seismic profiles were recorded; another 4,500 

km were added during the BLASON II cruise of 2002. The data were acquired using ‘mini-GI’ 

guns as seismic sources (generator/ injector volume configuration: 13/35 inch3 during 

BLASON I, 24/24 inch3 during BLASON II; operating pressure: 110-130 bar) and a ‘Triton-

Elics DELPH2’ system with a 300 m long 24-channel analogue streamer (receiver interval 

12.5 m) for recording at a sample interval of 1 ms. Parallel to the reflection seismic 

measurements described above, chirp sonar profiling was carried out during the BLASON 

cruises using a hull-mounted system with signal frequencies in the range of 1.8 kHz to 5 kHz 

and a power output of up to 9 kW. Not all acquired chirp sonar profiles were available for 

this study, their locations are given separately below. 

 

4.1.1.2 GHOSTDABS 

 

During the cruise of the German-Russian cooperative project GHOSTDABS in 2001, about 

50 reflection seismic profiles with a total of 1,130 line-km were acquired on the Ukrainian 

shelf and on the continental slope off the Crimean Peninsula (Fig. 4.1). 
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Fig. 4.1: Map of the reflection seismic profiles in the western Black Sea available for this study in the 
framework of the ASSEMBLAGE project. The data are compiled from various sources: Yellow lines – 
high-resolution seismic lines and chirp sonar data (not all lines are available) acquired during the 
BLASON I and II cruises. Green lines – high-resolution reflection seismic profiles acquired during the 
GHOSTDABS cruise. Red lines – industrial seismic data acquired under the supervision of Total SA of 
France, available at the University of Bucharest. Blue lines – very high-resolution reflection seismic 
lines acquired by the Institute of Oceanology of the Bulgarian Academy of Sciences (IO-BAS). 
 

An array of one ‘mini-GI’ and one standard GI gun was used as seismic source. A 
300 m long ‘GECO Prakla’ analogue streamer with 4 channels and a receiver interval 
of 50 m together with a custom-made digitizing/storage system were used for data 
recording. The data sampling interval was 1 ms. 
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4.1.1.3 Total 

 

In 1994 and 2001, seismic surveys covering the outer shelf and large areas of the 

Danube deepsea fan were carried out on behalf of the French company TotalFinaElf (today: 

Total) in the Romanian sector of the Black Sea for oil and gas exploration (Fig. 4.1). These 

data were available at the University of Bucharest for additional interpretation. The technical 

specifications of the equipment used during acquisition as well as the processing routines 

applied are not known exactly; the data have a sampling interval of 4 ms. 

 

4.1.1.4 IO-BAS 

 

The Institute of Oceanology of the Bulgarian Academy of Sciences has been carrying out 

seismic surveys in the Bulgarian sector of the Black Sea since the early 1980s. Various pieces 

of equipment (such as boomer, sparker and chirp-sonar systems) were used, mostly with a 

very high data resolution. Nine profiles from different surveys were made available to the 

ASSEMBLAGE project (Fig. 4.1). More information on seismic surveying carried out by IO-

BAS in the western Black Sea, such as cruise tracks or instrument descriptions, is available in 

the ‘Seismics & Sonar’ section of http://www.eu-seased.net. 

 

The data available to this study consist of three sparker lines from the ‘Sredetska’ survey 

of 1988, one boomer line from the ‘Godin’ survey of 1990, two sparker lines from the 

‘Kaliakra’ survey of 1990 and three boomer lines from the ‘PP 2’ survey of 1998. All data 

were recorded analogue using thermal printers.  They were scanned from paper rolls and 

transformed into standard digital seismic data formats using custom-made software 

(available under http://www.kogeo.de). Slight image-enhancing reprocessing was applied to 

the data after the digitalization. 

 

4.1.2 Gravity core and borehole data 

 

In order to tie the results of the interpretation of the seismic profiles to lithologic and 

stratigraphic models, information from gravity cores and boreholes compiled from various 

sources was taken into account. A map of borehole and core locations is given in Fig. 4.2. 
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Fig. 4.2: Map of the locations of gravity cores and boreholes with data available to this study. Yellow 
dots: Long gravity cores recovered during cruise ‘MD139 – ASSEMBLAGE 1’ on board the French R/V 
‘Le Marion Dufresne’ in 2004. Blue dots: Gravity cores recovered during cruise ‘BLASON II’ in 2001. 
Red dots: Locations of oil and gas exploration wells drilled in the Romanian sector of the Black Sea on 
behalf of Petrom SA. Green dots: Oil and gas exploration wells in the Bulgarian sector of the Black 
Sea. Orange dots: Oil and gas exploration wells drilled on behalf of the Turkish TPAO and Turkey 
Westates Petroleum (e.g., Gillet, 2004). 

 

4.1.2.1 Gravity cores 

 

A research cruise on board the French research vessel ‘Le Marion Dufresne’ was carried 

out in the ASSEMBLAGE project in 2004 (‘MD139 – ASSEMBLAGE 1’). A copy of the cruise 

report can be obtained online under: http://www.ifremer.fr/assemblage/documents/ 

ASSEMBLAGE1-Mission_Rapport.pdf 
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The ‘Marion Dufresne’ features the dedicated giant piston coring system ‘Calypso’ that 

allows deployment of gravity corers with coring tubes up to a total length of 75 m (this 

limitation is due to the length of the gangway where the coring system is installed). During 

the ASSEMBLAGE 1 cruise, tube lengths of up to 55 m were used to recover sediment cores 

from 45 coring stations. Lithostratigraphic descriptions and photographic documentation are 

available for every core. The stratigraphic log contains information on sedimentary 

structures, standard lithology, sediment colour and other specific observations such as clasts 

or erosion surfaces found in the cores. Sediment samples from some cores were also dated 

for stratigraphic correlation using AMS-14C measurements. 

 

More than 50 shorter gravity cores (length up to 5 m) were recovered during the 

BLASON II cruise of 2001 (Fig. 4.2). Limited age dating was carried out on these cores as 

well.  

 

4.1.2.2 Industrial borehole data 

 

Numerous deep industrial oil and gas exploration wells have been drilled in the western 

Black Sea, especially in the Romanian and Ukrainian sectors. Due to the mostly disappointing 

exploration results, data from many of them have been made available for scientific 

research. 

 

Stratigraphic, depth and to a minor extent also lithological information from 60 boreholes 

in Romania and the Romanian Black Sea were available for interpretation. Additionally, 

stratigraphic and lithologic depth profiles from more than 20 boreholes in the Ukraine and 

the Ukrainian Black Sea could be evaluated for this study (Fig. 4.2). 

 

Important information could also be retrieved from two boreholes (Igneada and 

Karadeniz) in Turkish waters in the southwestern Black Sea for stratigraphic correlation (Fig. 

4.2). 

 

4.1.3 Bathymetry 

 

The bathymetric data used to create the maps and terrain models presented in this study 

are compiled from various public sources, such as the ETOPO2 global relief dataset derived 

from satellite altimetry observations and shipboard echo-sounding (Smith & Sandwell, 1997) 

(grid accuracy: 2 minutes; data can be obtained online at: http://www.ngdc.noaa.gov/mgg/ 
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gdas/gd_designagrid.html). These data have been refined using depth measurements 

(derived from echo-sounding or reflection seismic data) obtained during the various research 

cruises that contributed to the database of this study. In addition, very-high resolving 

bathymetrical data were acquired using the hull-mounted multibeam echo-sounders onboard 

the French research vessels ‘Le Suroît’ (Simrad EM300) and ‘Marion Dufresne’ (Thomson 

Seafalcon 11) during the BLASON and ASSEMBLAGE cruises. These cover a number of 

spatially limited areas off the Bosphorus Strait, in the Viteaz Canyon, on the Danube fan and 

on the Romanian shelf. 

 

4.2 Methods 

 

4.2.1 Seismic stratigraphy 

 

To establish a model of the stratigraphic relationships between depositional bodies 

identified by means of seismic interpretation, seismic stratigraphic techniques were used. 

Seismic stratigraphy is based on the principles of seismic sequence and seismic facies 

analyses that were originally introduced by Vail, Mitchum and co-workers (Vail et al., 1977; 

Mitchum, 1977) to integrate seismic interpretation into a sequence stratigraphic framework. 

Sequence stratigraphy itself tries to correlate genetically related facies within models of 

chronostratigraphically significant depositional surfaces (Van Wagoner et al., 1990). 

 

 
 

Fig. 4.3: Model of the different reflection terminations that determine the type of an unconformity or 
sequence boundary; after Vail et al. (1991). 
 

According to the definition of Mitchum (1977), a stratigraphic ‘sequence’ is a relatively 

conformable succession of genetically related strata bounded by unconformities or their 
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correlative conformities. An ‘unconformity’ in the sense of seismic stratigraphy is a surface 

separating older from younger strata along which there is evidence of subaerial exposure 

and erosion resulting in a significant hiatus. A ‘conformity’ on the other hand shows no sign 

of erosion or non-deposition (Van Wagoner, 1988). By interpreting the terminations of 

reflectors, the type of an unconformity can be identified from seismic data: Onlap, downlap 

or toplap mark unconformities due to non-deposition, while erosional unconformities are 

charac-terized by truncated reflectors (Fig. 4.3, Vail et al., 1991). 

 

The development of seismic stratigraphic sequences and their relative spatial geometry 

reflect the cycles of relative sea-level. During periods of rising or falling sea-levels, 

characteristic successions of depositional systems (so-called systems tracts) are formed; 

these are divided by major marker surfaces (Van Wagoner et al., 1990; Brown & Fisher, 

1977). One seismic stratigraphic sequence corresponds to one complete sea-level cycle and 

is made up of the following elements: the basal sequence boundary, lowstand systems tract, 

transgressive surface, transgressive systems tract, maximum flooding surface, highstand 

systems tract and the concluding upper sequence boundary. A short description of the 

depositional characteristics of these elements according to Van Wagoner et al. (1990) is 

given below. Figure 4.4 shows their spatial composition at a model continental margin with a 

shelfbreak. 

 

A sequence begins with the lowstand systems tract formed during periods of 

relatively low sea-levels above the basal sequence boundary (Fig. 4.4). Depending on the 

nature of the shelfbreak in the observed depositional space, the lowstand systems tract 

might be composed of one or two distinct units: the lowstand fan and the lowstand wedge. 

If a well-defined shelfbreak exists and the sea-level fall is sufficiently large, a lowstand fan 

develops which may be composed of a number of slope and basin-floor sedimentary fans. A 

lowstand wedge develops also where a distinct shelf-edge is absent or if the sea-level fall is 

not large enough. This wedge is built up by a progradational set of parasequences. The 

prograding depositional pattern might continue also if the falling sea-level reaches a 

stillstand (or even begins to rise slowly) because of the at best small increase in 

accommodation space in combination with a relatively high sediment input. 

 

Retrogradational deposited parasequences characterize the transgressive systems 

tract that forms above the transgressive surface which marks its lower boundary (Fig. 

4.4). The deposition of a transgressive systems tract is controlled by the additional 

accommodation space that is created when the sea-level rises at a rate faster than it could 
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be compensated by sedimentation. At the top of the transgressive systems tract, the 

maximum flooding surface forms, it marks the period of the fastest sea-level rise. 

 

 
 

Fig. 4.4: Stratal patterns in a depositional sequence that develops in a basin with a shelfbreak. From 
Van Wagoner et al. (1990). The sequence is composed of lowstand, transgressive and highstand 
systems tracts bounded by unconformities and their correlative conformities (a ‘Type-1’ sequence in 
the sense of Van Wagoner et al., 1988). 
 

When the rate of sea-level rise slows down, the highstand systems tract begins to 

form (Fig. 4.4). It develops above the maximum flooding surface until the sea-level cycle 

reaches its upper peak or even slowly begins to fall again. During this period, the available 

accommodation space is more-or-less constant, resulting in the deposition of aggradational 

to progradational parasequences. When the sea-level starts to fall at a faster rate, the 

upper sequence boundary is formed and the development of the sequence is complete. 

 

4.2.2 Subsidence Analysis 

 

The sequence stratigraphic interpretation of the depositional patterns in the western 

Black Sea requires reconstructing the ‘geohistory’ of the region (Van Hinte, 1978): Strata 

that are found in a certain present-day depth and with certain present-day lithological 

parameters need to be transformed to their state at the time of deposition to allow drawing 

conclusions about the paleo-depo-environment. 
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By carrying out a geohistory analysis, subsidence and sediment accumulation can be 

quantified as a function of time. To do so, three corrections need to be applied to the 

present stratigraphic thickness of a sediment layer (Allen & Allen, 1990): 

 

• Decompaction: Correction for the compaction of layers due to the progressive loss 

of porosity with increasing burial depth. 

 

• Paleobathymetry: The water depth at the time of deposition must be referenced to 

a constant datum (such as the present-day sea-level). 

 

• Absolute sea-level fluctuations: Sea-level changes through time must be 

considered relative to the present sea-level. 

 

 
 

Fig. 4.5: 1D-Airy backstripping (e.g., Steckler & Watts, 1978) of two columns of crust (C) and upper 
mantle (M) in isostatic equilibrium before (loaded) and after (unloaded) backstripping. See text for an 
explanation of the abbreviations. 

 

Added load due to sedimentation in a basin causes additional subsidence of the 

basement, because seawater (ρwater = 1.03 kg m-3), or less commonly air, is replaced by 
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sediments with a much higher density (ρavg. sediment = 2.5 kg m-3). The total subsidence that 

affected the basement is thus partitioned into subsidence due to sediment load on the one 

hand and tectonically driven subsidence on the other (Allen & Allen, 1990). The separation 

between the two depends on the assumption of the lithospheric isostatic response: In simple 

models, any load is compensated locally (Airy isostasy; e.g., Steckler & Watts, 1978), 

whereas more complex calculations consider a lateral transmission of stress and deformation 

through a regional flexure of the lithosphere (Watts et al., 1982). 

 

To remove the effect of sediment load from the total subsidence and thus to quantify the 

amount of subsidence that can be assigned to tectonic activity, a technique called 

‘backstripping’ is applied (Fig. 4.5). Hereby the stratigraphic record is used to quantify layer-

by-layer (form younger to older layers) the depth in which the basement would be in the 

absence of the load that is represented by the respective layer. A commercial software 

package for geohistory analysis (‘Basin Works’, for Apple Macintosh computers) was used to 

perform the backstripping calculations in this study. 

 

Figure 4.5 shows the simple case of backstripping under the assumption of Airy-isostasy 

with two lithospheric columns loaded and unloaded with a sediment layer. Balancing the 

pressure at the base of the two columns gives: 

 

 gxTggYTgSgWg mcwicisidiw ρρρρρρ ++=++ *  (1) 

 

where Wdi, S*
i, Yi are the water depth, decompacted sediment thickness and tectonic 

subsidence of the ith stratigraphic layer, g is average gravity, T and ρc the mean crustal 

thickness and density respectively, ρm the mantle density and ρw and ρsi the densities of 

water and decompacted sediments. Equation (1) can also be written as: 

 

 )(* TYTSWx sliiidi +Δ+−++=  (2) 

 

where ∆sli is the sea-level change. Given equations (1) and (2), the following ‘backstripping 

equation’ can be derived: 
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In this way, the tectonic subsidence Yi can be determined directly from the observed 

stratigraphic data. The first term in equation (3) is a water depth term, the second is a 

sediment loading term and the third a sea-level loading term. 

 

The equations above describe the simplified case of one (the ith) sediment layer. In 

practice, the procedure needs to be carried out for a number of layers. A sequence of 

stratigraphic units needs to be restored for each time step by decompacting the younger 

units and compacting the older ones. In this case, the tectonic subsidence is calculated from 

the total sediment thickness and the average density of the entire sedimentary column at a 

particular time. The mass of the total sediment column must equal the sum of the masses of 

all the individual stratigraphic layers, so that: 
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where n is the number of stratigraphic units in the sequence at any one time. It follows then 

that: 
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The total tectonic subsidence Y can then be obtained by substitution in the backstripping 

equation (3): 
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Backstripping attempts to correct the stratigraphic record for the effects of loading in the 

past, so that the thickness and density of a stratigraphic layer measured today must be 

adjusted to the effects of post-depositional processes such as compaction. The compaction 

of sediments is a function of the burial depth and has an immediate impact on the porosity 

φ. For normally pressured sediments, the depth-porosity curve is given by an exponential 

relationship (Athy, 1930; Hedberg, 1936; Rubey and Hubbert, 1960; Allen and Allen, 1990): 
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 cye−= *0φφ  (7) 

 

where c is a coefficient determining the slope of the φ-depth curve, y is the burial depth and 

φ0 is the is porosity at the surface (Rubey & Hubbert, 1960; Hedberg, 1936; Athy, 1930). To 

calculate the thickness of a sediment layer at a time in the past, it must be moved up the 

depth-porosity curve. If a layer at the present depths of y1 and y2 is moved to shallower 

depths y’1 and y’2, the amount of water-filled pore space can be calculated from equation (7) 

by integrating the porosity over the depth interval (Allen & Allen, 1990): 
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which gives on integration 
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The total volume of a sediment layer (Vt) results from the addition of the volumes of the 

sediment grains (Vs) and the pore-filling water (Vw) respectively, so that 

 

 wts VVV −=  (10) 

 

Considering a unity cross-sectional area, it follows from (9) and (10) that 
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If a sediment layer is decompacted the sediment volume remains constant, only the 

water volume is increased. From (11), it follows that in a unit area sedimentary column 

between y’1 and y’2 the thickness of water is 
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After decompaction, the thickness of the sediment layer is the sum of the thickness of 

the sediment grains (11) and the thickness of the water (12). That is: 
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 ws yyyy ''' 12 −=−  (13) 

 

Therefore, 
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This is the general decompaction equation corresponding to an upward displacement of a 

sediment layer on an exponential depth-porosity curve; it can be solved by numerical 

iteration, making it well-suited for computer-based calculations (Allen & Allen, 1990). 
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5. Interpretation of reflection seismic profiles from the western Black Sea 

 

5.1. Introduction 

 

The sea-level of the global oceans varied during the Quaternary between approximately -

125 m and +10 m, following the advance and retreat of continental ice covers (Martinson et 

al., 1987; Shackleton, 1987; Imbrie et al., 1984; van Andel & Lianos, 1984). In contrast to all 

other marine areas, the Black Sea is linked to the global oceans only through a chain of 

narrow and shallow sea straits. These connect first the Atlantic Ocean with the 

Mediterranean Sea (Strait of Gibraltar), then the Mediterranean and Marmara Seas 

(Dardanelles) and finally the Marmara Sea with the Black Sea (Bosporus Strait). The 

Bosporus Strait is particularly shallow, with a present-day sill depth of not more than -32 m. 

Whenever the global sea-level drops below this level, the Black Sea is decoupled from the 

global ocean and transformed into an inland lake. During such lake stages, a potentially 

independent sea-level can develop, so that the global sea-level estimations cannot 

automatically be assigned to the Black Sea. 

 

A collection of reflection seismic profiles, borehole information and sediment core data 

was available to this study of the sea-level history of the Black Sea (see section 4.1 for a 

detailed description of the database and data sources). Reflection seismic profiles of high 

and very high resolution from cruises carried out by various institutions for both scientific 

and commercial purposes were interpreted and calibrated with borehole and core 

information to study fluctuations of the Black Sea-level during the Quaternary and the 

Holocene transgression after the last glacial maximum. 

 

5.2. South western Black Sea shelf 

 

The study area on the south western Black Sea shelf has a more-or-less uniform width of 

around 30-50 km. The continental slope is moderately steep with the highest gradients 

found in the westernmost parts of the Black Sea off central Bulgaria. More to the north, close 

to the neighboring Romanian Black Sea sector, the shelf becomes notably narrower and the 

continental slope steeper (Fig. 5.1). 

 

The map shown in Fig. 5.1 gives the location of the available seismic profiles from the 

BLASON 1, BLASON 2 and several IO-BAS cruises in this area. The examples presented in 

this chapter are also marked. 
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Fig. 5.1: Map of the southwestern Black Sea; the inset gives the map location. Given are the positions 
of reflection seismic lines acquired during the BLASON 1 and 2 cruises (green lines; bold green lines 
denote that both multi-channel and Chirp data are available) as well as lines acquired by the Institute 
of Oceanology of the Bulgarian Academy of sciences (IO-BAS). The yellow dots give the position of the 
exploration wells Igneada and 6-Delfin. Isobaths are in meters. The line labels refer to the examples 
shown in this chapter. Survey abbreviations in profile labels: B2 – Blason 2; BGSR88 – Sredetska 1988; 
BGG90 – Godin 1990; BGKL90 – Kaliakra 1990; see section 4.1.1 for detailed survey descriptions. 

 

Stratigraphic calibration of the reflection seismic profiles was based on Gillet (2004), in 

which two BLASON 2 profiles were correlated to the Turkish exploration borehole ‘Igneada’ 

(Fig. 5.2) on the southwestern Black Sea shelf. This correlation permitted the delineation of 

an erosional unconformity attributed to sea-level lowstands during a time period that 

correlated to the Messinian event in the Mediterranean as well as the Mio-Pliocene and the 
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Pliocene/Quaternary boundaries (Gillet, 2004). These are shown exemplarily on BLASON 2 

line 56 (Fig. 5.3). For the purpose of this study, the Pliocene/Quaternary boundary is 

considered to be the baseline for tectonic and sedimentary estimates derived from the 

seismic stratigraphic interpretation presented in this chapter; every younger horizon will be 

normalized using this boundary, both spatially and in geological time. 

 

 
 

Fig. 5.2: Correlation of the BLASON 2 profile 56 (compare with a larger section of this profile shown 
in Fig. 5.3) with the Turkish exploration well Igneada as presented by Gillet (2004; modified). This 
correlation allows the Mio-Pliocene and Pliocene/Quaternary boundaries to be established on the 
example reflection seismic line and through extrapolation in wide areas of the south western Black 
Sea. The Pliocene/Quaternary boundary serves as the ‘baseline’ for the tectonic and sedimentary 
reconstruction in this study. 

 

The typical profiles BLASON 2-56 (Fig. 5.3) and BGSR 88-14 (Fig. 5.4) clearly document 

the influence of tectonic subsidence on the southwestern Black Sea shelf. Buried graben 

structures occur on the inner shelf within the Miocene and Pliocene formations, while the 

middle shelf is affected by normal faulting that was active at least until the mid-Quaternary. 

Large slump deposits in the adjacent sediments might  
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Fig. 5.3: Multi-channel high-resolution (mini GI-gun) line 56 of the BLASON 2 cruise. The lower 
stratigraphic boundaries between the Miocene, Pliocene and the Quaternary were identified using the 
correlation to the industrial borehole Igneada (Fig. 5.2; Gillet, 2004). The seismic-stratigraphic units 
U4 to U1 follow the nomenclature of Aksu et al. (2002a). The red rectangle shows the position of Fig. 
5.4; the deltaic systems ∆B (U2) and ∆A (U1-A) are shown in detail in Fig. 5.6 and 5.7.   
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Fig. 5.4: IO-BAS sparker profile BGSR 88-14, recorded on the southern Bulgarian shelf. This example 
shows the influence of extensional tectonics on Mid-Quaternary sediments on the middle shelf. The 
profile is located approximately 25 km north of BLASON 2-56 (Fig. 5.3), indicating the strong lateral 
variability of tectonic structures in this region. 
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also indicate Quaternary tectonic movements (Fig. 5.4). The higher resolving sparker profile 

BGSR 88-14 shows that synclinal structures are also present in Mid-Quaternary deposits 

about 25 km north of the previous example. 

 

These findings suggest that the southwestern Black Sea shelf was, at least during Late 

Tertiary and up to the Mid-Quaternary, under a long-lasting extensional tectonic regime, and 

that this area was affected by a subsidence that is temporally and spatially highly variable. 

The strongest movements seem to be confined to the middle shelf; on the outer and inner 

shelf the tectonic influence is less obvious. Thus, for a reconstruction of the depositional 

history of the region and its implications for the sea-level development, the role of 

differential vertical tectonics must be evaluated and taken into account. 

 

 
 

Tab. 5.1: Comparison of the seismic stratigraphic model of Aksu et al. (2002) and the model 
presented in this study. Please note that the time axis is linear. Unit 1 in the sense of Aksu et al. 
(2002) is supposedly Late Pliocene to Quaternary in age, and the equivalent Unit 4 in this study is 
Quaternary in its entirety. 

 

5.2.1. Late Pliocene-Quaternary sedimentary units 

 

Four seismic stratigraphic units (named U4 to U1 in chronological order) have been 

identified on seismic profiles from the southwestern Black Sea. These rest on a Late Pliocene 

‘basement’ and represent therefore the time span Early Quaternary to present. 



 Chapter 5 – Interpretation of reflection seismic profiles from the western Black Sea  

82 

Aksu et al. (2002a) presented a stratigraphic and sedimentary model for the 

southwestern Black Sea in which the slightly longer period from the Mio-Pliocene the 

present-day is subdivided into five seismic-stratigraphic units; a detailed description of their 

classification is given in section 3.5.3. Correlating this model with the seismic-stratigraphic 

reconstruction presented in this study gives the following results: 

 

• The upper (Quaternary) part of the Late Pliocene to Quaternary Unit 1 in the sense of 

Aksu et al. (2002a) is equivalent to Unit 4 (U4) herein. 

 

• U4 is the oldest of four seismic-stratigraphic unit interpreted in this study. Together 

with the younger units 3 to 1-A they represent the glacial periods of the Upper 

Quaternary characterized by low global sea-levels. Aksu et al. (2002b) assign these 

units to a single larger unit A that is then subdivided into four glacial episodes called 

∆4-∆1 in accordance with the occurrence of deltaic sedimentary systems. 

 

• The youngest sedimentation after the last glacial maximum is divided into the sub-

units U1-B and U1-C in this study, while Aksu et al. (2002a) presented a sequence of 

three divisions B to D. Table 5.1 shows a graphical comparison of the two models. 

 

Based on the stratigraphic correlation described in section 5.2, the Pliocene-Quaternary 

depositional succession could be identified throughout large areas of the southwestern Black 

Sea shelf. Figures 5.6 and 5.7 show how the stratigraphic pattern is developed in the 

northern Turkish sector and the central Bulgarian sector: The overall arrangement of the 

four seismic stratigraphic units remains similar, but the sedimentary packages on the middle 

and outer shelf dip at a slightly smaller angle basinward (compare Figs. 5.6 and 5.7). As a 

result, the older units U3 and U4 occur at the shelf surface (except for a thin cover of very 

young - U1-B to Recent - sediments) in landward-shifted positions. 

 

The northern profile BGSR 88-14 (Fig. 5.4) suffers from a typical, notably diminished 

quality of the seismic image. The map of Fig. 5.5 (after Gillet, 2005) shows the spatial extent 

of the affected areas: A large part of the outer shelf in the Romanian sector show a strong 

attenuation of the seismic signal, areas off the Danube delta and the Bulgarian coast show 

moderate to strong attenuation.  

 

The degree of signal attenuation varies from moderate to complete. A high content of 

free gas in shallow sediments is most likely responsible for these effects, since many very-
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high resolution seismic profiles show clearly-defined shallow gas fronts. To what degree the 

occurrence of free gas in the sediments affects the quality of the seismic image depends on 

the type of equipment used for data acquisition. Large-scale industrial seismic profiling 

suffers to a much lesser extent than seismic measurements carried out with scientific 

equipment aimed particularly at a high resolution in shallow sediments, rather than at a high 

penetration. 

 

 
 

Fig. 5.5: Areas of the Western Black Sea shelf with noticeable to strong attenuation of seismic signals 
and subsequently diminished seismic imaging quality. Mapping is based on findings presented by Gillet 
(2005). 
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Fig. 5.6: Multi-channel high-resolution (mini GI-gun) line 57 of the BLASON 2 cruise showing the 
seismic-stratigraphic units U4 to U1 on the northern Turkish shelf. The Miocene to Quaternary 
boundaries are extrapolated from line BLASON 2 – 56 (Fig. 5.3). 
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5.2.1.1. Late Pliocene 

 

Late Pliocene sediments form the ‘baseline’ for the seismic stratigraphic interpretation 

described below. Profiles that reach far landwards (such as BLASON 2-56; Fig. 5.3) show 

that Pliocene deposits can be found at the seafloor of the inner southwestern Black Sea shelf 

where it is shallower than approximately 75 m. The thin Pliocene succession is characterized 

by a slower sedimentation rates and/or slower subsidence than in the Quaternary. Its 

thickness across the shelf is relatively uniform, in contrast to the younger Quaternary 

deposits which thickens rapidly toward the outer shelf and slope. 

 

Figure 5.6 shows signs of extensional faulting that displaced the Pliocene and older 

sediments of the inner and middle shelf and formed buried graben structures. Tectonic 

activity apparently ceased during the Upper Pliocene, leaving the youngest Pliocene 

sediments, the Plio-Quaternary boundary, as well as the Quaternary section unaffected. 

 

The Pliocene deposits are represented by a series of mostly continuous reflectors of 

relatively strong amplitudes. Very-high resolution Chirp sonar data (Fig. 5.8) show that the 

layer thickness is much larger and the dip towards the basin is smaller in the Pliocene than in 

the Quaternary. On the inner and middle shelves, the Pliocene is strongly eroded and is 

overlain only by a thin, Late Quaternary to Holocene layer. Emerged layer boundaries give 

the erosional surface a characteristically uneven appearance, which is probably a result of 

tectonic tilting and subsequent e stratal rosion. Aksu et al. (2002a) described the same 

erosional pattern. However, they rejected a tectonic origin and preferred the interpretation 

of erosional oblique-progradational clinoforms. The unconformity rapidly deepens on the 

outer shelf towards the shelfedge, where it is buried underneath a Quaternary section some 

1,000 ms TWT in thickness (Fig. 5.6). 

 

5.2.1.2. Quaternary 

 

5.2.1.2.1. Unit 4 

 

The oldest seismic sequence above the Late Pliocene baseline is unit 4 (U4). It overlies in 

the southern part of the study area (northern Turkish shelf) the Pliocene-Quaternary 

unconformity described in the last section. The Figures 5.3 and 5.6 show this unconformity 

and U4 in two different resolutions. 
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Fig. 5.7: Multi-channel high-resolution (mini GI-gun) line 66 of the BLASON 2 cruise showing the 
seismic-stratigraphic units U4 to U1 off Bulgaria. Compared to the more southerly profiles 56 and 57 
(Figs. 5.3 and 5.6), the data quality is significantly diminished due to high concentrations of free gas 
in the sediments. 
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The distinct character of the Plio-Quaternary boundary appears to have developed only 

locally on the northern Turkish shelf. It is not well recognizable on other profiles and has not 

been described by other authors (e.g., Aksu et al., 2002a). 

 

The surface distribution of U4 is shown in Fig. 5.9. This unit is covered over large areas 

by a thin layer of Holocene to Recent sediments (Unit 1, Chapter 5.2.1.2.4). Along the 

southwestern shelf, U4 is distributed in a narrow band on the inner shelf between the 50 m 

isobath and the coast line. Father north where the shelf starts to widen, it occurs in a 

broader area also at greater water depths of up to around 150 m. 

 

Unit 4 comprises a uniform, gently basinward-dipping sequence of mostly continuous 

reflectors. Multi-channel seismic profiles show the divergent character of the reflectors on 

the shelf, leading to an increase in thickness towards the deep basin. The maximum 

thickness of U3 is reached close to the present-day shelfedge (Fig. 5.3, Fig. 5.6). 

 

Within U4, just above the Plio-Quaternary unconformity, a deltaic system (ΔD in Fig. 5.3) 

built up by sedimentation close to a paleo-shelfedge during an early Quaternary sea-level 

lowstand can be recognized. Based on the seismic data available for this study, the spatial 

extent of ΔD cannot be determined, because the profiles do not reach the its landward 

termination and the density of seismic lines in the vicinity is low. 

 

The internal sedimentary configuration of U4 is imaged in detail on very high resolution 

Chirp profiles (Fig. 5.8). It consists of a set of progradationally-stacked reflectors with high 

amplitudes and good continuity. Individual layers can be of varying thickness and external 

form. Reflector dips decrease towards the basin to slightly lower angles than those observed 

in the older units. 

 

The top of U4 is truncated by an erosional angular unconformity that divides U4 deposits 

from the overlying younger seismic unit 3 (U3). It runs subparallel to the basal unconformity. 

In addition to these regional unconformities that can be observed throughout the entire 

southwestern part of the study area, a number of minor internal unconformities subdivide 

the sedimentary succession of U4. These secondary unconformities appear to be developed 

only locally as they cannot be traced between adjacent seismic lines. They suggest clearly 

that differential tectonics and sedimentary environment variability affected the development 

of the western Black Sea shelf only on a local scale. For a quantitative description of the 



 Chapter 5 – Interpretation of reflection seismic profiles from the western Black Sea  

89 

factors that lead to their formation a much denser seismic database would be necessary 

though. 

 

 
 

Fig. 5.9: Map showing the spatial distribution of the seismic stratigraphic Unit 4 (U4) projected to the 
present-day surface of the southwestern Black Sea shelf. The figure does not account for the thin 
layer of Holocene toRecent sediments that cover most of the seafloor in the study area. 
 

5.2.1.2.2. Unit 3 

 

Above the angular unconformity that separates the U4 and the younger Unit 3 (U3; Fig. 

5.3) a set of progradationally-stacked reflectors with high amplitudes and good continuity 

makes up Unit 3 (U3). Its seismic configuration is best seen on very high resolution Chirp 

sonar data such as the profile shown in Fig. 5.8. 
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The depositional pattern of the strata of U3 is more uniform than those of U4; they do 

not vary much in thickness and are mostly parallel. The average layer thickness is less than 

in U4, although the structural composition is comparable. 

 

 
 

Fig. 5.10: Map showing the spatial distribution of the seismic stratigraphic Unit 3 (U3) on the 
southwestern Black Sea shelf. The figure does not account for the thin layer of Holocene to Recent 
sediments that covers most of the seafloor in the study area. 

 

The penetration depth reached by the very high frequency Chirp signals is less than in the 

previous units and decreases upwards in the vicinity of the present-day shelfedge. Since the 

signal near the penetration limit decreases gradually with depth, it must be a result of 

changes in sediment composition rather than the occurrence of free gas in the sediments. 

This is also corroborated by the finer stratification of U3 compared to U4, the finer average 

grain size and the overall lower sedimentation rate. 
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Lower-resolution reflection seismic profiles show the stratigraphic context of U3 and the 

sea-levelimplications during this period. Coastal onlaps (C in Figs. 5.3, 5.6 and 5.7) mark the 

sea-level lowstand during the time of deposition of the lower part of U3. The upper part of 

U3 was deposited during the subsequent sea-level rise and highstand, leading to a significant 

amount of aggradation on the present-day outer shelf. Unit 3 is concluded by a major 

unconformity that marks a phase of non-deposition and erosion after the sea level has 

lowered again. 

 

In the southern and central Bulgarian sectors of the study area, the occurrence of Unit 3 

is limited to the outer and middle shelves. On the northern Bulgarian shelf, it is found in a 

more landward position, nearly reaching the present-day coastline in some areas (Fig. 5.10). 

 

5.2.1.2.3. Unit 2 

 

The deposition of Unit 2 (U2) started during a sea-level lowstand which led to the 

development of the unconformity separating it from the preceding Unit 3. While the sea level 

remained at or close to the paleo-shelfedge, a deltaic system comprising the oldest parts of 

U2 developed (ΔB in Figs. 5.3, 5.6 and 5.7) . 

 

The delta system ΔB is built up by characteristic sigmoidal sedimentary bodies shown in 

detail in Fig. 5.11. Here 11 individual bodies could be identified. Their internal reflection 

termination characteristics and their relative spatial geometry potentially give insight into 

small-scale high-order sea-level variations during the time of the formation of the delta 

system. 

 

An analysis of the spatial geometry of the sedimentary bodies within ∆B implies relatively 

stable sea levels during the early stages (1-2; Fig. 5.11) of the delta system development, a 

falling sea level at the transition from stage 2 to 3, stable conditions during stages 3 through 

6, rising sea levels during stages 7 and 8, followed again by falling sea levels (stages 9 and 

10) and a final sea-level rise at the youngest stage 11. Given the small number of profile 

that actually image this delta system, a generalized quantitative interpretation of such subtle 

features would be questionable. 
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Fig. 5.11: Details from BLASON 2 line 56 showing the deltaic system ∆B found at the base of Unit 2. 
Eleven individual sedimentary bodies were identified that together make up ∆B. Their relative 
positions (as indicated by the red dotted line that connects the location of the topset-to-foreset 
transitions during the different stages) show small-scale variability of the sea level while the delta 
system formed. Black arrows indicate the corresponding sea-level trends. See Fig. 5.3 for the location 
within profile BLASON 2-56. 

 

The shelfedge delta system ΔB is followed by a set of gently-dipping, prograding 

reflectors that reach the present-day seafloor in a narrow, coast-parallel stripe on the outer 

shelf in parts of the southern study area. This occurrence is situated around the 100 m 

isobath off southern and central Bulgaria, and slightly deeper towards the north. 
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Fig. 5.12: IO-BAS Boomer profile BGKL90-89, showing unit 2 (U2) on the northern Bulgarian shelf. 
The overlying unit 1 shows a typical arrangement of its subunits U1-A to U1-C. 
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On the northern Bulgarian shelf, U2 is broader across the shelf; at the boundary between 

the Bulgarian and the Romanian Black Sea sectors, U2 covers almost the entire shelf 

between the 50 m and the 200 m isobaths (Fig. 5.13). 

 

 
 

Fig. 5.13: Map showing the spatial distribution of the seismic stratigraphic Unit 2 (U2) at the surface 
of the southwestern Black Sea shelf. The thin Holocene to Recent sediment cover over most of the 
seafloor in the study area has been backstripped. 

 
A thin, discordant layer of youngest sediments (Holocene to Recent) overlies U2 in most 

areas (Fig. 5.11). Only in small, probably isolated spots does U2 crop out at the seafloor 

(one example is shown in Fig. 5.8); absence of the younger drape cover is probably due to 

post-depositional erosion. 

 

Chirp sonar data show significant differences between the seismic response of U2 and 

U3. In U3, there is a trend to lower penetration in its upper part, but even in the uppermost 
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section, a reflection pattern is still recognizable. Unit 2 in contrast is from the beginning 

completely transparent (Fig. 5.8). Coherent reflections other than from the seafloor itself are 

absent. 

 

5.2.1.2.4. Unit 1 

 

All the older seismic stratigraphic units starting with the Pliocene ‘baseline’ are truncated 

by a shallow, almost horizontal unconformity that marks the onset of the youngest seismic 

stratigraphic unit 1. This unit (U1) was presumably deposited during and since the last global 

sea-level lowstand (Latest Quaternary to Holocene). 

 

A number of minor internal unconformities within U1 mark small, high-order sea-level 

fluctuations at the Quaternary-Holocene boundary and within the Holocene. These 

unconformities divide U1 into three stratigraphic subunits with distinct depositional 

characteristics (U1-A, U1-B, and U1-C in chronological order). Figure 5.14 shows their stratal 

relationship on a Boomer profile off Bulgaria. 

 

5.2.1.2.4.1. Subunit U1-A 

 

The oldest subdivision of unit 1 (U1-A) represents sedimentation during the last glacial 

maximum, when the sea level remained at a level close to or below the paleo-shelfedge 

during the time of deposition. As the location of the shelfedge did not change significantly 

since the last glacial maximum, the spatial occurrence of sediments attributed to U1-A is 

restricted to an area close to the present-day shelfedge. It follows a narrow band centered 

roughly at the 100 m isobath (Fig. 5.15). 

 

Although the depositional characteristics of subunit U1-A vary somewhat across the 

western Black Sea shelf, they always comprise stacked, significantly aggrading, sigmoidal 

sediment bodies characteristic of a shelfedge delta complex. 
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Fig. 5.14: IO-BAS Boomer profile BGG90-42, showing the stacking relationship between the subunits 
of U1 on the Black Sea shelf off central Bulgaria. Here, dune-like structures that might be interpreted 
as coastal dunes are developed. These features are assigned stratigraphically to subunit U1-A. See 
text for discussions. 
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Fig. 5.15: Map showing the spatial distribution of the seismic stratigraphic Unit 1-A (U1-A) on the 
southwestern Black Sea shelf. 

 

In the southernmost part of the study area, subunit U1-A form a distinct shelf-edge 

deltaic system similar to those found within U4 and U2 (ΔA in Figs. 5.3, 5.6 and 5.7). Figure 

5.16 shows that this system consists of eight separate sedimentary bodies. The relative 

positions of their foreset-to-topset transitions (see discussion for ∆B in section 5.2.1.2.3) 

suggest a stable sea level, during the older stages 1 and 2, a falling level at the transition to 

stage 3, followed by a short interval of a constant level (stages 3 and 4). Stages 5 and 6 

suffered a falling sea level, whereas stage 7 and the concluding stage 8 are characterized by 

a final sea-level rise. 
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Fig. 5.16: Details from BLASON 2 line 56 showing the deltaic system ∆A in subunit A of unit 1 with its 
eight individual sedimentary bodies. Their relative positions (as indicated by the red dotted line that 
connects the location of the topset-to-foreset transitions during the different stages) show a small-
scale variability of the sea level while the delta system formed. Black arrows indicate the correspond-
ing sea-level trends. See Fig. 5.3 for position within profile BLASON 2-56. 

 

Farther to the north on the shelf off central Bulgaria, the development of a shelfedge 

deltaic system is less obvious. Instead, shore-parallel dunes overlie the prograding strata of 

U1-A (Fig. 5.14). They have a maximum thickness of around 10 ms TWT and are interpreted 

to represent aeolian dune fields that might mark a paleo-coastal environment (Wilson, 

1972). Sediments from dunes on the Romanian shelf cored during the BLASON 1 cruise 

yielded an age of around 9 ka. That a thin (~5 ms TWT) sediment drape covers these dunes 

suggests that dune formation is no longer active. 
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Fig. 5.17: Map showing the spatial distribution of the seismic stratigraphic Unit 1-B (U1-B) on the 
southwestern Black Sea shelf. 

 

Dune fields are wind-dominated deposits and their occurrence points to sedimentation in 

a dry climate, probably during the last glacial maximum. Thus, these deposits are considered 

a part of U1-A. The dunes are well-preserved, indicating that erosion during the Holocene 

transgression was negligible. They occur at a present-day water depth of 80-90 m. Assuming 

a mean storm wave-base of -30 m (Shcherbakov, 1979), the sea-level rise from about -85 m 

to at least -55 m must have been very rapid. Similar dunes at comparable water depths have 

been described on the Ukrainian shelf (Ryan et al., 2003), attesting to the widespread 

occurrence of these features. Coastal dunes, however, are absent on profiles from the 

southernmost and northern Bulgarian shelves (Fig. 5.4, Fig. 5.12), as well as the Turkish 

shelf (Fig. 5.3). Since the formation of these features on the outer shelf requires a 
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sufficiently low relative sea level, their absence might be another indication for differential 

vertical tectonic movements, which in this case would imply a smaller subsidence. 

 

5.2.1.2.4.2. Subunit U1-B 

 

The younger subdivisions of unit 1 (subunits U1-B and U1-C) were deposited during the 

postglacial sea-level rise and the Recent highstand. The areas in which sediments assigned 

to U1-B occur are shown in Fig. 5.17. At the southwestern end of the study area and off 

northern Bulgaria, U1-B occurs at subbottom depth of around 50 m, while it reaches >100 m 

offshore central Bulgaria. 

 

Very high-resolution Boomer and Chirp sonar data show that sediments of subunit U1-B 

fill the small topographic lows on the rugged erosional top surface of the older units U2 to 

U4 (Figs. 5.8, 5.12, 5.14 and 5.18). Since the total thickness of U1-B is never over 5 ms 

TWT, it cannot be distinguished on lower resolution conventional seismic data. 

 

U1-B is characterized by a landward-prograding internal configuration, suggesting 

spillover sedimentation during the initial phase of the postglacial transgression or during a 

time when the sea level remained close to the present-day shelfedge for a significant period 

of time. 

 

The existence of shelf-edge perched deltas younger than U1-A implies that the 

postglacial sea-level rise was not continuous but was interrupted after the deposition of 

subunit U1-A by minor fluctuations that led to the formation of the unconformity between 

U1-B and U1-C as well as the subsequent buildup of coastal dunes. 

 

5.2.1.2.4.3. Subunit U1-C 

 

The youngest among the three subunits of unit 1 is U1-C. This is a landward-thickening 

package comprising retrogradationally stacked wedges (Fig. 5.8) that cover large parts of the 

shelf (Fig. 5.19). It reaches a thickness of 20 ms TWT, with a thickening tendency towards 

the north, making it barely recognizable on conventional seismic records. 
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Fig. 5.18: Details of Chirp profile 66 recorded during the BLASON 2 cruise. Interpreting these 
features in this profile and in profile BGG90-42 (Fig. 5.14) as coastal dunes would imply that sea-level 
rise in the Black Sea during the Holocene was not uniform, but underwent fifth order cycles of 
fluctuations. 
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Figure 5.18 shows dune-like structures in subunit U1-C that resemble in shape and size 

the coastal dunes of U1-A. They overlie a well-developed angular unconformity that 

separates U1-A from the younger subunits. The assignment of these dunes to U1-C implies 

that they have a post-Early Holocene age. A thin sediment drape overlies the dunes found in 

U1-A (Fig. 5.14); it is however absent over the younger dunes in U1-C. Thus, whether the 

sedimentary system that constructed these dunes is now no longer active must remain 

uncertain. 

 

 
 

Fig. 5.19: Map showing the spatial distribution of the seismic stratigraphic Unit 1-C (U1-C) on the 
southwestern Black Sea shelf. 

 

The buildup of the dune-like features observed in the subunits of U1 must have taken 

place during times of subaerial exposure and low sea levels. A development during at least 
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two different phases of sea-level lowstand must be assumed: the first during and shortly 

after the last glacial maximum (Fig. 5.14) and the second during the post-Early Holocene 

after the sedimentation of subunit U1-B (Fig. 5.18). 

 

5.3. Northwestern shelf 

 

In contrast to the relatively narrow shelf of the southwestern Black Sea, the shelf 

broadens significantly in the northwest and reaches a width of almost 200 km. The slope 

gradient in the northwest is generally smaller than in the southwest. 

 

Even though a comparatively dense network of reflection seismic lines was available, an 

application of the Quaternary seismic stratigraphic model described in the preceeding 

sections to the northwest turns out to be difficult. Fig. 5.20 shows exemplarily interpretation 

and data quality on three profiles from this area. Two factors made seismo-stratigraphic 

interpretation on the northwestern Black Sea shelf difficult: 

 

• The lack of very high-resolution data covering the shelf of the Romanian sector (the 

majority of such data available for this study was provided by the Bulgarian National 

Institute of Oceanology, IO-BAS). Most of the available seismic lines consist of 

conventional air gun/streamer data, some acquired for industrial exploration and 

have a comparatively low resolution in the youngest stratigraphic units. These data 

cannot resolve the subtle seismic stratigraphic details necessary for a reconstruction 

of the youngest geological history. 

 

• The problematic data quality in widespread areas across the northwestern Black Sea. 

Figure 5.5 shows that in particular the areas close to the shelfedge are affected by a 

severe attenuation of the seismic signal. Deeper penetration here is, however, critical 

for our seismic stratigraphic analysis. 

 

Even if the detailed intra-Quaternary seismic stratigraphic classification of the south-

western shelf could not be extended northward, interpretation of the available seismic data, 

seismic velocity information in combination with borehole data acquired for oil and gas 

exploration permit mapping of the base of the Quaternary for the shelf of the entire 

northwestern Black Sea. This in turn yields valuable information on the regional subsidence 

history and its control by tectonic activity. 
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Fig. 5.20: Three typical profiles from the outer northwestern Black Sea shelf, showing the seismic 
characteristics of Quaternary deposits in this region. The profiles are sorted from south to north: A - 
Line 16 from cruise BLASON 1; B - BLASON 1, line 8. C - Line 36 of the 1994 survey for Total. See Fig. 
5.21 for profile locations. 
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Fig. 5.21 (previous page): Two maps of the northwestern Black Sea shelf; location is shown in the 
inset. Map A shows the color-coded depth distribution (in ms TWT) of the base of the Quaternary 
interpolated from mapping results using the seismic lines shown in green (BLASON), red (GHOST-
DABS), and purple (Total). Map B shows the distribution of thickness of the Quaternary section 
derived from map A color-coded in ms TWT. Bold black lines give the location of major fault systems 
(from Dinu et al., 2005). Abbreviations: VC – Viteaz Canyon, PCF – Peceneaga Camena Fault, STF – 
Sulina Tarkinkut Fault. Bold red lines in panel A mark the position of the profile in Fig. 5.20; numbers 
1 to 3 in panel B give the major structural subdivisions on the northwestern Black Sea shelf as 
described in the text (see below). 

 

The resulting depth distribution of the base of the Quaternary sediments on the 

northwestern Black Sea shelf and the corresponding thickness of the Quaternary section are 

shown in Fig. 5.21. Clearly visible is the three-tiered structural division in this part of the 

study area controlled by the major regional fault systems. 

 

In the south (southern Romanian to Bulgarian Sector; 1 in Fig. 5.21-B), the Quaternary 

section is thin with a thickness of not more than 400 ms TWT even on the outermost shelf. 

This thickness is uniform, averaging approximately 150 ms TWT. 

 

The central part (Romanian sector in the vicinity of the Viteaz Canyon; 2 in Fig. 5.21-B) in 

contrast shows the highest observed thickness of Quaternary sediments in the entire western 

Black Sea, reaching values of around 600 ms TWT close to the present-day shelfedge. In this 

area, mapping could be extended well below the shelfedge onto the continental slope where 

the Quaternary can reach a thickness of more than one second TWT. 

 

In the northeastern segment (Romanian to Ukrainian Black Sea sectors; 3 in Fig. 5.21 -B), 

the average thickness is again smaller, but more variable than to the south. Large thickness 

values of 450–500 ms TWT occur at the transition to the central area. They decrease 

gradually to the north and to the east. In the easternmost study area, the Quaternary 

thickness does not exeed 200–250 ms even at the shelf break. 

 

The depth and thickness distributions in Figure 5.21 show a good match between the 

implied structural segmentation of the northwestern shelf (as described above) and the 

location (mapped by Dinu et al., 2005) of the two most important fault systems in this 

region: The Peceneaga Camena Fault system (PCF) which stretches from the Romanian 

mainland across the shelf to the southeast onto the continental slope south of the Viteaz 

Canyon, and the Sulina Tarkankut Fault system (STF) that originates at the PCF on the inner 

shelf and extends towards the east into the Ukrainian sector of the Black Sea. These systems 
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had a significant influence on local subsidence at least until the Lower Quaternary and this 

influence might even persist until today. The subdivision of the northwestern shelf into three 

major zones is controlled by the location of the fault systems: The southwestern zone (1) off 

northern Bulgaria and southern Romania lies south of the PCF and is characterized by 

relatively thin Quaternary deposits. The area around and to the northeast of the Viteaz 

Canyon (2) is situated between the PCF and STF and comprises the thickest Quaternary 

succession. The wide shelf areas in the northern Black Sea belong to zone 3 and are limited 

by the STF to the south. Quaternary sediments of this zone reach a low to intermediate 

thickness. 
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6. Seismic stratigraphic model and subsidence analysis 

 

6.1. Timing of Upper Quaternary sea-level fluctuations in the Black Sea 

 

The stacked prograding deltaic successions in the seismic unit U4 on the middle shelf and 

in U2 and U1 close to the present-day shelfedge (ΔD, ΔB and ΔA e.g. in Fig. 5.3) are 

interpreted to have developed during sea-level lowstands of fourth order sea-level cycles, in 

analogy to similar observations from the eastern Mediterranean, Aegean and Marmara Seas 

(Aksu et al., 1999; Piper and Aksu, 1992; Aksu et al. 1992 a,b; Piper and Perissoratis, 1991; 

Aksu et al., 1987). 

 

 
 

Fig. 6.1: Sea-level curves of the Black Sea for the past 200 kyr. The left panel shows the curve of 
Winguth et al. (1997; 2000). The centre panels give the sea-level curve constructed from the 
observed depths of the shelfedge deltaic systems (this study, green lines) and the global δ18O curve of 
Skene et al. (1998, red lines). Global δ18O stages are shown in the right panels for comparison. The 
yellow dots on the sea-level curve in the middle panel indicate fixed points in the sea level 
reconstruction according to the results of this study. High-frequency sea-level changes close to the 
deltaic systems ∆B and ∆A are exemplarily deduced from a detailed analysis of their internal 
depositional characteristics (Fig. 5.11, Fig. 5.16). 

 

Past sea-levels lowstands can be deduced from changing elevations of the deltaic topset-

to-foreset transition. The present-day depths of these transitions were determined assuming 

an average seismic velocity of 1,700 m/s for the overlying sediments. Corrections were made 
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assuming that the deltaic topset-to-foreset transition occurs in 15 m water depth (Aksu et 

al., 1999) and that the isostatic subsidence due to a water load of 90 m following postglacial 

sea-level rise is about 20 m (Smith et al., 1995). The corrected depths of the topset-to-

foreset transitions of the deltaic systems give the paleo-sea level at the corresponding ages 

(Table 6.1). The results obtained were then integrated into the global δ18O curve of Skene et 

al. (1998) (which provides sea-level estimates when the Black Sea was connected to the 

global oceans) to produce a regional sea-level curve for the Black Sea (Fig. 6.1). 

 

Another indicator for a sea-level lowstand occurs at the base of unit U2, where coastal 

onlap (C in Fig. 5.3, Fig. 5.6) has been observed. These are supposedly formed in a coastal 

environment under very shallow water conditions (Vail et al., 1977). The deepest coastal 

onlap found within a sequence therefore gives the lowest water level reached during the 

time period represented provided that the entire sequence is preserved. 

 

 
 

Tab. 6.1: Position of sea-level lowstands in the southwestern Black Sea deduced from topset-to-
foreset transitions of paleo-deltaic systems (ΔA, ΔB, ΔD, labels same as in Fig. 5.3) and coastal onlaps 
(C). The corrected depths account for an estimated water depth of ~15 m in which the topset-to-
foreset transitions were laid down and an isostatic subsidence of ~20 m due to a postglacial sea-level 
rise of ~90 m. 

 

The deltaic system found above the Pliocene/Quaternary unconformity is interpreted to 

be of mid-Quaternary age, probably representing sedimentation during the first of the major 

Quaternary glaciations (Günz, age around 1 ma) after a long phase of a relatively continuous 

decrease of global temperatures during the Early Quarternary. The two younger deltaic 

systems are presumably laid down during the last two global glacial epochs, namely during 

Riss (ΔB, 180-125 ka) and Würm (ΔA, ca. 65-12 ka). This age assignment for the delta 

systems suggests an age of around 500 ka (Mindel glacial) for lowstand C at the base of unit 

2. 
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6.2 Subsidence analysis 

 

The depth values deduced from the interpretation of lowstand indicators during the 

Quaternary need to be corrected for the influence of tectonic subsidence as suggested by 

the recognition of young tectonic features on the seismic profiles. To quantify possible lateral 

variations in tectonic subsidence, the effects of sediment compaction, subsidence due to 

sediment load and thermal subsidence must first be removed. 

 

 
 

Fig. 6.2: Idealized subsidence analysis profile across the southwestern Black Sea shelf (dashed black 
line) between the exploration wells Igneada in the southwest and 6-Delfin in the northeast (blue dots); 
the inset gives the map location. Yellow dots mark the measurement locations A-I (labels give the 
corresponding seismic profiles) at intersections of seismic profiles and the 100 m isobath. Survey 
abbreviations in profile labels: B2 – Blason 2; BGSR88 – Sredetska 1988; BGG90 – Godin 1990; BGKL90 
– Kaliakra 1990; see section 4.1.1 for detailed survey descriptions. 
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A first estimate shows that the effect of thermal subsidence is small (<2 m) for the time 

interval considered here, it will thus not be taken into account in the following. To assess 

systematic lateral changes in tectonic subsidence (or differential tectonic subsidence), the 

subsidence analysis method developed and refined by Bond et al. (1989), Bond & Kominz 

(1984), and Sclater & Christie (1980) was applied. 

 

On the southwestern shelf off Turkey and Bulgaria, two-way travel times (TWT) to the 

base of the Quaternary and of the units U2 and U1 at a water depth of 100 m on a number 

of high-resolution seismic profiles served as input data (see Fig. 6.2 for profiles and section 

4.1.1 for survey description). The measurement locations were projected onto a NNE-SSW-

striking idealized profile constructed by joining the boreholes 6-Delfin in the north with 

Igneada in the south by a straight line (Fig. 6.2). The results of the subsidence analysis are 

described in section 6.2.1. 

 

The initially measured seismic two-way-travel times in milliseconds were converted to 

depths using interpolated interval velocities for the Quaternary at each projected point. 

These velocities were calculated using values deduced from a correlation of mapped seismic 

horizons with borehole information, and (for interpolation) assuming that the velocity 

gradient between the two boreholes is linear. Figure 6.3 shows the initially measured travel 

times used for the subsidence analysis. 

 

To extend the subsidence measurements in the south onto the northeastern shelf, a 

second profile was constructed using the same basic principle as described above. This 

profile is located on the shelf in the northern part of the study area off Romania and the 

Ukraine. The results of the subsidence analysis along this second profile are described in 

section 6.2.2. 

 

Because of the lack of very high resolution seismic data and and inferior data quality 

throughout large areas of this region (most likely due to high gas content and coarse-grained 

sediments, see section 5.2.1), the intra-Quaternary units mapped in the southwest could not 

be extended to the northeastern Black Sea shelf with confidence. Consequently, only the 

depth to the base of the Quaternary was available for subsidence analysis along this profile. 

 

The available data for the northwestern subsidence analysis profile include information 

from a large number of boreholes. Thus, the lithology along the profile is known in great 

detail and the results are very reliable. 
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For subsidence analysis study on the northwestern Black Sea shelf, data from the 

following Romanian and Ukrainian exploration boreholes were evaluated: 6-Delfin, 12-Midia, 

1-Ovidiu and 75-Cobalcscu from the Romanian sector, and 1-Desantna, 2-Iliechevska, and 1-

Zentralna fromn the Ukrainian sector. The true depth of the base of the Quaternary deduced 

from the borehole information was used to calculate the interval velocity of the Quaternary 

sediments. 

 

 
 

Fig. 6.3: Input data for the subsidence analysis to quantify tectonic and sedimentary subsidence. 
Yellow dots give the measurement points, and the associated numbers denote TWT in ms to the 
horizon under consideration. The black dotted line is the NNE-SSW-striking idealized profile made by 
connecting the wells 6-Delfin and Igneada. The projected positions of the measurement points on this 
profile are also shown. Map extent is the same as in Fig. 6.2. 
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6.2.1 Subsidence analysis profile 1: Turkish and Bulgarian sectors 

 

The subsidence analysis along an idealized profile through the Turkish and Bulgarian 

shelves between the two exploration boreholes Igneada in the southwest and 6-Delfin in the 

northeast yielded the amount of tectonic subsidence and subsidence due to sediment loading 

at nine different measurement locations (Fig. 6.3). The input model was created using 

mapping results for the seismic horizons representing the base of the following seccessions: 

Quaternary, U3, U2 and U1. The curves shown in Fig. 6.4 depict the depth (converted to 

meters) of the horizons and the tectonic, sedimentary and total subsidence of these four 

horizons from their formation to the present-day. In Fig. 6.5, the subsidence history of the 

western Black Sea shelf is shown by the plots of tectonic and total subsidence against time 

at the measurement locations. 

 

The results presented herein suggest that tectonic subsidence in the Bulgarian sector of 

the western Black Sea varied more-or-less linearly during the Quaternary, increasing 

generally from NNE to SSW (Fig. 6.4). The only exception is during the Upper Quaternary, 

when it increased abruptly in the central segment of the idealized profile off central Bulgaria 

(D and E in Fig. 6.4), but kept to the general trend in both the northern and southern 

segments (A to C and F to I in Fig. 6.4). This suggests enhanced tectonic activities off 

central Bulgaria during the deposition of unit 1 in the Upper Quaternary. If the sedimentary 

sequences were laid down on a stable or tectonically uniformly subsiding shelf, they would 

form a succession in which the lowstand indicators shift up-sequence steadily basinwards 

and the shelfedge progrades (Aksu et al., 1992a, b). The profile Blason 2-56 (Fig. 5.3) shows 

that this is the case for the period between the lowstand indicators C and B, as well as B and 

A. Between the lowstands D and C, a large seaward shift of the coastline accompanied by an 

increase in depth of the indicators occurred. This suggests that during the Quaternary after 

the formation of onlap C, tectonic subsidence must have proceeded in a manner different 

from that of the preceding period. 

 

The Tables 6.2 through 6.5 summarize the results of the subsidence analysis along the 

idealized profile shown in Fig. 6.2. Table 6.2 shows the relative importance of tectonic and 

sedimentary subsidence in the observed total subsidence of a seismic stratigraphic interface 

at the different measurement stations A-I (see also Fig. 6.4). Table 6.3 gives the 

corresponding initial decompacted thickness values for the individual layers. With these 

values, the subsidence rates (Tab. 6.4) and decompacted sedimentation rates (Tab. 6.5) can 

be estimated. 
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Fig. 6.4: Upper panel: Present-day depth in meters of the four horizons considered in the subsidence 
analysis (base of Quaternary, base of U3, base of U2 and base of U1) projected onto a profile 
connecting the boreholes Igneada in the SSW and 6-Delfin in the NNE. The lower three panels give 
the amounts of tectonic, sedimentary and total subsidence of these four horizons from their formation 
to the present-day. 
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Tab. 6.2: Results of the subsidence analysis for the Quaternary of the Bulgarian sector of the western 
Black Sea shelf: Total, tectonic and sedimentary subsidence in meters for the four intervals base of 
Quaternary-base of U3 (bQt-U3), base of U3 to base of U2 (U3-U2), base U2 to base of U1 (U2-U1) 
and base of U1-Recent (U1-Recent) at the locations A to I (Fig. 6.2). 

 

 
 

Tab. 6.3: Results of the subsidence analysis for the Quaternary of the Bulgarian sector of the western 
Black Sea shelf: Initial decompacted thickness for the four intervals (bQt-U3), base of U3 to base of 
U2 (U3-U2), base U2 to base of U1 (U2-U1) and base of U1-Recent (U1-Recent) at the locations A to I 
(Fig. 6.2). 
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Tab. 6.4: Results of the subsidence analysis for the Quaternary of the Bulgarian sector of the western 
Black Sea shelf: Total, tectonic and sedimentary subsidence rates in meters per 1000 years for the 
four intervals base of Qaternary-base of U3 (bQt-U3), base of U3 to base of U2 (U3-U2), base U2 to 
base of U1 (U2-U1) and base of U1-Recent (U1-Recent) at the locations A to I (Fig. 6.2). 

 

 
 

Tab. 6.5: Results of the subsidence analysis for the Quaternary of the Bulgarian sector of the western 
Black Sea shelf: Decompacted sedimentation rates in meters per 1000 years for the four intervals 
base of Qaternary-base of U3 (bQt-U3), base of U3 to base of U2 (U3-U2), base U2 to base of U1 
(U2-U1) and base of U1-Recent (U1-Recent) at the locations A to I (Fig. 6.2). 
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Fig. 6.5: Quaternary subsidence history at the measurement locations (yellow dots on the map; map 
extent same as in Fig. 6.2). The darker curves (black to red) give the tectonic subsidence through 
time for each location, while the lighter curves (yellow to white) depict total subsidence (tectonic 
subsidence + subsidence due to sediment loading). 

 

6.2.2 Subsidence analysis profile 2: Romanian and Ukrainian sectors 

 

The subsidence analysis along profile 2 on the northwestern Black Sea shelf (Fig. 6.6) is 

based on mapping of the base of the Quaternary. The underlying depth and thickness 

distributions on the northwestern Black Sea shelf (measured in ms TWT) are shown in Fig. 

5.21. The extent of the mapped area is limited towards the deeper basin by the traceability 

of the corresponding horizon on the seismic profiles as this stratigraphic boundary is not 

necessarily marked by a coherent reflection and the area around the northwestern shelfedge 

is particularly prone to strong attenuation of seismic signals. Laterally on the shelf, however, 

the base of the Quaternary could be mapped throughout a continuous area that covers most 

of the Romanian and western Ukrainian Black Sea sectors. 
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Fig. 6.6: Map showing the position of the subsidence analysis profile 2 in the Romanian and Ukrainian 
sectors of the northwestern Black Sea (dashed black line). Yellow dots give the measurement loca-
tions (J-P) and borehole positions. Bold black lines mark major regional tectonic elements, namely the 
Peceneaga Camena fault (PCF) and the Sulina Tarkinkut fault (STF). Inset gives the map location. 

 

In the northern part of the study area, data from a number of oil and gas exploration 

wells provided a detailed lithology long the idealized profile shown in Fig. 6.7. These data in 

combination with the seismic stratigraphic interpretation already described provide the basis 

for subsidence analysis along the northwestern profile. 
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Fig. 6.7: Lithology of the Quaternary sediments along a profile on the northwestern Black Sea shelf 
derived from Romanian and Ukrainian borehole data. The dashed line on the map in the lower right 
(same extent as in Fig. 6.6) gives the profile through the wells 6-Delfin, 12-Midia, 1-Ovidiu, 75-
Cobalcescu, 1-Desantna, 2-Iliechevska, and 1-Zentralna (the first four wells are situated in the 
Romanian sector, the latter three in the Ukrainian sector). 
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Fig. 6.8: Three panels showing the amounts of tectonic, sedimentary, and total subsidence along the 
profile of Fig. 6.6. Each colour gives the measurements at a constant water depth. Grey arrows above 
the panels give the approximate locations of the major faults; grey arrows below the panels mark the 
location of boreholes. 
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A lateral correlation shows clearly how the two major regional fault systems divide the 

shelf into large isolated blocks that have significantly different Quaternary thicknesses (Figs. 

5.21 and 6.6): the Peceneaga Camena Fault system (PCF) extending from the Romanian 

onshore south of the Danube delta to the southeast in the southern vicinity of the Viteaz 

Canyon), and the Sulina Tarkinkut Fault system (STF) stretching from the PCF on the inner 

Romanian shelf to the east. 

 

 
 

 
 

Tab. 6.6: See next page for caption. 
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Tab. 6.6 (continued): Summary of results of subsidence analysis along the idealized profile 2 on the 
Romanian and Ukrainian shelves of the Black Sea between measurement points J (6-Delfin) and P (1-
Zentralna). See Fig. 6.6 for profile location. Measurements were made at six different water depths 
ranging from 100 m (A) to 200 m (F) in 20 m intervals. The upper panel in the panel-pairs A to F 
gives subsidence values (tectonic, sedimentary, and total) in meters, the lower panel the correspond-
ing subsidence rates in meters per kyr. Missing values are due to the fact that the seismic data quality 
did not allow the interpretation of the base of the Quaternary at all water depths at a measurement 
point. 
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Tab. 6.6 (continued): See previous page for caption. 

 

For the subsidence analysis, TWT of the base of the Quaternary were measured at water 

depths of 100-200 m in steps of 20 m at the locations J-P (Fig. 6.6). These times were then 

converted to depths using interpolated interval velocities derived from the borehole data. 

The resulting amounts and rates of Quaternary subsidence are summarized in Tables 6.6 A-

F. 
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The highest subsidence is found in the vicinity of the Viteaz Canyon (VC; Fig. 14) in the 

tectonic depression between the Peceneaga Camena and Sulina Tarkinkut faults. The 

southwestern and northeastern segments of the profile (south of the PCF and north of the 

STF, respectively) show smaller amounts of subsidence generally increasing to the 

southwest. Figure 6.8 summarizes the derived total, tectonic and sedimentary subsidence for 

the northwestern Black Sea shelf at the different measurement points along the analysis 

profile. 

 

This study attests to an underlying trend of increasing subsidence towards the deeper 

basin. This observation agrees with the model of an Atlantic-type margin subsiding at a 

constant rate about a fixed hinge line (Pitman, 1978; Watts and Ryan, 1976). 
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7. Quaternary development of the Black Sea level 

 

7.1 Sea-level reconstruction 

 

In the following, an attempt will be made to reconstruct the sea-level history in the 

western Black Sea. Firstly, the underlying larger-scale Quaternary climate fluctuations will be 

described. These fluctuations give rise to glacial and interglacial periods as well as fourth 

order sea-level cycles. Secondly, sea-level change during the past 25 kyr (the time period 

since the last glacial maximum) will be analyzed in detail. In particular, fifth and possibly 

sixth order sea-level fluctuations will be discussed, as the youngest geological history is 

imaged at a higher resolution in the data available. 

 

7.1.1 Large-scale sea-level fluctuations during the Quaternary 

 

Past sea-levels during the Quaternary in the Black Sea region can be deduced from 

seismic stratigraphic interpretation (depth levels at which a particular stratigraphic boundary 

occurs) combined with subsidence analysis results to account for the displacements that the 

boundary has experienced after its formation. 

 

Reconstruction of sea-level lowstands provides the framework for the following 

classification of the seismic stratigraphic units mapped in the western Black Sea and their 

implications to regional sea-level fluctuations. The oldest seismic stratigraphic unit U4 

mapped in the study area is dated to Early Quaternary times. It was deposited onto a 

‘baseline’ (in the sense of this study) of Miocene-Pliocene units strongly affected by 

extensional tectonics and subsidence. It is assumed that during the past 250 kyr regressive 

phases in the Black Sea correspond to the main glacial periods in Eurasia (Winguth et al., 

1997, 2000; Wong, 1994). Consequently, the development of the oldest of the four 

significant sea-level lowstand indicators, a deltaic complex found in U4 (lowstand indicator 

∆D), might be Günz glacial in age. The subsequent lowstand observed in U3 (lowstand 

indicator C) would then correspond to the Mindel glacial. The deltaic sequence found in unit 

U2 is assigned to the sea-level lowstand during the Riss glacial. This lowstand may have 

reached -100 m (Fedorov, 1978) or even around -125 m (this study, see text below). The 

lowstands of the Riss and Würm glacials are separated by an interglacial with a sea level that 

exceeded the present-day level by up to 12 m (Chepalyga, 1984; Fedorov, 1978; 

Shercheglov et al., 1977; Ostrovskiy et al., 1977; Izmaylov, 1977). 
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The depth converted measurements for the sea-level indicators of lowstand D is 174.3 m 

and of lowstand C is 242.3 m, a difference of 63 m. This apparently deeper position of the 

younger lowstand C can be attributed to the more proximal position of the deltaic succession 

that marks lowstand D and the subsequently smaller amount of subsidence that occurred at 

this position. 

 

Subsidence analysis at location A with a water depth of 100 m yielded 644 m of total 

subsidence since the beginning of the Quaternary (Tab. 6.2). The subsidence curves of Fig. 

6.5 suggest that approximately 550 m remain for the time since the development of 

lowstand D. A subsidence that decreases linearly landwards is typical of a shelf region that 

can be described by the fixed hinge line model (Pitman, 1978; Watts and Ryan, 1976). Since 

the northern part of the western Black Sea subsides linearly (profile 2; section 6.2.2), 

subsidence at the location of the lowstand D indicator (∆C; e.g. Fig. 5.3) must be on the 

order of 25 % of the measured subsidence at 100 m water depth. Given an uncorrected 

depth for lowstand D of 174 m, the estimated paleo-sea level would be slightly lower than 

the present-day level (-13 m). 

 

The observed uncorrected depth values for lowstands C and B are 242.3 and 165.8 m 

respectively, giving an apparent difference of 76.5 m. Subsidence analysis for location A 

(Tab. 6.2) yielded a total subsidence of 53 m for the 350 kyr (500 - 150 ka) during which 

unit U3 was deposited. Lowstand B, with an assigned age of 150 ka, lies within U2 just on 

top of the unconformity that divides the two units. If one assumes that the subsidence 

history of U3 and the oldest parts of U2 is approximately linear, then the total subsidence in 

the time interval base of U2 to base of ΔB is by interpolation 75 m. This amount is 

comparable to the apparent difference of 76.5 m between the lowstands C and B, suggesting 

that the apparent sea levels at the two lowstands are more-or-less identical, and that the 

depth difference can be attributed to subsidence in the time interval between the two 

lowstands alone. However, Aksu et al. (1999) showed that the deltaic system formed during 

lowstand B originated at about 15 m water depth, whereas the coastal onlap of lowstand C 

was presumably formed at sea level. Therefore the sea level during lowstand B was probably 

around 15 m higher than that during lowstand C. Lowstand D needs to be corrected in the 

same way to +2 m, moving it even closer to the present-day level. 

 

Lowstand A is interpreted to have formed during the Würm glacial around 20 ka. The 

total subsidence between lowstands B and A is presumably 12 m (difference between 87 and 

75 m, see above). This is less than the apparent difference of 21.3 m between the present-
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day depths of the lowstand indicators. Thus, sea-level during lowstand A must have been 

approximately 9 m higher than that during lowstand B. 

 

If the correction of 28 m total subsidence since lowstand A (Tab. 6.1) is subtracted from 

the uncorrected depth of the lowstand deltaic system ΔA of 144.5 m, then the calculated 

sea-level at lowstand A (Würm) after subsidence correction is 116 m below present sea level. 

In turn, the sea levels at lowstands B (Riss) and C (Mindel) must have been -125 and -140 m 

respectively. 

 

7.1.2. Small-scale sea-level fluctuations during the past 25 ka 

 

The sea-level curve compiled by Chepalyga (1984; red curve in Fig. 7.1) from fossil and 

microfossil data, strandlines, as well as lithostratigraphic and mineralogical information 

shows high-order sea-level fluctuations during the Holocene. His smoothed curve (red curve 

in Fig. 7.1) implies two phases of rapid sea-level rise, each succeeding a significant 

regression, at about 10.5 and 7.5 ka. The regressions, however, must have been more 

severe than suggested by Chepalyga (1984): The interpretation of seismic data presented 

here yielded sea-level lowstands of around -110 and -115 m (Fig. 6.1). These values are 

closer to those suggested by Ryan et al. (2003; orange curve in Fig. 7.1). In contrast to the 

results of this study that indicate a relatively slow sea-level rise over a longer period within 

the Holocene, both curves (red and orange curves in Fig. 7.1) imply that the last 

transgression led rapidly to sea levels close to the present and remained there with only 

minor fluctuations over the past 7 to 8 kyr. Other authors presented sea-level curves that 

feature a slower sea-level rise during the younger Holocene (Konikov et al., 2007, light blue 

line in Fig. 7.1; Ostrovskiy et al., 1977; green line in Fig. 7.1), but their models do not 

support strong regressions during the Holocene. 

 

At the last glacial maximum (LGM) around 20 ka, the Black Sea level reached a distinct 

lowstand. Different values for this lowstand have been reported by various authors: -90 m to 

-110 m (Fig. 7.1; Chepalyga, 1984), -98 m to -115 m (Popescu et al., 2004), - 100 m to -110 

m (Görür et al., 2001; Demirbag et al., 1999), -110 m (Ryan et al., 1997) and -110 m to -

130 m (Ostrovskiy et al., 1977). In this study, a sea level of -116 m is calculated from the 

depth of the topset-to-foreset transition of the delta system ΔA developed during this 

lowstand (Tab. 6.1). 
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Fig. 7.1: Different sea-level curves for the Black Sea during the past 26 kyr as presented in the 
literature. The green and red curves (the former is based on data from Ostrovskiy et al., 1977) are 
from Chepalyga (1984); the blue curve is from Wong et al. (1994), the orange curve from Ryan et al. 
(2003), and the light blue curve from Konikov et al. (2007). 

 

The late glacial and Holocene times after the LGM are characterized by an overall global 

warming interspersed with several cooling phases (Tab. 7.1; Klimanov, 1997). The response 

of the level of the Black Sea in to this climatic trend is generally an increase. 

 

Details of the sea-level rise in the Black Sea since the last glacial maximum are still under 

debate. Some authors suggest that the Black Sea was a giant freshwater lake during the last 

glacial maximum with a water level close to the low values (around -150 m) quoted above. It 

remained low until the dramatic rise (‘catastrophic flooding’) occurred when the global sea 

level reached the Bosphorus sill at around 8.4 ka (Ryan et al., 2003, 1997a, b; Ballard et al., 

2000). Others argue that it was in fact the Black Sea that overflowed the Strait of Bosphorus 

and expelled freshwater into the Marmara Sea during the Early Holocene (Görür et al., 2001; 

Aksu et al., 1999). 

 

The initial post-LGM sea-level rise was a response to retreat of the Fennoscandian and 

Alpine ice shields, which reached a maximum between 15 and 14 ka. During this time, melt-
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water increased river discharge into the Black Sea by a factor of 2 (Tab. 7.1; Sidorchuk et 

al., 2002), driving its sea level towards the depth of the Bosphorus sill. Knowledge on this 

depth is important, since it limits the Black Sea level as long as the global sea level is lower. 

 

The deposition of subunit U1-B, interpreted to have formed during a temporary stillstand 

in the course of the post-glacial sea-level rise, is restricted on the interpreted profiles to an 

area with an uncorrected depth below 100 ms TWT which corresponds to approximately -75 

m. This implies that the Bosphorus sill was not deeper than -75 m at the time of the 

deposition of subunit U1-B, probably even shallower since morphologically higher parts of 

U1-B might have been eroded. It is likely that the deposition of U1-B is related to the 

possible meltwater pulses between 18 and 15.5 ka reported by Bahr et al. (2005). 

 

 
 

Tab. 7.1 Summary of the climatic evolution of the Black Sea area during the past 25 kyr compiled 
from the literature. The sea-level values and assigned seismic stratigraphic units are from this study. 
The temperature, precipitation, evaporation and salinity are given qualitatively from very high to very 
low (++, +, 0, −, −−). 

 

The global ocean is thought be connected to the Marmara Sea through the Dardanelles 

since 12 ka (Cagatay et al., 2000). When the subsequent re-connection to the Black Sea 

occurred depends on the depth of the Bosphorus sill. Major et al. (2006, 2002) presented 

models with either a deep (-80 m, equivalent to the depth of the Dardanelles) or a shallow 

sill level of less than -35 m (Major et al., 2002), or around -30 m (Major et al., 2006). In the 

deep sill scenario, the Black Sea level would follow the global sea level starting at about 12 

ka, whereas the shallow sill models would predict a re-connection between the Black and 

Marmara seas around 8.4 ka (Major et al., 2002), or around 9.4 ka (Major et al., 2006). The 
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idea of a shallow sill is favored here, as the implied timing matches proposed dates for the 

appearance of brackish-marine mollusk species (Ryan et al., 1997; Sherbakov & Babak, 

1979; Popov, 1973) and dinoflagellates (Wall & Dale, 1974), as well as to oxygen isotope 

measurements (Major et al., 2002; Deuser, 1972). 

 

Behind a shallow sill, the Black Sea could operate independently of the global oceans, 

responding only to changes in water balance in its drainage basin. This balance may have 

become negative as a result of increased evaporation in warmer climates and meltwater 

input via rivers after 14 ka, in particular around 12 ka and 9.5 ka (uncorrected radiocarbon 

years; Major et al., 2003). In contrast, evaporation during the Younger Dryas cold stage was 

low; freshwater discharged from the Black Sea into the Marmara Sea (Major et al., 2003), 

probably initiating sapropel sedimentation and the formation of deltas (Ryan et al., 2003). 

 

For the isolated Caspian Sea, warm phases with high evaporation coincide with low sea 

levels and cold phases correlate with high sea levels (Svitoch, 1999; Chepalyga, 1984). The 

Black Sea must have behaved analogously during the Late Pleistocene-to-Holocene 

transition, so that after the late glacial transgression, the level of the Black Sea lowered as 

the water balance in its drainage basin experienced a negative shift. During the subsequent 

Younger Dryas cold period, the water level rose above the Bosphorus sill, only to retreat 

under the warmer climate of the Early Holocene. 

 

Deposition of subunit U1-B stopped after the sea level had fallen sufficiently (below -90 

m), presumably during phases of warmer climate (Ryan et al., 2003). U1-B was subsequently 

partially eroded, so that only small in-fill remnants exist today. The relatively short Younger 

Dryas probably left little record in the seismic sequences. 

 

The post-glacial sea-level fall reached a minimum that allowed the formation of the 

coastal sedimentary features found today on the outer shelf at a depth of around 90 m. 

Cardiid shells retrieved from a depth of 55 m have been AMS radiocarbon dated to this 

interval (Lericolais et al., 2002). These shells are indicators for saline ponds, strongly 

suggesting that the shelf was subaerially exposed. 

 

The Black Sea was reconnected to the global ocean after its level reached the Bosphorus 

sill and marine water entered the Black Sea at a time between 9.4 ka (Major et al., 2006), 

8.4 ka (Sherbakov & Babak, 1979), or up to 7.6 ka (Ryan et al., 1997). Even if the 

‘catastrophic’ character of this event cannot be demonstrated, it must have been rapid 
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enough to preserve the coastal features developed during the preceding lowstand. The 

sediments deposited from the onset of this rapid transgression to the present-day are 

assigned to subunit U1-C which shows a retrogradational stacking pattern. This 

retrogradation indicates that sedimentation occurred during the transgression as well as 

during the highstand that still persists, probably reflecting the complex pattern of five distinct 

regressive phases proposed by Konikov et al. (2007; light blue curve in Fig. 7.1). If the 

scenario is correct, then the rapid transgression could not have reached the present sea 

level, in contrast to the suggestion of Ryan et al. (2003; orange curve in Fig. 7.1), but must 

have been falling over a significant period, allowing subunit U1-C to form. 

 

These results suggest that the development of the Black Sea level during the past 25 kyr 

is in general compatible with the models of Chepalyga (1984) and Ryan et al. (2003; Fig. 

7.1) as well as the shallow-sill model of Major et al. (2002, 2006), but are insufficient to 

resolve the question of catastrophic or gradual rise after in the Holocene. 
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8. Conclusions and recommendations for future research 

 

8.1 Conclusions 

 

Interpretation of high and very high resolution seismic reflection data yielded a seismic 

stratigraphic model for the southwestern Black Sea shelf with four Quarternary units (U4 to 

U1 in chronological order). The Mio-Pliocene section is taken to be the ‘baseline’ for the 

Quaternary subsidence analysis. On the inner shelf of the southwestern Black Sea, the 

development of normal faults suggests an extensional tectonic regime at this time. These 

fault systems stayed active at least until the Upper Pliocene. Figure 8.1 shows a schematic 

model of the Miocene to Pliocene deposition on the western Black Sea shelf: Gradually 

increasing subsidence towards the outer shelf led to a basinward increase in thickness of the 

Pliocene and extensional faulting on the inner shelf. 

 

 
 

Fig. 8.1: Schematic development of the Miocene and Pliocene on the western Black Sea shelf. The 
inner shelf underwent extensional faulting during the Miocene (panel A) that stayed active at least 
until the Upper Pliocene. Subsidence of the top of Miocene increased gradually towards the outer shelf 
(panel B). Abbreviations: Mio – Miocene; Pli – Pliocene. 

 

During the Quaternary, the seismic stratigraphic model proposed is controlled by the 

most distinct climatic events of this period, namely the four major glaciations  Günz, Mindel, 

Riss, and Würm. They led to sea-level lowstands and in turn to the formation of erosional 

unconformities as well as the subsequent transitions from one seismic stratigraphic unit to 

the one overlying it. 

 

The oldest seismic sequence mapped (U4) is of Early Quaternary age and comprises a 

succession of gently basinward-dipping strata. These were deposited above an unconformity 

separating the Pliocene from the Quaternary. A deltaic complex (∆D) developed on the 

present-day inner shelf in this unit, probably during an early phase of low sea level during 
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the Quaternary, presumably the Günz glacial at approximately 1 ma. Figure 8.2 shows the 

reconstruction of the western Black Sea shelf before and after the deposition of U4. 

 

 
 

Fig. 8.2: Reconstruction of the western Black Sea shelf before (panel B) and after the deposition of 
the oldest Quaternary seismic stratigraphic unit mapped (U4; panel C). Within U4, a shelfedge delta 
system developed during the sea-level lowstand of the first major glaciation in the Quaternary (Günz 
glacial). Abbreviations: Mio – Miocene; Plio – Pliocene; U4 – Unit 4. 

 

A second well-developed angular unconformity marks the transition from U4 to the 

succeeding unit U3. Unlike U4, a shelfedge delta system is absent in U3. However, 

interpreted coastal onlaps in its lower section could be assigned to the sea-level lowstand of 

the second major Quaternary galciation, the Mindel glacial (approximately 500 ka). The 

upper part of U3 attests to significant aggradation on the shelf; it was deposited during the 

subsequent sea-level rise and highstand (Fig. 8.3).  

 

 
 

Fig. 8.3: Reconstruction of the western Black Sea shelf before (panel C) and after the deposition of 
seismic stratigraphic unit U3 (panel D). Although a shelfedge delta system is absent in U3, coastal 
onlaps mark a sea-level lowstand during its deposition. Abbreviations: Mio –  Miocene; Plio – Pliocene; 
U4 – Unit 4; U3 – Unit 3. 
 

Deposition of U3 was concluded when the sea-level rise came to an end and a 

subsequent falling sea level led to the development of an unconformity separating U3 from 

Unit 2 (U2). Analogous to U4, the lower part of U2 comprises a shelfedge delta system 

deposited during the sea-level lowstand presumably of the Riss Glacial at around 150 ka. 
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Aggradation on the inner and middle shelves during the deposition of U2 was less than in the 

case of U3. Instead, buildup of the shelfedge delta system and subsequent sedimentation on 

the outer shelf led to significant progradation and a basinward shift of the shelfedge (Fig. 

8.4). 

 

 
 

Fig. 8.4: Reconstruction of the western Black Sea shelf before (panel D) and after the deposition of 
seismic stratigraphic unit U2 (panel E). The internal configuration and external geometry of U2 
resemble that of the Early Quaternary U4 with a shelfedge delta system developed during a sea-level 
lowstand at the base of the unit. Abbreviations: Mio – Miocene; Plio – Pliocene; U4 – Unit 4; U3 – Unit 
3; U2 – Unit 2. 

 

The youngest seismic stratigraphic unit U1 was subdivided into three subunits (U1-A to 

U1-C in chronological order) using very-high resolution Boomer profiles (Fig. 8.5). 

 

 
 

Fig. 8.5: Reconstruction of the western Black Sea shelf before (panel E) and after the deposition of 
seismic stratigraphic unit U1 (panel F). The depositional environment of units U2 and U1 appears to 
be largely comparable. U1 also comprises a shelfedge delta system at its base and is characterized by 
relatively minor aggradiation but rather very significant progradation of the shelfedge. U1 is 
subdivided into small-scale seismic statigraphic subunits developed since the last glacial maximum, 
these are shown in detail in Fig. 8.6. Abbreviations: Mio – Miocene; Plio – Pliocene; U4 – Unit 4; U3 – 
Unit 3; U2 – Unit 2; U1 – Unit1. 

 

Subunit U1-A consists of a prograding shelfedge delta system partially overlain by shore-

parallel dunes (Fig. 8.6). The younger subunits U1-B (Fig. 8.7) and U1-C (Fig. 8.8) were 

deposited during the postglacial sea-level rise and the Recent highstand. Sediments of 
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subunit U1-B fill the small topographic lows on the rugged erosional top surface of the units 

U3 and U2, whereas U1-C forms a landward-thickening package of retrogradational wedges 

that cover large areas of the present-day shelf. Occasionally, dune-like features that 

resemble in shape and size the dunes already described are observed in subunit U1-C. We 

speculate that these features mark two phases of sea-level lowstand: the first during and 

shortly after the last glacial maximum, and the second during the post-Early Holocene after 

the sedimentation of subunit U1-B. 

 

 
 

Fig. 8.6: Model for the development of the oldest subunit U1-A of unit U1 and the corresponding sea-
level at the time of each snapshot. The left panel shows the western Black Sea shelf at a time close to 
the last glacial maximum, when the shelfedge delta system ∆A formed (>20 ka; see e.g. Fig. 5.3). 
The development of coastal dunes within U1-A suggests subaerial exposure of the outer shelf at times 
of an even lower sea level, most likely during the last glacial maximum itself (right panel; 20 ka). 
 

Overall, the seismic stratigraphic model described above is in agreement with the model 

of Aksu et al. (2002; Tab. 5.1). Both models comprise four characteristic phases of 

sedimentation during sea-level lowstands in the Quaternary. These phases are marked by 

buried deltaic complexes deposited in the vicinity of the paleo-shelfedge (∆4 to ∆1 of unit A 

in Aksu et al., 2002, corresponding to units U4 to U1A in this study). A sea-level lowstands 

might be marked by coastal onlaps when a shelfedge delta system is absent. The two 

models differ in the interpretation of the youngest seismic stratigraphic units subsequent to 

the development of the youngest deltaic complex: the three units B, C, and D of Aksu et al. 

(2002) correspond to the two units U1-B and U1-C of this study. 

 

Lowstand seismic indicators such as topset-to-foreset transitions of shelfedge deltas or 

coastal onlaps in the seismic units mapped were interpreted to reconstruct uppermost 

Quaternary sea-level fluctuations in the Black Sea. The seismic data show that temporally- 

and spatially-varying tectonic activities affected the Black Sea shelf. Therefore, to deduce 

past sea levels from these lowstand indicators, the influence of tectonic and sedimentary 

subsidence must be taken into account. 
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To quantify the tectonic subsidence and to assess its regional trend, a subsidence 

analysis was carried out along an idealized profile (Sclater & Christie, 1980; Bond & Kominz, 

1984; and Bond et al., 1989). The results of this study show that tectonic subsidence in the 

Bulgarian sector was more-or-less constant during the Quaternary, increasing generally from 

NNE to SSW. More intense tectonic activities characterize the shelf off central Bulgaria during 

the deposition of unit U1. 

 

 
 

Fig. 8.7: Model for the development of subunit B of U1 and the corresponding sea level. The left 
panel (15-18 ka) shows the western Black Sea shelf at a time when meltwater pulses from the 
retreating European and Asian ice shields lead to a sea-level highstand in the Black Sea and the 
deposition of U1-B. Most of this unit was later eroded when the sea level fell to a lower level (right 
panel; 10-11 ka), so that only small remnants of U1-B exist today. 
 

The reconstruction of sea-level lowstands suggests that the oldest seismic stratigraphic 

unit U3 is of Late Pliocene to Quaternary age. The regressive phases in the Black Sea 

correspond to the main glacial periods in Eurasia (Wong, 1994; Winguth et al., 1997, 2000). 

The deltaic sequence found in unit U2 was formed during the Riss glacial sea-level lowstand 

of -125 m. A second lowstand at -116 m was reached around the LGM at 20 ka. It led to the 

deposition of the prograding delta in subunit U1-A (Fig. 8.6). During the subsequent global 

warming in late glacial and Holocene times, the Black Sea level rose in response to the 

climatic trend. Interruptions by several cooling phases (Klimanov, 1997) slowed down or 

even inverted the sea-level rise temporally. 

 

Subunit U1-B (Fig. 8.7) is interpreted to have formed during a minor phase of sea-level 

stillstand and is found at water depths greater than 85 m. Its deposition was possibly related 

to meltwater pulses between 18 and 15.5 ka (Bahr et al., 2005) and stopped after the sea 

level had fallen to below -90 m. During this post-glacial lowstand, coastal sedimentary 

features formed on the outer shelf and saline ponds existed on the subaerially exposed inner 

shelf (Lericolais et al., 2005). The rising global sea level reached the Bosphorus sill around 
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8.4 ka and marine water entered the Black Sea (Sherbakov & Babak, 1979). The subsequent 

transgression must have been rapid enough to preserve the coastal features developed 

during the preceding lowstand but not necessarily ‘catastrophic’ in the sense of Ryan et al. 

(1997, 2003). 

 

The retrogradationally-stacked packages of the youngest subunit U1-C formed during the 

Holocene transgression (Fig. 8.8). This geometry and the observation of coastal dunes within 

this subunit indicate at least slower phases of sea-level rise on the way to the present-day 

conditions. 

 

 
 

Fig. 8.8: Qualitative reconstruction of the development of the youngest U1 subunit U1-C to the 
present-day, along with the corresponding sea-level. The deposition of U1-C started during the Early 
Holocene transgression (left panel; 7 ka). This transgression, however, must have been interrupted 
(and possibly temporarily inverted) as coastal dunes within U1-C suggest (middle panel; <7 ka), The 
sea level continued to rise towards the present-day level (right panel) and retrogradationally-stacked 
deposits formed on the western Black Sea shelf. 

 

8.2 Recommendations for future research 

 

This seismic stratigraphic study shows the importance of a careful match between the 

scientific questions to be addressed in a project and the types of data necessary to answer 

those questions. For the reconstruction of the youngest sea-level history in the Black Sea, 

the nature and quality of the data required are: 
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• The seismic profiles should cross the entire width of the shelf at least to a position 

beyond the present-day shelfedge. 

 

• The resolution of the seismic data should be high enough to resolve high-order 

unconformities and internal configurations of the subunits bounded by them . 

 

• The seismic data should also permit a reconstructf the relationship between the 

youngest sedimentary history and a deeper ‘baseline’ (in this study the base of the 

Quaternary), so that a subsidence analysis can be carried out to quantify the 

influence of tectonic movements and subsidence on sea-level change. 

 

• The relative sea-level history derived from seismic stratigraphic interpretation needs 

to be calibrated against geological time and absolute depth. The necessary 

information on the position and age of certain intervals in the sedimentary column 

must be extracted from borehole data. 

 

• Resolution issues similar to those for seismic data also apply to borehole information, 

for the entire stratigraphic column of interest and at the same time have a 

particularly high resolution for the analysis of the youngest geological history. 

 

The seismic data available to the ASSEMBLAGE project consist mainly of profiles acquired 

during the projects BLASON1 and BLASON2, GHOSTDABS in combination with industrial 

seismic data, and at a time too late for this dissertation, data from the ASSEMBLAGE II and 

HyBlack-3D cruises (see section 4.1.1). The seismic data available to this dissertation cover 

almost the entire shelf area of the western and northwestern Black Sea and are oftentimes 

even available in different versions acquired with several types of equipment. The profile 

density is high enough for recommendations on promising areas for future data acquisition 

as well as on the preferred choice of acquisition tools. The comparison of these tools below 

shows that the impact of a wrong choice can be severe. 

 

The biggest challenge for scientific seismic profiling in the western Black Sea is to avoid 

zones that are affected by the abundant occurrence of shallow free gas and thus show a 

strong, sometimes severe, attenuation of the seismic signal with depth (seismic blanking; 

see section 5.2.1). Generally free gas is seldom on the southwestern shelf off northern 

Turkey and southern Bulgaria, so that this area should be among the preferred geographical 

targets for future studies. 
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Fig. 8.9: Chirp sonar profile acquired during the BLASON 2 cruise (profile 56) representing a 
basinward extension of the data shown in Fig 5.8. Even though lower-resolution air gun/streamer 
profiling suggests good resolution and good penetration at this location (Figs. 5.3 and 5.16), the Chirp 
system was not able to generate interpretable images in the vicinity of the shelfedge. The red box 
shows the approximate position of overlap with the data shown in Fig. 5.8. The black arrows give the 
locations for the sediment cores shown in Fig. 8.12 (MD04-2752) and Fig. 8.11 (MD04-2753). 

 

Figures 5.3, 5.4, and 8.9 show an example of profiles acquired almost at the same 

location on the southwestern Black Sea shelf, but with three different seismic tools: A mini-

GI air gun/streamer combination, a sparker source/streamer combination, and a hull-

mounted Chirp sonar profiling system. When these three profiles are compared with one 

another, the importance of the availability of data with a range of resolution and penetration 

characteristics becomes obvious. Even though only a relatively low resolution is achieved 

with the mini-GI air gun source (Fig. 5.3), it still is a good choice to obtain images of the 

entire stratigrahic column to a chosen ‘baseline’ reflection that is not too deep (such as for 

instance the base of the Quaternary here). Larger air gun sources would likely be able to 

produce images to an even deeper level, but at the cost of a lower resolution. 

 

The most subtle features can be extracted from Chirp sonar data (e.g., Figs. 5.8, 5.18 

and 8.9). There are, however, areas where the sedimentary composition of the shallow 

deposits and/or gas occurrences makes Chirp sonar data not very useful although air 

gun/streamer profiles suggest a viable data quality. The example in Fig. 8.9 for instance 

shows that Chirp data acquisition could not generate useful images for the area in the 

vicinity of the shelfbreak where lower-resolving mini-GI air guns produced good results (Figs. 

5.3 and 5.16). This fact is of particular importance as the internal reflection configuration 
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close to the shelfbreak is highly significant for sea-level research. Data acquired using a 

medium-resolution source such as a sparker or water gun system might be a good 

compromise: The examples shown here (e.g., Fig. 5.4) suggest that these data are much 

less affected by the factors hampering the very-high resolution Chirp sonar, and at the same 

time are enough to resolve small-scale structures needed for an interpretation of high-order 

cycles in seismic stratigraphy. 

 

If the streamer and seismic recording system deployed are versatile enough to meet the 

requirements of both a mini-GI gun and a sparker source, it would be also possible to use 

both sources at the same time in parallel with only a minimum of additional effort. The 

Hydroscience Technologies SeaMUX streamer and NTRS recording system available at the 

IfBM, University of Hamburg, was constructed specially to operate simultaneously with a 

broad range of seismic sources. It constitutes a very good base tool for multiple streamer-

based acquisition systems. 

 

A major contribution to almost every research project is previously acquired data in the 

possession of the different project partners. At the project planning stage, an assessment of 

datasets that are desirable for the project should be made.and incentives for the 

participating institutions to contribute these data to the project database should be devised. 

Figure 8.10 shows exemplarily a basemap of the various very-high resolution seismic surveys 

carried out in the Bulgarian sector of the Black Sea acquired under the supervision of the 

Institute of Oceanology of the Bulgarian Academy of Sciences (IO-BAS; EUROSEISMIC 

database, survey maps and descriptions available at: http://www.eu-

seased.net/welcome_flash.html). Only a very small selection of these data were available for 

the preparation of this study (see section 4.1.1), but they have nevertheless proven to be of 

great value. 

 

An extensive use of pre-existing data in any future attempt to further clarify the youngest 

seismic and sequence stratigraphy in the western Black Sea is recommended. One might 

even consider to purchase selected datasets (the data shown in Fig. 8.10, for example, are 

commercially available). The necessary investment would most likely be much smaller than 

that needed to organize a new cruise to acquire similar data, although any new data would 

almost certainly have a superior quality. In addition, an analysis of pre-existing would greatly 

reduce the risk of acquiring new data ‘at the wrong place’. 
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Fig. 8.10: Basemap of very-high resolution seismic surveys acquired by the Institute of Oceanology 
of the Bulgarian Academy of Sciences (IO-BAS) since the late 1980ies. The survey meta-data are 
available through the EU-SEASED project (http://www.eu-seased.net). The dense network of profiles 
in the southernmost Bulgarian Black Sea sector makes these data particularly interesting for future 
attempts to clarify the sea-level history of the Black Sea, as this area has proven to be one of the 
most promising targets for seismic stratigraphic research in the western Black Sea. 

 

The incorporation of borehole information is necessary to calibrate the the seismic 

stratigraphic interpretation. As industrial exploration drilling and scientific drilling of a similar 

scale (such as ODP and IODP) are beyond the budget of projects like ASSEMBLAGE, 

sediment coring will always be the main source of directly measured subsurface data. Also, 

large-scale exploration drilling normally ignores the youngest/ shallowest parts of the 

stratigraphic column drilled as the exploration targets lie much deeper. Cores retrieved using 



 Chapter 8 – Conclusions and recommendations for future research  

142 

the dedicated French research vessel ‘Le Marion Dufresne’ in the ASSEMBLAGE project (see 

section 4.1.2) illustrate the capabilities available in the meantime using research equipment. 

 

 
 

Fig. 8.11: Correlation of sediment core MD03-2753 with seismic profile BLASON2-56 (Fig. 8.9) which 
goes over the core location. This core is potentially very useful in any sequence stratigraphic recons-
truction, as it penetrates several proposed seismic stratigraphic units. Red intervals on the left of the 
core image give intervals in which age estimations would be desirable; black arrow shows the location 
where the core has actually been dated and the AMS C14 age. 
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Any new research project aiming at seismic and sequence stratigraphy should include a 

dedicated cruise leg to collect sediment cores following the acquisition of seismic data. 

Coring stations should be selected only after a preliminary seismic stratigraphic framework is 

established, so that as many seismic stratigraphic units as possible can be sampled. 

 

To calibrate the seismic stratigraphic framework developed from an interpretation of 

seismic reflection data, core samples from the different interpreted seismic stratigraphic units 

should be dated. These samples should be chosen at locations so as to minimize the 

uncertainties introduced by the uncertain phases of non-deposition and erosion for which a 

sedimentary record is missing. 

 

Figures 8.11 and 8.12 show two examples of sediment cores recovered during the 

ASSEMBLAGE 1 cruise at locations chosen using seismic profiles of the BLASON 2 cruise. 

Core intervals were proposed for dating these cores and these samples were actually dated. 

This shows clearly the potential that is looming in pre-existing data, because for the first 

time, age dates become available directly above and below the interpreted unconformities of 

our model. In future projects aiming at recent sea-level reconstructions, the budget allocated 

to age determination of sediment samples should be large enough to permit sample dating 

at all critical core levels. 

 

To summarize, we recommend the following for any future reconstructions of the 

Quaternary (in particular Holocene) sea-level history in the Black Sea: 

 

• It should target particularly the southwestern shelf on either side of the offshore 

boundary between Turkey and Bulgaria. In this area, coarse sediments and free gas 

that deteriorate the data quality occur the least often.  

 

• Close cooperation with local institutions is essential to provide possible access to to the 

enormous archives of previously acquired data. Even if such archives could not be 

made available to the project, they would be invaluable during the planning stage for 

target selection. 

 

• Acquisition of new reflection seismic data should be carried out using a multiple source 

approach to cover as broad a range of resolution and penetration as possible. At the 

cost of transport and deployment of additional equipment, this would help to 

minimize the chance of acquire data that cannot be usefully interpreted, because 
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features are either not resolved or beyond the resolution limits of the acquisition 

tools. The choice of seismic sources depends on the target intervals (in terms of 

geological time): If the youngest (e.g., Holocene) history is of interest, the highest 

possible resolution would be desirable, and lower-resolution systems would be 

deployed with a lower priority. Older and with it deeper targets would imply a 

reversal in these priorities. 

 

 
 

Fig. 8.12: Correlation of sediment core MD03-2752 with seismic profile BLASON2-56 (Fig. 8.9) which 
goes over the core location. This core is potentially very useful in any sequence stratigraphic recons-
truction, as it penetrates several proposed seismic stratigraphic units. Red intervals on the left of the 
core image give intervals in which age estimates would be desirable; black arrows show the locations 
where the core has actually been dated and the AMS C14 ages. 
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• After a preliminary interpretation (including mapping) of all the seismic data available, 

coring stations should be proposed and sediment sampling carried out. The station 

locations should match the equipment used with the target depths.  

 

• Following sediment sampling, the seismic interpretation should be correlated with and 

calibrated against the sediment cores, so that core intervals to be dated can be 

chosen. 

 

• The dated ages should be used to generate the final seismic stratigraphic model which 

should be base on absolute age and depth calibrations. Then a reconstruction of the 

sea-level history of the Black Sea can follow. 

.
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