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Let (Ut; t � 0) be an Ornstein{Uhlenbeck process with parameter � > 0, start-
ing from a 2 R, that is the solution of:

Ut = a+Bt � �

Z t

0

Us ds = e��t
�
a+

Z t

0

e�s dBs

�
; t � 0; (1)

where (Bt; t � 0) denotes a Brownian motion starting from 0.
Below, we give an expression of the density of TU

b = infft : Ut = bg, for b 2 R, in
terms of some integrals involving the BES(3) bridges of lengths t � 0, starting
at (b � a), for b � a, and conditioned to end at 0 at time t. It is seen on
this expression that, in the discussion in Leblanc et al. [7], one term has been
omitted, which explains why formula (3) in Leblanc et al. [7] is incorrect, and
how to correct it, at least in terms of BES(3) bridges.
For general discussions of �rst hitting times of di�usions we refer to Arbib [1],
Breiman [2], Horowitz [5], Kent [6], Nobile et al. [8], Novikov [9, 10, 11], Pitman
and Yor [13, 14], Ricciardi and Sato [15], Rogers [16], Salminen [17], Shepp [18],
Siegert [19], Truman and Williams [21] and Yor [23]. More general discussions

of inverse local times and occupation times
R T
0
1(Xs�y)ds, when X is a di�usion

and T a particular stopping time, are dealt with in Hawkes and Truman [4],
Truman [20] and Truman et al. [22], with particular emphasis on the Ornstein{
Uhlenbeck case.
Denote by Q

(�)
a the law of U , solution of (1), and by Wa = Q

(0)
a the law of

f(a + Bt); t � 0g, both laws being de�ned on the canonical space C(R+ ;R),
where Xt(!) = !(t), and Ft = �fXs; s � tg.
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The absolute continuity relationship:

Q(�)
a

���
Ft

= exp

�
��

2
(X2

t � a2 � t)� �2

2

Z t

0

X2
sds

�
� WajFt

(2)

is well-known (see, e.g. Yor [24], Chapter 2). It also holds with t being replaced

by T , any stopping time being assumed to be �nite both under Q
(�)
a and Wa.

Consequently, the following holds:

Q(�)
a (Tb 2 dt) = exp

�
��

2
(b2 � a2 � t)

�
Wa

�
exp

�
��2

2

Z t

0

X2
s ds

�
;Tb 2 dt

�
:

(3)
In Leblanc et al. [7], the authors use the (obvious, but important) fact that
(Xs; s � 0) under Wa is distributed as (b�Xs; s � 0) under W(b�a). Thus, (3)
may be written as:

Q(�)
a (Tb 2 dt) =

exp

�
��

2
(b2 � a2 � t)

�
Wb�a

�
exp

�
��2

2

Z t

0

(b�Xs)
2ds

�
;T0 2 dt

�
: (4)

Now, recall that for c > 0, under Wc, the process (Xs; s � T0) conditioned by
(T0 = t), is a BES(3) bridge of length t, starting at c, and ending at 0, whose

law we denote by P
(3)
c ( � jXt = 0). Thus, denoting c = jb� aj, we obtain:

Wb�a

�
exp
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��2

2

Z t

0

(b�Xs)
2ds

�
;T0 2 dt

�
(5)

=
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>:
E
(3)
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h
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��2
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R t
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2ds
�
jXt = 0

i
Wc(T0 2 dt); if b � a;

E
(3)
c

h
exp

�
��2
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R t
0 (b+Xs)

2ds
�
jXt = 0

i
Wc(T0 2 dt); if b � a :

(6)

For b 6= 0; the conditional expectations E
(3)
c

h
exp

�
��2

2

R t
0
(b�Xs)

2ds
�
jXt = 0

i
di�er from that written in Leblanc et al. [7] at the bottom of p.110, and on top
of p.111, where we �nd instead:

E(3)
c

�
exp

�
��2

2

Z t

0

X2
sds

�
jXt = 0

�
; (7)

which is known to be equal to (see Pitman and Yor [12], or Yor ([24], formula
(2.5) for Æ = 3):

�
�t

sinh(�t)
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2
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Thus, to summarize, we �rst obtain:

Q(�)
a (T0 2 dt) = jajexp(�a

2=2)p
2�

exp

�
�

2
(t� a2 coth(�t))

��
�

sinh(�t)

� 3

2

dt (8)

as found in a number of papers, e.g. Yor ([25], Exercise p. 56), Elworthy et al. [3].

Secondly, the knowledge of the density of Q
(�)
a (Tb 2 dt)=dt, for all a and b is

equivalent to the knowledge of the joint Laplace transform of (
R t
0 Xsds;

R t
0 X

2
s ds)

under the BES(3) bridges laws P
(3)
c ( � jXt = 0).
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