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Abstract

The present paper provides three different supporting results for the Nash bargaining
solution of n-person bargaining games. First, for any bargaining game there is
defined a non-cooperative game in strategic form, whose unique Nash equilibrium
induces a payoff vector that coincides with the Nash solution of the bargaining
game. Next this game is modified in such a way that the unique Nash equilibrium
that supports the Nash solution is even in dominant strategies. After that an n-
stage game in extensive form is presented whose unique subgame perfect equilibrium
supports the Nash solution of the bargaining game. Finally, the support results are
shown to induce implementation results in the sense of mechanism theory.

1 Introduction

The Nash Program, as it was termed by Binmore (1987),[see also Binmore (1997)] is a
reasearch agenda trying to support solutions of cooperative NTU-games by equilibria of
non-cooperative games in strategic or extensive form. An example of a contribution to
the Nash Program is Moulin’s (1984) implementation of the Kalai-Smorodinsky solution
for two-person bargaining games in subgame perfect equilibrium. Haake (1998) applies
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our present approach to derive an alternative subgame perfect equilibium implementation
as well as a dominant strategy equilibrium implementation for the Kalai-Smorodinsky
solution. In the present paper we are concerned with the Nash solution. The present
state of the Nash Program as far as this solution is concerned is not perfectly satisfactory.
The first contribution is due to Nash (1953) who related the Nash solution of two-person
bargaining games to the equilibria of what he called a simple demand game. Unfortu-
nately, the Nash solution only coincides with one of an infinity of equilibria of that game.
This negative result led Nash to the consideration of a smoothed demand game. Here
the original game is considered as the limit of a class of increasingly less smoothly dis-
torted versions of that game. The only limit of all possible sequences of equilibria of the
distorted games turns out to be the Nash solution. Another example for an approximate
support of the Nash solution is Rubinstein’s alternate bargaining game when discounting
is increasingly neglected [cf. Binmore, Rubinstein and Wolinsky (1986)]. The unique
subgame perfect equilibrium converges to the Nash solution in that case.

The only direct support of the Nash solution is given by Howard (1992). Here the Nash
solution coincides with the unique subgame perfect equilibrium payoff vector of an ex-
tensive form game. From the puristic point of view of non-cooperative game theory this
result is not perfectly satisfactory, however, as there are several subgame perfect equilibria
yielding this payoff vector. So there remains a coordination problem which equilibrium
should be chosen.

One might be irritated by all the effort made on getting support results for the Nash
solution while there is obviously a simple approach providing such a support by a dominant
strategy equilibrium of some game in strategic form. Given some two-person bargaining
game V just let both players choose any non negative real number. If they jointly happen
to choose the Nash solution N(V ) = (N1(V ), N2(V )) of the game they receive their
respective coordinates as payoffs. Otherwise they get 0 (or what ever the disagreement
point dictates). This game provides support in a dominant strategy equilibrium for the
Nash solution. It fails, however, to be a “sensitive strategic model” as Osborne and
Rubinstein (1998) require it for the Nash program. And it does not supplement the
cooperative bargaining game such that, in the words of Nash (1953) “each helps to justify
and clarify” the other. In fact, any arbitrary bargaining solution could be supported
in the same way. Clearly, there is no formal theory telling us what kind of games are
sensitive strategic models. But any game can be judged under the aspect whether it
helps to justify or clarify the Nash solution. The matter of what reasonable games are
becomes even more delicate when the analysis is extended to implementation proper.
Then information and enforcement aspects have to be considered which are important for
the design of a mechanism. This problem is extensively discussed in Trockel (1999) [see
also Jackson (1992) and Jackson, Palfrey and Srivastava (1994)].

In our present paper we shall prove three different support results for the Nash solution
of n-person bargaining games. One result states the support of the Nash solution by the
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unique Nash equilibrium of a game in strategic form. The second result provides support
of the Nash solution by the dominant strategy equilibrium of a game in strategic form
which is a modified version of the first game. The third result establishes the support
of the Nash solution in an n-person bargaining game by the unique subgame perfect
equilibrium of an n-stages game in extensive form.

Our approach to the support of the Nash solution is based on the characterization of the
Nash solution of a bargaining game as the unique Walrasian equilibrium of a naturally
induced bargaining economy [cf. Trockel (1996)].

The set of feasible utility allocations of the players in a bargaining game is interpreted
as a production possibility set describing all technologically possible ways of producing
joint utility vectors. All players have equal shares in this technology set and, hence, in
any resulting profit from production. The different players’ utilities are the commodities.
Each player, as an agent of the economy, is only interested in “his” commodity, namely
his utility. Endowments are zero for each player to guarantee that the only source of
income is the profit earned from production of joint utilities. In this framework the
equilibrium price system can be used to evaluate utility allocations and, thereby, to give
a specific meaning to the notion of equity in a world of non-comparable cardinal utilities.
Equity had, together with efficiency, been the basis for the definition of Shapley’s (1969)
λ-transfer value (or NTU-value). This value, on the class of bargaining games, is unique
and coincides with the Nash solution. From Nash’s simple demand game where each
efficient utility allocation is supported by one equilibrium we see that mere efficiency is
not restrictive enough to yield a unique support result for the Nash solution. As we shall
show equity embodied into the payoff rule in a suitable way will enable us to single out a
unique equilibrium for our game from the infinity of efficient Nash equilibria of the simple
demand game. A modification then allows to make this equilibrium even one in dominant
strategies.

In Nash’s simple demand game each player’s strategy set is the set of utility levels for him
which result from feasible points in the bargaining set. If players’ choices are consistent
in the sense that the resulting strategy profile is an element of the feasible bargaining
set then each player receives the utility level he proposed. Otherwise, all of them receive
their disagreement payoff zero.

Our first game will behave exactly like Nash’s demand game as long as the profile of
chosen strategies is feasible. Yet, for non-feasible strategy profiles, our payoff functions
will discriminate between the players. Our payoff functions react in case of inconsistent
strategy choices to the “lack of adequateness” of each player’s strategy choice. In case of
an inconsistent strategy profile we judge, separately for each player, the players’ proposed
utility claims, i.e. their strategy choices, under the aspect of “Walrasian realizations”
of their claims, the equilibrium values of these realizations, and the relation between an
equal share of this value and the proposed utility claim.
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Any player’s, say player 1’s, strategy choice x1 defines the x1-section of the original bar-
gaining game V , which is again a bargaining game but for players 2, . . . , n. The claim x1

of player 1 together with the unique Walrasian allocation of utilities in the (n− 1)-person
bargaining economy induced by the choice x1 defines a utility allocation for V . This can
be evaluated by its (after normalization) unique supporting price system. In a thought
experiment player 1 gets the n-th part of the resulting value as income, which he can use
to buy his utility-commodity in a hypothetical competitive market system.

If his demand can be satisfied with the “available amount”, defined by his claim x1

he receives his demand. Otherwise he receives his claim x1. The effect of this payoff
rule, reflecting a Walrasian evaluation of utility allocations, is an “adequate” claim of
each player. A very modest utility claim of player 1 results in a low price of his utility
(commodity 1), thus, as he is endowed with the n-th part of the total value, in a high level
of his demand for commodity one, which turns out to be in excess to x1. So he gets only
his modest claim. A very high utility claim, on the other hand, results in a high price for
his utility, and thus in a low level of his resulting demand. Then he receives only this small
demand. For all players together it is strategically optimal to claim “adequate” utility
levels, i.e. those which coincide with the derived demands. If all players act accordingly,
there is no need for the hypothetical market system, as the resulting utility allocation
is feasible in V . The strategic equilibrium of our game coincides then with a no-trade
Walrasian equilibrium of the bargaining economy, hence with the Nash solution of the
bargaining game. In the modified second game we employ the Walrasian evaluation even
for the determination of payoffs in case of feasible strategy profiles. All this is very much
in the spirit of Shapley’s λ-transfer principle, where the NTU value is realized within the
original NTU-game without the need of actual transfers.
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2 Background and Concepts

As argued in the introduction one should expect a possibility to support the Nash solution
by the unique Nash equilibrium of some game in strategic form only if equity in addition
to efficiency is somehow built in. To express equity in a framework of cardinal non-
comparable utilities of players requires some method of evaluation of the different players’
utilities. For the class of bargaining games such a method is explicitly provided by the
Walrasian approach to bargaining games due to Trockel (1996). There, the Nash solution
of any bargaining game is shown to coincide with the unique Walrasian equilibrium of a
naturally induced economy with production and private ownership. The equilibrium price
system evaluates the allocated utilities of players (interpreted as commodities) such that
each player gets the same part of the total utility allocation in terms of value. We shall
exploit this evaluation point of view to construct for any bargaining game some game in
strategic form. The payoff functions of that game are based on an endogenous valuation
of efficient payoff profiles by their supporting efficiency prices. Equity is then represented
by consistent valuation of all players and equal distribution among them of the resulting
value in the equilibrium of the game.

We fix some n ∈ N, n ≥ 2 for the rest of this paper.

For any k ∈ N, k ≤ n we define a k-person-bargaining game V k as a non-empty compact,
strictly convex subset of R

k
+ that is comprehensive with respect to R

k
+

(i.e. x ∈ V k, 0 ≤ x′ ≤ x =⇒ x′ ∈ V k).

The symbols ≥ and � used to compare vectors mean ≥ and >, respectively, coordinate-
wise. The sign > means: ≥ but not =. Moreover we assume the existence of some dk ∈ V k

with dk � 0. This point dk is interpreted as status quo or disagreement point.

For convenience we make some additional assumptions for our bargaining games, which
are not necessary, however, for the derivation of our results.

We require that for any V k the map

g : ∂V k → R
k

++ : x 7→ g(x) with ||g(x)||2 = 1

is well defined as a continuously differentiable mapping. Here g(x) denotes the normal
vector at x to the efficient boundary ∂V k of V k.

We also choose the origin of R
k as the disagreement point dk. Doing so, we exploit one

of the two degrees of freedom in representing a player’s preference relation by a cardinal
utility which is determined only up to positive affine transformations. In fact, for k = n,
we also use the remaining degree of freedom and assume max

x ∈ V n
xi = 1 for all i = 1, . . . , n.

As we shall look at bargaining games for k < n players resulting from n-person-games by
fixing n− k coordinates for such games V k we typically get max

x ∈ V k
xi < 1, i = 1, . . . , k.
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For any k ∈ N, k ≤ n, we denote by Gk the set of k-person bargaining games as defined
above. Let G :=

⋃n
k=1 G

k. For games in Gn we will sometimes drop the superskript n.
Using the disjoint union we define a bargaining solution on G as a map

ϕ : G→
n⋃

k=1

R
k : V k 7→ ϕ(V k) ∈ V k.

The Nash bargaining solution N on G is defined as the unique maximizer of the Nash
product, i.e. by

N(V k) := arg max
x ∈ V k

x1 · . . . · xk.

Any bargaining game V k ∈ G induces a bargaining economy EV k as follows. EV k :=
((�i, ei, ϑi)i=1, ... , k, Y

k), where Y k := V k is a production possibility set producing the
players’ utilities as commodities, ϑi := 1/k is agent i’s equal share in Y k, ei = 0 ∈ R

k is
agent i’s initial endowment (leaving each agent with his share of the profit of production as
his only income), and �i is agent i’s preference relation on R

k
+. The agents of this economy

are identified on the interpretational level with the players of the bargaining game. This
fact is expressed by the assumption that agent i′s preference �i can be represented by
the utility function proji : R

k
+ → R. That means, every agent is interested only in “his”

commodity, i.e. his own utility in the game V k.

The bargaining economy EV k has a unique Walrasian equilibrium. The equilibrium allo-
cation xk

W of EV k coincides with the Nash solution N(V k) of the game V k and, therefore,
with the utility allocation determined by the Shapley λ-transfer value [cf. Shapley (1969)].
The λ of the λ-transfer value is the (up to normalization) unique equilibrium price vector
for the economy EV k [cf. Trockel (1996)].

Consider a game V = V n or, equivalently, the economy En
V . Now take any x1 ∈ [0, 1]

and consider the set W n−1
x1

:= V ∩ ({x1} × R
n−1). Projecting this set to the subspace

{0}×R
n−1 and skipping the first coordinate, 0, yields an (n−1)-person game V n−1

x1
and the

induced economy EV n−1
x1

. Let xn−1
W = xn−1

W (x1)(= N(V n−1
x1

)) denote the unique Walrasian

allocation of EV n−1
x1

. We consider the point s(x1) := (x1, x
n−1
W ) ∈ ∂V n. Evaluation of s(x1)

by its associated efficiency price vector g(s(x1)) � 0 yields w(x1) :=< g(s(x1)), s(x1) >.
Here < ·, · > denotes the standard inner product on R

n.

We can consider now agent 1’s demand at the price system g(s(x1)) and his income
b1 := w(x1)/n. Due to the specific structure of �1 it is d(x1) = (d1(x1), 0)) ∈ R × R

n−1,
i.e. a corner solution.

The following lemma whose proof is given in the appendix is the main tool for deriving
our results. Analogous versions hold true if the bargaining game under consideration is
not normalized.

6



Lemma: The function d1 : [0, 1]→ R is strictly decreasing and continuous.

For n = 2 the assertion of the lemma is quite obvious. The larger x1 ∈ [0, 1], the more
to the right is s(x1) on ∂V 2, the steeper is the negative slope of the tangent at s(x1) to
∂V 2, the closer to zero does this tangent intersect the x1-axis, the closer to zero is agent
1’s demand of “his” commodity. The reason is that ∂V 2 can be looked at as the graph of
a concave decreasing function of x1 defined on [0, 1]. It is not, however, generally true for
larger n that the tangent hyperplane at some point x = (x1, x2, . . . , xn) ∈ ∂V is steeper
in the direction of x1 than that at x′ = (x′1, x

′
2, . . . , x′n) ∈ ∂V with x′1 > x1, even if

(x2, . . . , xn) = (x′2, . . . , x
′
n). The lemma says that it is true when x = s(x1), x′ = s(x′1)

and x′1 > x1.

Again, it is quite intuitive that the larger x1 is, the less is left for all the others if they
share the rest in an equitable way. Notice, that this statement is not in conflict with the
well known lack of monotonicity of the Nash solution.

3 Supporting the Nash solution by a unique Nash

equilibrium

In this section we shall construct the game ΓV whose unique Nash equilibrium supports
the Nash solution N(V ) of a given V ∈ Gn. As in Nash’s demand game [Nash (1953)] the
strategy sets of the n players are the images of V under the projections to their respective
coordinate axes. In our case, due to the chosen normalization, the strategy sets for the n
players are Σi = [0, 1], i = 1, . . . , n.

The next step is the construction of the payoff functions πi, i = 1, . . . , n.

We define the payoff function of player 1 by
π1 : [0, 1]n → [0, 1] : x = (x1, . . . , xn) 7→ x1χV n (x) + min(s1(x1), d1(x1))(1− χ

V n (x))
= x1χV n (x) + min(x1, d1(x1))(1−χ

V n (x)). Here χ
V

(·) is the indicator function of V . The
payoff functions πi, i = 2, . . . , n are defined analogously.

In this way we associate with any bargaining game V ∈ Gn a game ΓV := ([0, 1]n, π)
in strategic form. Notice that this game coincides with Nash’s simple demand game,
whenever the chosen strategy profile is feasible. Only for inconsistent strategy choices
our game has a more sophisticated payoff allocation than just the point of disagreement.
Also our game allows it to realize as a payoff vector any feasible utility allocation of the
bargaining game. This latter aspect vaguely classifies it as a “reasonable game” from the
point of view of mechanism design.
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Proposition 1:

For any V ∈ Gn the game ΓV has a unique Nash equilibrium x∗. The equi-
librium payoff vector π(x∗) = x∗ coincides with the Nash solution N(V ) of
V .

Notice, that as with the above lemma this proposition remains true for non-normalized
bargaining games.

Proof:

Obviously, any non-efficient point x can be improved upon by some player’s unilateral
deviation towards the efficient boundary. For any efficient point x 6= N(V ) at least one
coordinate xi satisfies xi < Ni(V ). Unilateral deviation of player i to xn

Wi yields him,
according to the definition of πi, the payoff xn

Wi and thus improves him. So it remains to
show that, for any x /∈ V the fact that x1 6= xn

W1 implies that π(x) < π1(xn
W1, x2, . . . , xn).

(Analogous statements are then obviously true for every i ∈ N).

As g(x) � 0 for all x ∈ ∂V and V is strictly convex we have d1(0) > 1/n > 0. We also
have d1(1) = 1/n < 1. As d1 is strictly decreasing and continuous by the lemma, there
is a unique fixed point of d1. From the Walrasian characterization of the Nash solution
we know that the Walrasian allocation xn

W of EV n satisfies: xn
W1 = s1(xn

W1) = d1(xn
W1).

Therefore xn
W1 is the unique fixed point of d1. Obviously, it maximizes uniquely the payoff

function π1 when combined with arbitrary strategies of the other n−1 players. Analogous
statements hold true for xn

Wi, i = 2, . . . , n. As xn
W = N(V ), and π(xn

W ) = xn
W we have

shown that x∗ := xn
W has the claimed properties. This proves Proposition 1.

�

4 Supporting the Nash solution by a dominant strat-

egy equilibrium

In this section we shall modify the game ΓV from Section 3 to achieve even support of the
Nash solution in a dominant strategy equilibrium. We modify ΓV in the following way.
We define the payoffs for the players via demands derived from their claims even for the
case of consistent strategy choices that describe feasible utility allocations. This means
that the hypothetical market system determines the payoffs of the players now even if
their claims are compatible.

So the strategy sets for the n-players are the same as for the game ΓV , namely Σi :=
[0, 1], i = 1, . . . , n. The payoff functions π̃i, i = 1, . . . , n are defined as follows:
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π̃1 : [0, 1]n → [0, 1] : x = (x1, . . . , xn) 7→ min(s1(x1), d1(x1)),
π̃i, i = 2, . . . , n analogously.

Our new game is Γ̃V := (Σ1, . . . , Σn; π̃1, . . . , π̃n). For this game we get an analogue
of Proposition 1, namely:

Proposition 2:

For any V ∈ Gn the game Γ̃V has a unique Nash equilibrium x̃. This equilib-
rium is even in dominant strategies. The equilibrium payoff vector π̃(x̃) = x̃
coincides with the Nash solution N(V ) of V .

Again, the truth of this proposition does not depend on our chosen normalization.

Proof:

The argument for x /∈ V in the proof of Proposition 1 can be used now for any x ∈ [0, 1]n.
So xn

W = N(V ) is the unique Nash equilibrium. As, independently of the other players’
strategy choices each player’s optimal strategy choice is his coordinate of xn

W = N(V ),
the equilibrium is even in dominant strategies.

It is obvious that the fact that N(V ) is the dominant strategy equilibrium payoff vector
prevents any payoff vector where some player would get more than his coordinate of N(V ).
Therefore our game cannot have a full range. Rather the range of utility allocations that
can be realized in Γ̃V via strategic actions is the set {x ∈ [0, 1]n|0 ≤ x ≤ N(V )}.

�

5 Supporting the Nash solution by a unique subgame

perfect equilibrium

The basic idea of embodying the Walrasian approach to bargaining into the payoff struc-
ture of the supporting game can be used also in the framework of an extensive form game.
In the 2-person case the second player takes the role of the payoff function for player 1 in
Proposition 2, namely that of pushing the first player to the minimum of what he claimed
and the induced demand.

For two persons we define a two-stages game in extensive form as follows. One of the
two players, say player 1, chooses in the first stage an x1 ∈ [0, 1] as in the one-shot game
of Section 3. Using the Walrasian economy this choice x1 results in his demand d1(x1).
Both points, x1 and d1(x1), define uniquely points in the efficient boundary ∂V of V , say
x = (x1, x2) and z = (d1(x1), z2), respectively.
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In the second stage player two has the choice between “left” and “right”. If he chooses
“left” the payoff vector for the two players is x, if he chooses “right” it is z. As player 2
as a rational player chooses in such a way that his second coordinate becomes as large as
possible he makes player 1’s payoff as small as possible. This fact forces player 1 to choose
x1 in such a way that min (x1, d1(x1)) becomes maximal. This is the case for the first
coordinate of the Nash solution of V , i.e. N1(V ). Though strictly speaking player 2 has
two options of choice even if player 1 chooses N1(V ), the outcome N(V ) is independent
of his choice. For player 1 the choice N1(V ) is the unique equilibrium choice. Therefore,
our game has what we call a quasi-unique equilibrium with a unique equilibrium outcome.
Therefore there does not remain any coordination problem.

An important property of the two-players bargaining game is the fact that for any two
different efficient points one is preferred by player 1 if and only if the other one is better
for player 2. An analogous monotonicity property does not hold for bargaining games
with more than two players. If in a three person game player 1 prefers one of two efficient
points player 2 may prefer the same point. We have to take this fact into consideration
when we extend our procedure to the case of general n-person bargaining games.

For an n-person bargaining game V = V n we define an n-stages game in extensive form,
ExV , as follows.

In stage 1 player 1 chooses x̄1 ∈ Σ1 = [0, 1] and, thereby, determines the (n − 1)-
dimensional bargaining game V n−1

x̄1
. Player 2, in the second stage, chooses x̄2 ∈ Σ2 =

proj2(V n−1
x̄1

) and, thereby, determines the (n−2)-dimensional bargaining game V n−2
x̄1x̄2

. This
defines the strategy set Σ3 = proj3V

n−2
x̄1x̄2

for player 3, and so on. In stage n−1 player n−1
has to make the first choice in the two-person bargaining game V 2

x̄1...x̄n−2
. His choice x̄n−1

and the induced demand d
V 2

x̄1,... ,x̄n−2

n−1 (x̄n−1) define the efficient points x̄n−1 := (x̄n−1, x̄n)

and z̄n−1 := (d
V 2

x̄1,... ,x̄n−2

n−1 (x̄n−1), z̄n) as in the two person case above. In stage n player n
chooses between “left” and “right” and determines accordingly x̄n−1 or z̄n−1, respectively.

Next we have to define the payoff functions. The resulting payoff vector y(x̄1, . . . , x̄n−1, left) =
y = (y1, . . . , yn) is defined as follows (for player n’s choice “right” analogously).

yn =: x̄n(z̄n in case of “right”)

yn−1 := min(x̄n−1, d
V 2

x̄1,... ,x̄n−2

n−1 (x̄n−1))
...

y2 := min(x̄2, d
V n−1

x̄1
2 (x̄2))

y1 := min(x̄1, d
V n

1 (x̄1)).

Backward induction describes the subgame perfect equilibria. For any x̄n−2 the two-
person game between the players n − 1 and n results in the unique subgame perfect
equilibrium which is the Nash solution or, equivalently, the Walrasian allocation of the
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induced bargaining economy. This fact forces player (n−2) to choose his Nash coordinate
in the three-person game between players (n−2), (n−1) and n. So player (n−3) is again
confronted with the Walrasian choices of his coplayers and has to choose Walrasian, too.
At the end the Walrasian utility allocation, i.e. the Nash solution, is established as the
unique subgame perfect equilibrium of the n-stage game ExV . (Strictly speaking again
we get quasi-uniqueness only). We formulate this result as

Proposition 3:

The n-person n-stages-game ExV in extensive form derived from the n-person
bargaining game V has a quasi-unique subgame perfect equilibrium with the
unique equilibrium payoff vector N(V ).

6 From support to implementation

The idea of supporting cooperative solutions by equilibria of non-cooperative games which
characterizes the Nash program is different formally and in its intention from implementa-
tion of social choice rules in equilibria by a mechanism designer. For extensive discussions
of this point see Serrano (1997), Dagan and Serrano (1998) and Trockel (1999).

In the literature, unfortunately, both programs or agendas are frequently mixed up and
the term “implementation” is used also in a purely game theoretic context. Some of the
support results are in fact even implementation results as they are derived in models with
a given outcome space. This is in particular always the case when subgame perfect support
is established. By removing just the payoff vectors from the game one is left with the
game tree, which in the extensive form framework is a game form (or mechanism). The
extension from support results to implementation results becomes problematic, however,
in a purely welfaristic context, where only the game in strategic form is given without an
underlying model providing an outcome space. In such a situation are we with the Nash
demand game and with our modified games in Sections 3 and 4. While Proposition 3 can
immediately be interpreted as a result on implementation in subgame perfect equilibrium
this is not the case with Propositions 1 and 2.

We shall apply a general procedure due to Trockel (1999) to transform the support results
of Propositions 1 and 2 into implementation results. To do this we have to recall first
some few concepts of mechanism theory.

Let A be some non-empty set called outcome space, U a set of profiles of utility functions
u = (u1, . . . , un) with ui : A → R, i = 1, . . . , n. A correspondence f : U ⇒ A is a
social choice rule. If Σi, i = 1, . . . , n are strategy sets for n players then a function
g : Σ := Σ1× . . . ×Σn → A is called outcome function and the tuple (Σ1, . . . , Σn; g) is
called mechanism or game form. Such a game form together with a utility profile u defines
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a game in strategic form via composition, namely Γg,u := (Σ1, . . . , Σn;u1◦g, . . . , un◦g).
For any equilibrium concept E [for instance, dominant strategy equilibrium (DSE), or
Nash equilibrium] we say that the mechanism (Σ1, . . . , Σn; g) E-implements the social
choice rule f on U if and only if for all u ∈ U we have g(E(Γg,u)) ⊂ f(u). (Here E(Γ) is
the set of E-equilibria of Γ).

For convenience we normalize our n-person bargaining game V n such that Σi = proji(V
n) =

[0, 1], i = 1, . . . , n.

We define the outcome space A by

A := {L ∈ ([0, 1]n)Gn

|∀V ∈ Gn : L(V ) ∈ V }.

So A is the set of all bargaining solutions. Now every bargaining game V ∈ Gn induces a
utility profile uV = (uV

1 , . . . , u
V
n ) on A as follows:

∀i = 1, . . . , n : uV
i (L) := Li(V ).

The utility functions are evaluation functions: Rather than evaluating a game V by a
solution concept L here the solution L is evaluated by the game V . Notice that the domain
U is not a product and that the utility functions in a profile uV are interdependent. The
reason is that the shape of the efficient boundary of V cannot be separated in n parts each
of which would describe the preference of one player. Rather V contains the aggregate
inseparable information about the players’ utilities. So our domain U is restricted and
interdependent. The definition of the utility functions says in particular that players in
V compare solutions only on the basis of what these would allocate to them in this game
V . Two solutions, however differently they may behave for other V ′s, are considered as
equally good by a player if they give him the same utility in game V .

Now we define the Nash social choice rule. For any V ∈ Gn define V -equivalence on A
by: L ∼V L′ :⇔ L(V ) = L′(V ).

The set [L]V := {L′ ∈ A|L′ ∼V L} is the V -equivalence class generated by L.

Now, the Nash social choice rule is the correspondence

N : Gn =⇒ A : V |=⇒ [N ]V

Notice that N is indeed a social choice rule as Gn is identified with a set of utility profiles.

It remains to define the mechanism for the implementation of N .

12



The outcome function g : Σ → A : x = (x1, . . . , xn) 7→ g(x) maps any strategy profile
x to a solution g(x). This, as a mapping from Gn to Σ will be defined pointwise on Gn.
For any V ∈ Gn we define g(x)(V ) := (min(x1, d

V
1 (x1)), . . . , min(xn, d

V
n (xn))).

For the game ΓV := (Σ, uV
1 ◦ g, . . . , uV

n ◦ g) we get

g(N(V ))(V ) = N(V ).

This follows immediately when we insert

N(V ) for x in g(x)(V ).

This equation asserts that the solutions g(N(V )) and N are V -equivalent,
i.e. g(N(V )) ∈ [N ]V = N (V ).

As by Proposition 1 we have {N(V )} = DSE(V ) we get

g(DSE(V )) = {g(x)|x ∈ DSE(V )} = {g(N(V ))} ⊂ [N ]V = N (V ).

This establishes the implementation of N by (Σ1, . . . , Σn; g).

The resulting payoffs in the game ΓV are given by

uV
i ◦ g(N(V )) = uV

i (g(N(V ))) = uV
i (N) = Ni(V ), i = 1, . . . , n.

In exactly the same way one can proceed with the game Γ̃V . We have derived a unique
Nash and a DSE-implementation of the Nash social choice rule N to the effect that for
any V ∈ Gn the Nash- resp. DSE- payoff vector in ΓV resp.Γ̃V coincides with the utility
allocation of V prescribed by the Nash solution.

7 Concluding Remarks

In the present paper we provided the first support results for the Nash solution of n-person
bargaining games by the unique Nash equilibrium of some game in strategic form. In fact,
even support in dominant strategies was established. This extends the result in Trockel
(1998) to general n-person bargaining games.

A further result of the present paper was the quasi-unique subgame-perfect equilibrium
support for the Nash solution in extensive games with the number of stages being equal
to the number of players. A crucial feature of this result is the fact that not only the
equilibrium payoff is unique but, up to an irrelevant degree of freedom in the choice
of the last player there is also a unique equilibrium strategy profile. So this approach
does not create a coordination problem. Finally, we transformed the support results to
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implementation results by factorizing the games into mechanisms and utility profiles of a
canonical outcome space, the space of solutions of the games under consideration.

The implementation results hold for a restricted interdependent domain of profiles of util-
ity functions, which reflects the fact that in a purely welfaristic context as represented by
a cooperative NTU-game the characteristic function provides only aggregate information
on the players’ utilities, which does not allow to elicit full information about the single
players preferences. The choice of the outcome space as the set of solutions for the class
of games under consideration, i.e. bargaining games in the present paper, appears to be
the only way to speak about desirable outcomes under the aspect of a solution concept
without having a population of players available whose accordingly chosen payoffs would
represent that solution concept.

Our specific choice of the outcome space as the set of bargaining solutions and our def-
inition of the social choice rule to be implemented as intimately related to but different
from the Nash solution itself allowed us to establish implementations in Nash and in
dominant strategy equilibria that are in contrast to impossibility claims in the literature
[(cf. Bergin and Duggan (1996), Dagan and Serrano (1998) and Serrano (1997)]. There
is, however, no contradiction between our results and their results as those are in a non-
welfaristic framework with an underlying set of physical outcomes and lotteries over these.
Also there the Nash solution itself is the social choice rule which is shown to fail to be
Maskin-monotonic and therefore cannot be Nash implementable [(cf. Maskin (1999)]. It
is the restricted domain in our approach which prevents our Proposition 2 from being
in conflict with the Gibbard-Satterthwaite theorem, the famous impossibility result for
dominant strategy implementation.

The most appealing aspect of our main result (Proposition 1) is the fact that it is just a
modification of Nash’s simple demand game that brings about the support result. This
modified game is different from Nash’s game only in case of inconsistent claims of the
players. Here the Walrasian approach to bargaining games allows to estimate in terms
of value to what extent the different players are responsible for the inconsistency and to
punish them by the payoffs accordingly. Following Shapley’s (1969) idea and insisting
in equity in addition to efficiency resulted in that modification of Nash’s simple demand
game which reduced the infinity of equilibria (all efficient points) to just one (the Nash
solution).

It is interesting to compare the first two Propositions. Both provide support of the Nash
solution by a unique Nash equilibrium. There is a trade off, however, between dominant
strategies and full domain reflected by the two results. The punishment of undue behavior
by the payoff functions can be made independent of the other players’ behavior. Then
Walrasian behavior determines a dominant strategy for every player. This is the situation
of Proposition 2.

Alternatively, the payoff functions can be structured in such a way that undue behavior
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is punished only if there are players whose expressed interests are in conflict with that
behavior. If covetous behavior of some player is compensated by sufficient modesty of
the others he will not be punished and therefore can profitably deviate from Walrasian
behavior. This is the situation of Proposition 1. Still it would always be possible for the
modest players by unilateral deviation to their Walrasian (or Nash solution) coordinate to
improve and thereby to push the greedy player below his Walrasian payoff level. Therefore
the Nash solution N(V ) is still the only Nash equilibrium.

In all these considerations there is nothing special about the symmetric Nash solution as
opposed to the asymmetric ones as far as our results are concerned. Just replace equity,
represented by equal shares in the bargaining economy, by a specific inequity represented
by shares α, 1 − α 6= 1/2. Then our results in the obvious modified way continue to be
true for the respective asymmetric Nash solution.
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Appendix

In this appendix we shall proof the Lemma, which for quick reference we state here again.

Lemma:

The function d1 = [0, 1]→ R is strictly decreasing and continuous.

For our proof we apply a part of the Maximum Theorem under Convexity as stated in
Sundaram (1996), Theorem 9.17, pp. 237, 238.

Maximum Theorem under Strict Convexity:

Let X̂ and θ be subsets of R
m and R

l, respectively.

Let f : θ × X̂ → R be a continuous concave function and Φ : θ ⇒ R
m a

compact valued continuous correpondence with a strictly convex graph.

For any ϑ ∈ θ let f ∗(ϑ) := max{f(ϑ, x̂)|x̂ ∈ Φ(ϑ)} and
Φ∗(ϑ) := {x̂ ∈ Φ(ϑ)|f(ϑ, x̂) = f ∗(ϑ)} = arg max{f(ϑ, x̂)|x̂ ∈ Φ(ϑ)}
define the maximum-value function f ∗ and the maximizer-correspondence Φ∗,
respectively. Then f ∗ is a strictly concave function.

To apply this theorem we identify the mappings and sets with those in our model.

We have then:

m := n− 1, l := 1, θ := [0, 1], X̂ := [0, 1]n−1, ϑ = x1, x̂ = (x2, . . . , xn), f(x̂) =

x
1/n−1
2 · . . . ·x1/n−1

n and Φ := V n−1, where V n−1 is interpreted as a constant correspondence.

It is immediate that the assumptions of our model imply the assumptions of the above
version of the Maximum Theorem. Therefore we get:

f ∗(x1) = xn−1
W2 (x1) · . . . · xn−1

Wn (x1) and θ∗(x1) = xn−1
W (x1).

In fact Sundaram’s version of the Maximum Theorem assumes only a convex graph
and assures only concavity of f ∗. The concavity yields for two points (x1,Φ

∗(x1)) and
(x̄1,Φ

∗(x̄1)) that for any λ ∈]0, 1[

f ∗(λx1 + (1− λ)x̄1) = f(λ(x1,Φ
∗(x1)) + (1− λ)(x̄1,Φ

∗(x̄1))) ≥ λf ∗(x1) + (1− λ)f ∗(x̄1) =
λf(x1,Φ

∗(x1)) + (1− λ)f(x̄1,Φ
∗(x̄1)).

As both points, (x1,Φ
∗(x1)) and (x̄1,Φ

∗(x̄1)), are efficient in V n the strict convexity
implies strictness of the above inequality.
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Next define h : [0, 1]n−1 → R : x̂ = (x2, . . . , xn) 7→ x2 · . . . · xn.

For any x1 ∈ [0, 1] the vector grad h|xn−1
W (x1) is normal to ∂V n−1

x1
at its unique Walrasian

point xn−1
W (x1).

If we supplement this vector with the “right” first coordinate, say p1(x1), we get
(p1(x1), grad h|xn−1

W (x1)) as a normal vector to ∂V n at s(x1) = (x1, x
n−1
W (x1)) = (x1,Φ

∗(x1)).

The last n− 1 coordinates of p(x1) are given by p̂(x1) := grad h|Φ∗(x1)

= (xn−1
W3 (x1) · . . . · xn−1

Wn (x1), · . . . ·, xn−1
W2 (x1) · . . . · xn−1

W (n−1)(x1)).

In particular, p̂(x1) is at every x1 orthogonal to the Walrasian path in ∂V n at s(x1) i.e.

< p(x1), (1,Φ∗
′

2 (x1), . . . ,Φ∗
′

n (x1)) > = 0

or, equivalently

p1(x1) = −
n∑

i=2

Φ∗
′

i (x1)Πj 6=iΦ
∗
j(x1) = −(h ◦ Φ∗)′(x1).

Denote the function h ◦ Φ∗ by H.

As by assumption g(s(x1)� 0 for all x1, we have p1(x1) > 0 and therefore, H ′(x1) < 0.

Next define w̄(x1) :=< p(x1), s(x1) >= p1(x1)x1 + (n− 1)Πn
i=2x

n−1
Wi (x1)

= −H ′(x1) · x1 + (n− 1)H(x1).

We get n · d1(x1) = w(x1)
g1(s(x1))

= w̄(x1)
p1(x1)

= −x1H′(x1)+(n−1)H(x1)
−H′(x1)

= x1 − (n− 1) H(x1)
H′(x1)

.

This yields n · d′1(x1) = 1− (n− 1)
[

H′(x1)2−H(x1)H′′(x1)
(H′(x1))2

]
.

To prove our lemma it suffices to show that

n · d′1(x1) < 0 or, equivalently,

H ′(x1)2 − (n− 1)H ′(x1)2 + (n− 1)H(x1)H ′′(x1) < 0⇔
(n− 1)H(x1)H ′′(x1) < (n− 2)H ′(x1)2.

Notice, that H(x1) = (f ∗(x1))n−1 and, therefore,

H ′(x1) = (n− 1)(f ∗(x1))n−2 · f ∗′(x1) and
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H ′′(x1) = (n− 1)[(n− 2)(f ∗(x1))n−3 · (f ∗′(x1))2 + (f ∗(x1))n−2 · f ∗′′(x1)].

It remains to show, therefore, that

(n− 1)2(f ∗(x1))n−1[(n− 2)(f ∗(x1))n−3 · (f ∗′(x1))2 + (f ∗(x1))n−2 · f ∗′′(x1)]
< (n− 2)(n− 1)2(f ∗(x1))2n−4 · (f ∗′(x1))2

⇔ (n− 1)2(f ∗(x1))2n−3 · f ∗′′(x1) < 0

But this follows from the strict concavity of f ∗, as (n− 1)2 and f ∗(x1)2n−3 are positive.
�
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