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Abstract

The present paper provides a method by which the Nash Program may be embedded
into mechanism theory. It is shown that any result stating the support of any
solution of a cooperative game in coalitional form by a noncooperative equilibrium
of some suitable game in strategic form can be used to derive a mechanism theoretic
implementation in this equilibrium of that solution.

1 Introduction

The Nash Program aims to support solutions of cooperative coalitional NTU-games by
equilibria of non-cooperative games in strategic or extensive form. This program is purely
game theoretic as it neither relies nor depends on any underlying social or economic
model. Using the terminology of social choice theory the Nash Program ”operates in
a purely welfaristic framework”. There is no arbiter or social planner involved in the
analysis. Therefore the question as to such an actor’s information about the players’
characteristics is meaningless. Also it is taken for granted in this context that there is
common knowledge among the players about the data of the games, both the cooperative
one and non-cooperative one. The Nash Program does not specify a formal model which
would allow to derive information about one of the games and its solution resp. equilibria
from the other one. Nevertheless any contribution to the Nash Program is considered to
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provide insights into some aspects of the cooperative game and its solution, that are not
obvious from the underlying axioms, or of the non-cooperative game and its equilibria,
which are not directly deducible from the strategic interaction. In Nash’s own words, in
the context of bargaining games, this program relates

” ...two approaches to the problem, via the negotiation model or via the axioms [which]
are complementary; each helps justify and clarify the other.”

[Nash(1953,p. 129)]

Any attempt to look at the Nash Program as a specific part of implementation theory
must rely on an alteration of the framework discussed above. A designer or social planner
has to be added to the model as well as a set of social states in which he is interested.
The solution of the cooperative game is to be interpreted as the set of socially desirable
states. The designer’s goal is to invent rules for games which would force any population
of players to establish one of the desirable social states by playing an equilibrium of a
game according to those rules. So while an additional agent, the designer, enters the
scene when the analysis moves from game theory to mechanism theory, the players leave
it. They are replaced by a class of potential player populations, for each of whom the
designed mechanism is intended to be effective.

The important question now arises, namely what exactly the designer knows about the
player populations, the actions of the players and what he is able to enforce. The very
idea of implementing a socially desired state via strategic interaction of the members
of a society under certain rules implicitly restricts the power and the knowledge of the
designer, who otherwise could act as a dictator and establish the desired state by fiat.
Therefore the question of what a reasonable mechanism could be should be posed only
for well specified information and enforcement contexts of the designer.

The attempt to use results from the Nash Program for a planner’s design problem requires
that the common knowledge of players about their mutual characteristics is taken for
granted for any potential feasible population. This clearly excludes the framework of
asymmetric information among players. Also one should only consider a scenario where
the planner is unable to enforce the desired state by fiat and where he, because of the
design of the mechanism for a whole class of player populations, is also unable to know
the players’ preference profiles. It is assumed implicitly that the players’ participation in
the game can be taken for granted. Given this fact, we may assume that an equilibrium
will be established, at least when it is unique, because of the idea that it is selfenforcing.
This whole aspect of an appropriate enforcement is quite delicate but is excluded from
the formal modelling. For an inspiring discussion of this point we refer to Hurwicz (1994,
pp. 11-12).

As soon as refinements of the Nash equilibrium are considered there arises an additional
problem, namely that of the agreement among all players in all potential populations on
the same refinement.
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Apart from the different sets of acting agents a crucial difference between the purely game
theoretic framework of the Nash Program and the framework of implementation theory
is the explicit occurrence of an outcome space in the latter. Formally, the games, includ-
ing specifications of the players’ preferences, are replaced by game forms containing all
the information about the game except that information concerning players’ preferences
or payoff functions. A non-trivial factorization of players’ payoff functions into an out-
come function, common to all players in all populations, and individual utility functions
defined on the outcome space enables us to distinguish between observability of the re-
sult of players’ actions as opposed to their resulting payoffs. The question as to what
extent the possibility of observation is crucial for enforcement depends on the degree of
selfenforcement power of the considered equilibrium concept. For instance, a dominant
strategy equilibrium could be considered a perfect substitute for observability whenever
the players’ participation can be taken for granted. In this case the rationality that is
assumed for all players guarantees the desired result. A similar claim could be made, even
if with weaker justification, for a unique Nash equilibrium.

The very fact that the presence of an outcome space is an additional ingredient in mech-
anism theory as compared to the Nash Program indicates that these two can hardly be
considered ”equivalent”, as claimed, for instance, in Dagan and Serrano (1997, Abstract).
Also the objectives of both theories are quite different. While the explicit judgement of
the adequateness of a certain game form in view of the enforcement and informational
restrictions of the planner has no meaning in the Nash Program a certain result in the
Nash Program might provide the theorist with some valuable insight but could still be
useless for a planner in a specific context. Also a formal result in the Nash program
could possibly lack any informational value for the game theorist and simultaneously, for
a planner amount to the enforcement of the desired state by fiat. Let us take, for example,
the following modification of Nash’s simple demand game: The two players choose real
numbers, which, when suitably coordinated, result in a feasible bargaining outcome. If
both choose their respective coordinate of the Nash solution they receive these as their
payoffs. Otherwise both receive zero. This game obviously supports the Nash solution
of the bargaining problem by the dominant strategy equilibrium of the game. However,it
provides no valuable information about the specifics of the Nash solution, because any
other solution can be supported in an analogous way. For the planner in the derived
implementation theoretic context this is tantamount to his direct forcing any population
of any bargaining problem to agree on the Nash solution.

Yet, though the objectives of both theories are different, it appears natural to exploit
results yielded in the Nash Program for the purpose of mechanism design, or as Serrano
(1996) has put it, ”to adapt the mechanisms in the Nash program as standard game
forms of the theory of implementation”. In fact, in his paper Serrano provides such an
adaptation. But for this purpose he uses the explicit introduction of a specific underlying
production economy. In his framework Serrano then establishes several impossibility
results for the implementability in Nash equilibrium of cooperative solution concepts,
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among them the Shapley value as well as the Kalai-Smorodinsky and the Nash bargaining
solutions. The basis for these results is the lack of Maskin-monotonicity of these solutions
interpreted as social choice rules.

In a similar way Dagan and Serrano (1997) add a set of physical outcomes to the structure
of a cooperative game in order to adapt the Nash Program into the theory of implemen-
tation. From their analysis in a specific context they derive the general conclusion that
”major solution concepts in coalitional games (e.g. the Nash bargaining solution, the
NTU-Shapley value) can be derived strategically only by considering the possibility of
random outcomes: either chance moves, mixed strategies or pure strategy equilibrium
refinements based on trembles must appear in the analysis”.

A critical discussion and analysis of the possibility to Nash-implement the Nash bargaining
solution will be performed elsewhere. In the present paper I propose a general procedure of
embedding the Nash program into the theory of implementation. That procedure enables
us in our framework to transform any supporting result from the Nash Program into
an implementation result in mechanism theory. In particular, our method enables us to
implement the Nash and the Kalai-Smorodinsky solutions in dominant strategy equilibria
(cf. Trockel (1999) and Haake (1998), respectively).

The adoption of results from the Nash Program to implementation theory, as discussed
above, is really problematic only for games in strategic form. For extensive form games
there does not arise the problem of a non-trivial factorization of the payoff functions.
There, the terminal nodes of the game tree build the endogenously given canonical out-
come space. The game is represented already as a pair consisting of a game form, namely
the tree, and the profile of payoff functions. The game tree is more than just a represen-
tation of players’ strategic options. It also represents the rules of the game. Therefore
to take the set of terminal nodes of a game tree as the outcome space is fundamentally
different from taking the product of strategy sets as the outcome space in games in strate-
gic (or normal) form. The latter would only result in a trivial factorization of the payoff
functions into their compositions with the identity map on the strategy space.

2 Definitions

The integration of the Nash Program into implementation theory requires two steps. First,
we have to derive a social choice rule from the solution concept under consideration.
Any solution in the welfaristic context is represented for any game in its domain by
the utility allocations to the players. In contrast, a choice rule maps preference profiles
on the outcome space to outcomes. Consequently, the first step involves the choice of
an appropriate outcome space. Secondly, we have to relate the non-cooperative game
theoretic support of that solution to the implementation of the derived social choice rule.
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This step involves the factorization of certain functions, a formal method quite prominent
in mechanism theory. The implementation of a social choice rule by equilibria of games
relies on the factorization of payoff functions, i.e. their representation as compositions
of utility functions with an outcome function. The famous Revelation Principle is based
on the factorization of a social choice function into the composition of a map from the
space of preference profiles into the strategy space with the outcome function of the given
mechanism. The factorization we shall employ is somewhat more complex. We need
simultaneous factorizations of two different functions sharing one common factor, namely
the profile of utility functions on the outcome space.

We begin by providing the basic notions from implementation theory and game theory.
We shall deal with games and game forms for n > 1 players. So N = {1, ..., n} is the set
of players ′positions.

Si 6= ∅ denotes the strategy set for any player in position i ∈ N . The joint strategy space
S1 × ...× Sn is denoted S. A player is characterized by his payoff function πi : S → R,
where the superscript i indicates the player’s position i ∈ N . The tuple Γ := (S, π1, ..., πn)
is a strategic n-person game. Removing the population of players while keeping the
rules of the game is achieved by replacing the payoff functions by an outcome func-
tion. A mechanism (or game form) is defined by a pair (S, h), where h : S → Z is an
outcome function associating with any strategy profile in S a state in the outcome space
Z 6= ∅.

Now any population of n individuals with preferences on Z, representable by utility func-
tions ui: Z→R, i = 1, ..., n, transforms the game form (S, h) into the game (S, π1, ..., πn)
via the compositions πi := ui ◦ h, i = 1, ..., n. Denote (u1 ◦ h, ..., un ◦ h) by u ◦ h.

Depending on the population specified by the utility functions on the outcome space Z
one may distinguish certain states as desirable. This idea leads to a social choice rule, or
in Hurwicz’s (1994) terminology, a desirability correspondence, F, which associates with
any feasible profile of utility functions on Z a subset of Z. The determination of which
profiles of utility functions on Z are considered feasible is crucial for the derivation of
implementation results.

The implementation of a social choice rule in equilibrium relates for any feasible u =
(u1, ..., un) the set F (u) of desirable outcomes to the set E(S, u◦h) of equilibria of the game
(S, u◦h).Here E is either the Nash equilibrium or some of its refinements. We say that the
mechanism (S, h) weakly E−implements the social choice rule F over the class U ⊂ (RN)Z

of (feasible) utility profiles, if for all u ∈ U : E(S, u ◦ h) 6= ∅ and h(E(S, u ◦ h)) ⊂ F (u).

Weak E-implementation becomes full E-implementation if h(E(S, u ◦ h)) = F (u) for all
u ∈ U .

Next, we need the concept of a (cooperative) game in characteristic or coalitional form.
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Such a game is a pair (N, V ), where the correspondence V associates with any non-empty
subset S of N a subset V (S) ⊂ R

S. These sets V (S), S ⊂ N are interpreted as the sets
of feasible payoffs of players playing in positions i ∈ S when acting or cooperating in a
coalition.

Denote by G a set of n-person coalitional games. A solution on G is a correspondence L
associating with any coalitional game V ∈ G a non-empty subset L(V ) of R

N , such that for
any x ∈ L(V ) there is a partition {T x

1 , ..., T
x
mx
} of N such that ∀ jx ∈ {1, ...,mx}: (xi)i∈T x

jx

∈ V (T x
jx

). This formula expresses the feasibility of the utility allocation x for the game
V . We denote the set of feasible utility allocations for V by F (V ).

For any solution L on G we denote by SL the set of selections of L, i.e. of functions
fL : G −→ R

N such that ∀V ∈ G : fL(V ) ∈ L(V ).

We do not distinguish between a singleton-valued solution and its unique selection. Notice,
that then any selection of a solution is itself a solution.

Let A denote the set of singleton-valued solutions l on G.

3 The Implementation of Solutions

A crucial step for the integration of the Nash Program into implementation theory is the
derivation of a social choice rule that represents the cooperative solution concept under
consideration. A very important ingredient of this is the choice of the outcome space Z.
Several authors [cf. Bergin and Duggan (1996), Howard (1992), Serrano (1997)] make
general statements about the impossibility of Nash-implementation of certain solutions
which are proved only for specific choices of outcome spaces. The impossibility is proved
then by establishing the lack of Maskin-monotonicity in that specific context (for instance,
if Z is a space of lotteries).

A main problem with the implementation of some solutions lies in the fact that these are
defined in a purely welfaristic context without any underlying physical social or economic
model. So without any concrete population of players at hand there seems to be no way
to look at outcomes and distinguish which of them are desirable. This problem led Dagan
and Serrano (1997) to the enrichment of the pure game structure by an underlying physical
structure. The specific way this was done influenced the (im)possibility of implementation
of some solution concepts. Our present approach is based on a quite abstract outcome
space. Even in a welfaristic framework, where a utility payoff according to a certain
solution cannot be defined unless players are present, the abstract solution concept as a
rule can still be defined. These rules, i.e. the solutions themselves, build our coutcome
space. Our approach is therefore somewhat related in spirit to Border and Segal (1998)
and to van Damme (1986), where players have preferences over solution concepts.
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Suppose that for a given solution L∗ on a class G of coalitional games and for an equilib-
rium concept E for n-person strategic games we have a support result in the context of the
Nash program asserting that for every V ∈ G there is a strategic game ΓV = (S, πV ) such
that πV (E(ΓV )) = L∗(V ). So we may have several equilibria but all result in payoffs ac-
cording to the solution L∗. Notice, that we required S to be the same independently of the
specification of V. This should not be a real restriction in many cases as normalizations,
embeddings or identifications might be used to establish that assumption.

We define a mechanism as follows: The outcome space Z is assumed to be the set A of
solutions. The outcome function h is defined as

h(σ)(V ) :=

{
πV (σ) if πV (σ) ∈ F (V )
dV ∈ F (V ) \ πV (E(ΓV )) otherwise

Here dV is an arbitrarily chosen point in F (V ) that is not an equilibrium payoff vector
for ΓV . Notice, that implicitly we assumed that L∗(V ) is a proper subset of F (V ) for all
V ∈ G.

Next we define our set of feasible profiles of utility functions on the outcome space A. For
each V ∈ G we define uV

i : A→ R by uV
i (l) := (l(V ))i, i ∈ N . As for two different games

V, V ′ ∈ G we must have li(V ) = li(V
′) for some i ∈ N and some l ∈ A this definition

allows us to consider the set G of coalitional games as a subset of all utility profiles on A.

Finally, we define the social choice rule L∗ associated with a solution L∗ on G. For any
solution l ∈ A let [l]V be the V -equivalence class of those solutions l′ ∈ A which induce the
same utility allocation for the game V as l does, formally: [l]V := {l′ ∈ A|l′(V ) = l(V )},
V ∈ G. We define the social choice rule L∗ associated with the solution L∗ on G by
L∗(V ) =

⋃
l∈SL∗

[l]V .

This social choice rule reflects the idea that any population of n players as characterized
by V evaluates a solution concept only on the basis of what that solution allocates to
them in the game V . This population does not care about what a solution might give to
other populations’ players characterized by some V ′ 6= V .

Notice that, although it is meaningful to choose the set G as the set of feasible utility
profiles, this choice represents a seriously restricted domain.

We consider now for any coalitional game V ∈ G the game in strategic form ΓV :=
(S, πV ). Let E be an equilibrium concept, i.e. some non-specified refinement of the Nash
equilibrium. We can state the following

Lemma: Assume that for every V ∈ G we have πV (E(ΓV )) = L∗(V ) 6= ∅. Then the
mechanism (S, h) weakly E-implements L∗. Moreover, for every V ∈ G we have:
uV ◦ L∗(V ) = L∗(V ).
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Proof:

Let σ̂V ∈ E(ΓV ) be any equilibrium of ΓV . By the definition of the outcome function h
we get:

h(σ̂V )(V ) = πV (σ̂V ). By assumption this is an element of L∗(V ). Therefore, there exists
a selection l∗ ∈ SL∗ such that

l∗(V ) = πV (σ̂V ) = h(σ̂V )(V ) = uV ◦ h(σ̂V )

which implies

h(σ̂V ) ∈ [l∗]V ⊂ L∗(V )

and thus

h(E(S, πV )) ⊂ L∗(V ).

This establishes the weak E-implementation of L∗.

The second claim of the Lemma results from the following chain of inequalities:

uV (L∗(V )) = {uV ([l]V )|l ∈ SL∗} = {uV (l)|l ∈ SL∗} = {l(V )|l ∈ SL∗} = L∗(V ).
�

The proof makes the two factorizations explicit which I discussed in section 2.

Mathematically, the social choice rule L∗ is a lifting . It lifts the solution, a correspondence
from G to R

N , to the utility vector function uV , interpreted as a map from the quotient
space A/ ∼V into R

N . Here ∼V denotes the V -equivalence on A defined above, i.e.
l ∼V l′ ⇐⇒ l′ ∈ [l]V .

Notice, that it is the “solution correspondence” L∗ rather than the solution L∗ itself that
plays the role of the social choice rule in our model.

4 Maskin-Monotonicity

The monotonicity of social choice rules or functions, first introduced by Maskin (1977), is a
necessary but not sufficient condition for their Nash implementability. This holds true for
various versions of weak, full or strong Nash implementation [cf. Osborne and Rubinstein
(1994), Mas-Colell, Whinston and Green (1955)]. The use of the qualification “weak”
in the literature refers to weakenings of equality to inclusions in either direction. While
the weak Nash implementation of a social choice function used in Mas-Colell, Whinston
and Green does not require its monotonicity, the weak Nash implementation of a social
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choice rule as defined by Hurwicz (1994) and used in the present paper, when applied to
social choice functions becomes strong Nash implementability in the sense of Mas-Colell,
Whinston and Green (1995).

In our present framework standard arguments easily show that Nash implementability
of L∗ implies its Maskin-monotonicity. On the other hand, as Maskin monotonicity is
not a sufficient condition for Nash implementability, there might exist solutions L∗ where
the derived social choice rule L∗ is Maskin-monotonic but nevertheless not Nash impe-
mentable. Clearly, because of our Lemma then the underlying solution L∗ is not Nash
supportable either. As the lack of Maskin-monotonicity of the Kalai-Smorodinsky and the
Nash bargaining solutions has been used in the literature [cf. Bergin and Duggan (1996),
Howard (1992), Dagan and Serrano (1997), and Serrano (1997)] to establish the impos-
sibility of their Nash implementation it may be useful to notice that in our framework
these solutions are Maskin-monotonic as is any Pareto efficient singleton-valued solution
l∗.

Claim:

If l∗ ∈ A is Pareto efficient, then L∗ is Maskin-monotonic.

Proof:

We have to show that for any V , V ′ ∈ G the following holds true:

l ∈ L∗(V ), l 6∈ L∗(V ′) =⇒ ∃i ∈ N, l′ ∈ A: ui
V (l) ≥ ui

V (l′) and ui
V ′(l′) > ui

V ′(l).

We choose l′ := l∗. It remains to show that ∃i ∈ N such that

1) uV
i (l) ≥ uV

i (l∗)

2) ui
V ′(l′) > ui

V ′(l).

1) follows (as equality) from l, l′ ∈ L∗(V ).

2) follows from the Pareto-efficiency of l∗. Indeed, l 6∈ L∗(V ′) implies:

∃i ∈ N : ui
V ′(l) 6= ui

V ′(l∗). Pareto-efficiency of l∗ excludes that for all i ∈ N :
ui

V ′(l) ≥ ui
V ′(l∗) with strict inequality for at least one i ∈ N . Hence, there must be

some j ∈ N with uj
V ′(l∗) = uj

V ′(l′) > uj
V ′(l), which implies Maskin-monotonicity.

�

9



5 Concluding Remarks

The present paper demonstrates a possible way of embedding the Nash Program into
implementation theory. Thereby it provides the basis for some implementation results
[cf. Trockel (1999), Haake (1998) and Naeve (1999)] which contrast several impossibility
results in the literature. This paper does not claim, however, that looking at the Nash
Program as a part of mechanism theory is particularly natural. As argued in Section 1,
the goals of the Nash Program and of implementation theory are very different. Also, the
informational context of the Nash Program relates only to decentralization aspects rather
than to information eliciting aspects of implementation theory.

This paper shows, however, that even under the heroic assumption of a purely welfaristic
framework for game theoretic analysis we are not automatically condemned to deprive
ourselves of potential applications of mechanism theory.

It may also be questioned whether the outcome space and the mechanism employed for
our above embedding lemma are very reasonable from a practical point of view. Such
considerations, however, lead us immediately back to the question to what extent the
presently established modelling of implementation via game forms is an adequate one.

Again, to answer that question we would have to deal with the problem of what “rea-
sonable” mechanisms are. Our understanding of this problem is still in the beginning
[cf. Jackson (1992), Jackson, Palfrey and Srivastava (1994)]. At least, our method is not
dependent on integer or modulo games as it applies to every game that supports a certain
solution.
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