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Abstract

We discuss linear production games or market games with a continuum of
players which are represented as minima of �nitely many nonatomic mea-
sures.

Within this contex we consider vNM-Stable Sets according to von Neumann
and Morgenstern. We classify or characterize all solutions of this type which
are convex polyhedra, i.e., which are the convex hull of �nitely many imputa-
tions. Speci�cally, in each convex polyhedral vNM-Stable Set (and not only
in the symmetric ones), the di�erent types of traders must organize them-
selves into cartels. The vNM-Stable Set is then the convex hull of the utility
distributions of the cartels.

Using the results from the continuum, we obtain a similar characterization
also for �nite glove market games .
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1 Introduction

Within this paper we want to characterize the von Neumann and Morgen-
stern (vNM) stable sets as applied to linear production games. Such games
represent production in �xed proportions, where the long side of the supply
of the production factors is strictly greater than the short side. Within this
context, most economic and game theoretical solution concepts yield zero
pro�t to the long side, because of excess of supply.

By contrast, revitalizing the concept of both internal and external stability of
vNM solutions, we obtain that each side will form a cartel (seeHart[HART74])
and the stable set will be the convex hull of the utility distributions of both
cartels.

A vNM-Stable Set is (in the words of von Neumann and Morgenstern

[vNM44] ) seen as a standard of behavior. In particular each such standard
of economic behavior will treat both sides equally, and in particular the long
side of the market will end up with some positive amount of utility.

The games we consider are both nonatomic and �nite totally balanced ones
(cf. Shapley-Shubik[SHSH69]) represented as minima of �nitely many
measures. In the �nite context this class is equivalent to either the class of
market games or the class of linear production games. Formally, these games
are represented by means of �nitely many measures �1; : : : ; �� via

v =
^�

�1; � � � ; �r
	
:(1)

which means

v(S) := min f��(S) j � = 1; : : : ; rg ;(2)

for every coalition S: A subclass of this class (the exact games) where the
�1; : : : ; �r are nonatomic probabilities has been extensively studied by Einy
et al. ([EHMS96]), hence within this paper we will concentrate on the
general (nonnormalized, nonexact) case describing economic situations where
the short side of the market is di�erent from the long side. We restrict
ourselves to the orthogonal case (all measures involved have mutually disjoint
carriers).

In [EHMS96] it was shown that the core is the unique vNM-Stable Set pro-
vided the game is exact. In our case, where the game is in general not exact,
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this cannot occur, by contrast it turns out that we have to provide a complete
description of all vNM-Stable Sets.

Purely �nite glove markets as well as our non-atomic games with orthog-
onal measures describe a pure exchange economy with di�erent types of
traders, each type commanding a �corner� of the market consisting of a cer-
tain variety of gloves. The core (as well as the Walrasian equilibria and
other solution concepts) for such situations as described by Billera and

Raanan([BILRA81]) assign zero utility to the long side of the market.

We emphasize that our results do much better:

Markets organized according to convex polyhedral vNM-Stable Sets treat all
types symmetrically, that is, �rst of all each type decides how to distribute
the amount of total production among its members (with some bound over
the density of the distribution), and secondly, a standard of behavior is in-
troduced by implementing the convex hull of r such distributions.

The main result of this paper is hence the characterization of all convex
(polyhedral) vNM-Stable Sets of nonexact totally balanced games or, equiv-
alently, the complete description of a solution concept not discriminating the
long side of a large exchange economy unduly.

The paper is organized as follows. In Section 2 the model is introduced.
Section 3 is devoted to the description of standard solutions. In Section 4
we prove the Main Characterization Theorem (of convex polyhedral vNM-
Stable Sets). In order to achieve this result, some preparatory lemmata and
theorems are obtained: we prove The Density Lemma and the Inheritance
Lemma as well as the Support Theorem and the Orthogonality Theorem.
Section 5 presents the Embedding Theorem which bridges the gap between
�nite glove games and our nonatomic linear production games. Finally, in
Section 6 we o�er the complete characterization for the �nite case.

We would like to express our thanks to Sergiu Hart. He discussed the topic
frequently with us and his comments and suggestions were most in�uential
in the process of preparing this paper.
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2 The Model

We consider games in coalitional function form written (I;F; v); here I is
some interval in real space (the players ), F the ���eld of (Borel) measur-
able sets and v a real valued function on F which is absolutely continuous
w.r.t Lebesgue measure �:

We frequently refer to v as to the game without mentioning the environ-
ment. We are particularly interested in totally balanced games or mar-

ket games generated by �nitely many nonatomic measures, say �1; : : : ; �r

via

v(S) := minf��(S) j � = 1; : : : ; rg ;(1)

which is written

v =
^�

�1; � � � ; �r
	
:(2)

It constitutes no loss of generality to assume that the �� are restrictions of
Lebesgue measure to certain intervals C�; (� = 1; : : : ; r): Most of the time
we will assume that the �� are mutually orthogonal, hence the sets C� are
mutually disjoint.

The concept of a vNM-Stable Set dates back to von Neumann-Mor-

genstern([vNM44]), intuitively this is a set S of imputations such that no
internal domination occurs while any feasible payo� measure outside of S can
be dominated from inside. The concept of domination in the continuous
context is described as follows:

De�nition 2.1. Let (I;F; v) be a game. An imputation is a measure �
such that �(I) = v(I) holds true. An imputation � dominates an imputation
� w.r.t a coalition S 2 F if � is e�ective for S; i.e.,

�(S) > 0 and �(S) � v(S)(3)

and if

�(T ) > �(T ) (T 2 F; T � S; �(S) > 0)(4)

holds true, that is, every subcoalition of S (almost every player in S ) strictly
improves its payo� at � versus �: We write � domS � to indicate domination.

We allow domination also to take place between 'subimputations', i.e., mea-
sures with total mass less than v(I):
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De�nition 2.2. Let v be a game. A set S of imputations is called a vNM-

Stable Set if

� there is no pair �; � 2 S such that � domS � takes place w.r.t. some
coalition S 2 F;

� for every imputation � =2 S there exists � 2 S such that , for some
S 2 F the relation � domS � is satis�ed.

Since domination requires in particular e�ectiveness, we will restrict ourselves
to vNM-Stable Sets containing measures only which are absolutely continu-
ous w.r.t. to a 'reference measure'. This reference measure is supplied in a
natural way by the form of the coalitional function, which is given by

v =
^�

�1; � � � ; �r
	
:(5)

In this context, we may use e.g.

�0 :=
rX

�=1

��(6)

to serve as a reference measure. Actually, it is no severe restriction to assume
that all the �� are restrictions of Lebesgue measure and hence the reference
measure is Lebesgue measure.

The assumption of an underlying reference measure and existing densities for
the members of a vNM-Stable Set may be justi�ed by various considerations.

First of all, if for two measures � and # domination takes place, say, # domS �,
then we may as well assume that �1(S) = : : : = �r(S) = v(S) � #(S) holds
true. Now, as T � S domination requires #(T ) > �(T ). Intuitively one
is tempted to expect that #(T ) � v(T ): If so, it makes sense to postulate
absolute continuity of # with a density bounded by 1. And this would be
true for all elements of a vNM-Stable Set.

In the exact case, i.e., if

�1(I) = : : : = �r(I)

it follows from a result of Billera-Raanan ([BILRA81]), that the core
equals the convex hull of the ��. As has been shown in Einy et. al.
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[EHMS96], the core in this case is the unique vNM-Stable Set, hence every
element of the solution is ex ante absolutely continuous w.r.t the reference
measure provided by (6).

In our present context it will eventually turn out to be a result of this paper
that a vNM-Stable Set for the game given by (2) contains measures � of
bounded densities only, more precisely, we �nd

d�

d��
� 1(7)

only.

Let us mention some notational conventions. We use
V

in order to denote
the min operation in a lattice (e.g. the measures on I); equation (2) provides
the standard usage. The carrier of a measure � is denoted by C(�), in the
context of a game given by (2) we use the abbreviation C� := C(��):

The Radon Nikodym derivative of some measure � with respect to Lebesgue

measure (reference measure) is denoted by
�
� and we shall frequently neglect

the fact that it is de�ned only almost everywhere as this does not in�uence
our arguments. Thus the reader may miss the repeated iteration of the
abbreviation 'a.e.'.

For sets S; T (say 2 F); we use the notation S+T instead of S[T if and only
if S and T are disjoint. This way additivity of a measure � conveniently
writes e.g.

Pr

�=1 �(S
�) = �(

Pr

�=1 S
�).
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3 The Class of Standard Stable Sets

In what follows we consider a totally balanced game v =
V
f�1; � � � ; �rg

which is not necessarily exact, hence the total mass of the measures �� may
di�er. It constitutes no loss of generality to assume that �1 attaines the
minimal total mass and that �1 (and hence v) is normalized, i.e., we assume

1 = v(I) = �1(I) � ��(I) (� = 1; : : : ; r):(1)

Our �rst observation is true for a general situation of this type, however,
later on we shall assume that the measures �� are in addition orthogonal.
Presently we introduce a certain type of vNM-stable set which, as it turns
out fully describes the relevant class of convex vNM-Stable Sets.

As a prerequisit we �rst turn to external stability of the solution concept we
have in mind.

Theorem 3.1. Let v =
V
f�1; � � � ; �rg be a (normalized) totally balanced

game and let �1; : : : �r be probabilities such �� is absolutely continuous w.r.t.
��; and satis�es d��

d��
� 1 (� = 1; : : : ; r): Then S = ConvHf�1; : : : ��g is

an externally vNM-Stable Set for v:

Proof: Consider the game

w :=
^�

�1; : : : �r
	
:(2)

It follows from d��

d��
� 1 and from �1(I) = 1 that

w � v; w(I) = v(I):(3)

The imputations for both games are the same and it follows from (3) that,
for two imputations � and �, the relation � domw � always implies the relation
� domv �:

Now, according to the Main Theorem of Einy et. al ([EHMS96]), S =
ConvHf�1; : : : ; �rg is the unique vNM-Stable Set of w, hence dominates all
imputations outside of S with respect to w: In view of the above observation
it follows that S all the more dominates everything outside of S with respect
to v: More precisely, if, for some imputation � =2 S we �nd � 2 S satisfying
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� domw
S �; then it is not hard to see that � domv

(S\D) � where D is the union
of the carriers of the ��(� = 1; : : : ; r):

qed.

We are now going to impose the additional requirement of orthogonality on
the representation of a game v: Thus, we consider the class

D :=
n
v =

^�
�1; � � � ; �r

	
j �� ? ��; �; � = 1; : : : ; r; � 6= �

o
;(4)

or rather the normalized subclass

D
1 :=

�
v 2 D j v(I) = 1 = �1(I):

	
;(5)

For this class of games we are now going to show that the type of solu-
tion introduced by the previous theorem is indeed a vNM-Stable Set. More
precisely, we obtain the following theorem:

Theorem 3.2. Let v =
V
f�1; � � � ; �rg 2 D1 and let �1; : : : ; �r be probabil-

ities such that �� � ��; � = 1; : : : ; r holds true. Then S = ConvHf�1; : : : ; �rg
is internally stable. Hence, if d��

d��
� 1 (� = 1; : : : ; r) holds true, then S is a

vNM-Stable Set.

Proof: Assume per absurdum that, for two imputations � =
Pr

�=1 c��
� 2 S

and # =
Pr

�=1 d��
� 2 S we have � domS # with suitable measurable S. Then

we have necessarily v(S) � w(S) > 0 and hence ��(S) > 0 (� = 1; : : : ; r):
Because of so much orthogonality we have assumed, there is 0 < � < 1 and
S0 � S such that ��(S0) = ���(I) (� = 1; : : : ; r) holds true. Now consider
the two imputations at hand; we �nd

�(S0) =
Pr

�=1 c��
�(S0) =

Pr

�=1 c���
�(I)

= �
Pr

�=1 c��
�(I) = ��(I)

= �v(I);
(6)

as well as

#(S0) =
Pr

�=1 d��
�(S0) =

Pr

�=1 d���
�(I)

= �
Pr

�=1 d��
�(I) = �#(I)

= �v(I):

(7)

As both, � and # are imputations, this result clearly contradicts the fact
that �(S0) > #(S0) is required in view of � domS #; hence there can be no
internal domination in S; qed.
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De�nition 3.3. Let v =
V
f�1; � � � ; �rg 2 D1 and let �1; : : : ; �r be prob-

abilities such that �� � ��; d��

d��
� 1; � = 1; : : : ; r holds true. Then the

vNM-Stable Set S = ConvHf�1; : : : ; �rg is called a standard solution.

Remark 3.4. Note that for �� := ��

��(C�) ; (� = 1; : : : ; r), the vNM-stable set S =

ConvHf�1; : : : ; �rg supplies a symmetric standard solution, (cf. Hart ([HART74])
and Einy et. al. ([EHMS96]).

One of our main goals within this paper is to show that the class of standard
solutions is large, actually it describes all convex (compact) vNM-Stable Sets
with �nitely many extreme points. The topic will be dealt with within the
next section.
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4 Characterizing Convex Stable Sets

Within this section we start to develop the converse direction or the 'char-
acterization' of vNM-Stable Sets. That is we want to show that all convex
(compact) polyhedral solutions of a game

v =
^�

�1; � � � ; �r
	

are elements of the standard class as de�ned in De�nition 3.3 of Section 3.
To this end, some prerequisits are necessary, most of which, however, may
be considered to be of interest of their own.

The �rst lemma corroborates the idea that solutions to a game described
by (1) are contain only measures that are absolutely continous w.r.t to the
reference measure. More than that, we have the following result.

Lemma 4.1 (The Density Lemma). Let v =
V
f�1; � � � ; �rg 2 D1 and

let S be a vNM-stable set. Then, for all � 2 S and all � = 1; : : : ; r it follows
that

d�

d��
� 1(1)

holds true on C(��) = C�:

Proof: Assume per absurdum that, for some � 2 S and � 2 f� = 1; : : : ; rg;
the set

R� :=

�
t 2 C� j

d�

d��
(t) > 1

�
� C�(2)

has positive measure ��(R�) > 0: De�ne a measure

# := � jI�R�
+�� jR�

;(3)

then

#(I) = �(I � R�) + ��(R�)
< �(I � R�) + �(R�)
= �(I) = v(I):

(4)
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Thus, # =2 S and hence we can �nd some � 2 S such that

� domA #(5)

for a suitable measurable set A. This implies immediately

�(A) � v(A):(6)

as well as

�(A \R�) > #(A \ R�) = ��(A \ R�):(7)

(If it so happens that ��(A \ R�) = 0 is the case, then we are done, as this
would imply � domA � contradicting �; � 2 S .)

Moreover, since we assume the measures �� to be mutually orthogonal, we
know that

��(A \R�) = max f��(A \ R�) j � = 1; : : : ; rg

and consequently

v(A� R�) = min f��(A�R�) j � = 1; : : : ; rg
= min f��(A)� ��(A \R�) j � = 1; : : : ; rg
� min f��(A)g �max f��(A \R�)g
= v(A)� ��(A \R�):

(8)

From this we proceed by the following chain of equations and inequalities,
using (6) as well as (7) and (8) :

�(A�R�) = �(A)� �(A \ R�)
� v(A)� �(A \ R�)
< v(A)� ��(A \ R�)
� v(A�R�):

(9)

Now we have found that A� R� is e�ective for �: But on A� R� it is true
that � > # = �; which implies that we have

� domA�R�
�;

a contradiction to the fact that �; � 2 S: Thus A� R� is a set of Lebesgue
measure 0 which is impossibly compatible with (9), qed.

We may draw some interesting conclusions from this lemma.
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Corollary 4.2. Let v =
V
f�1; � � � ; �rg and let S be a convex vNM-Stable

Set for v: If there are probabilities �1; : : : �r 2 S; such that �� ? �� (�; � =
1; : : : ; r; � 6= �) and �� � �� (� = 1; : : : r); then

S = ConvH
�
�1; : : : �r

	
:(10)

Proof: By virtue of Lemma 4.1 it follows that d��

d��
� 1 holds true and from

Theorem 3.1 we conclude that

S
0 := ConvH

�
�1 : : : �r

	
is a vNM-Stable Set for v: As S is assumed to be convex, we may infer that
S0 � S holds true, hence we have necessarily S0 = S qed.

Corollary 4.3. Let v =
V
f�1; � � � ; �rg 2 D1 and let S be a vNM-stable set.

Then

f�� j ��(I) = 1g � S;(11)

i.e., S contains all normalized probabilities among the ��; � = 1; : : : ; r: If S
is convex, then all these normalized measures are extreme points in S: (Note
that they constitute the extreme points of the core.)

Proof: Assume �1 =2 S, then there is some � 2 S dominating �1; say

� domS �1;(12)

where S is a suitable measurable set. It would then follow that

�1(S) � v(S) � �(S) > �1(S);(13)

which is impossible. If S is convex, then �1 has to be extreme. For any
convex combination of �1 by means of members of S; say �1 = 1

2
(�1 + �2)

involves probabilities �1 and �2 which, according to Lemma 4.1 are bounded
in density by �1 from which it follows at once that they equal �1; qed.

Remark 4.4. Let v =
V�

�1; � � � ; �r
	
2 D1 and let S = ConvHf�1; �g be a

vNM-stable set with two extreme points. It is then easily seen, that the carriers

of �1 and � are disjoint. For, as � di�ers from �1 and
�
� � 1 on C1 = C(�1)

(Lemma 4.1), it is necessarily true that � has positive mass on the complement of
C1: Hence,

� jC1c

�(C1c)



? Section 4: Characterizing Convex Stable Sets ? 12

is a probability. This probability strictly exceeds � on C1c \ C(�) if the carriers
are not disjoint, hence it cannot be dominated by any element of S: Extending this
argument, it is clear that C(�) has to be in the carrier of �2 and that r necessarily
has to be two. Thus we see, that in this case S is a standard solution.

For the subsequent discussion we may, therefore, always assume that a convex
solution has at least three extremepoints, one of which is �1:

In order to proceed with the next Theorem, some auxiliary lemma is nec-
essary. The lemma shows that domination between two imputations with
respect to some measurable set S is always inherited by an arbitrarily small
subset of S:

Lemma 4.5 (The Inheritance Lemma). Let v =
V
f�1; � � � ; �rg and let

# and � be probabilities such that for some T =
Pr

�=1 T
�; T � � C�; (� =

1; : : : ; r) we have # domT �. Then, for every " > 0; There exist coalitions
S1; : : : ; Sr such that the following holds true:

S� � T � (� = 1; : : : ; r);(14)

��(S�) < " (� = 1; : : : ; r)(15)

# domPr
�=1 S

� �:(16)

Proof: W.l.g. assume that �1(T 1) = : : : = �r(T r) holds true and that

#(T 1 + : : :+ T r) � �1(T 1) = : : : = �r(T r) = v(T )(17)

is the case.

Decompose via Ljapouno� each set T � = T �
1 + T �

2 as to yield

��(T �
1 ) = ��(T �

2 ) =
1

2
��(T �) (� = 1; : : : ; r):(18)

Assume without loss of generality that we have

#(T �
1 ) � #(T �

2 ) (� = 1; : : : ; r)(19)

holds true. Then we obtain necessarily

#(
rX

�=1

T �
1 ) � �1(T 1

1 ) = : : : = �r(T r
1 ):(20)
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For, otherwise we would have

#(
rX

�=1

T �
2 ) � #(

rX
�=1

T �
1 ) > �1(T 1

1 ) = �1(T 1
2 )(21)

and

#(
Pr

�=1 T
�) = #(

Pr

�=1 T
�
1 ) + #(

Pr

�=1 T
�
2 )

> �1(T 1
1 ) + �1(T 1

2 )
= �1(T 1);

(22)

contradicting (17). Clearly it follows that # domT1 � for T1 =
Pr

�=1 T
�
1 .

This way we may continue splitting T; T1; ::: always decreasing the measure
by 1

2
: qed.

Theorem 4.6 (The Support Theorem). Let v =
V
f�1; � � � ; �rg 2 D1

and let S be a convex vNM-stable set for v: Let �; � 2 S. If, for some � 2
f(� = 1; : : : ; r)g it is true that �(C�) > 0; �(C�) > 0, then it follows that
C(�) \ C� = C(�) \ C� is the case. That is, if � and � have positive mass
on C� = C(��) at all, then both have the same carrier inside C�.

Proof:

1
st
STEP : We assume for simplicity that � = 1:

Let R � C1 be a set of positive ��measure such that �(R) = 0 and
�

� > 0 on
R is obtained. This we shall exploit to lead to a contradiction.

De�ne �0 to be the restriction of � to the complement of C1; increased by a
suitable constant as to render it in total measure smaller than 1; i.e.,

�0 = (� + ��) jC1c;(23)

where � is the Lebesgue measure and � > 0 is chosen such that �0(I) < 1
holds true. Clearly we have

�0 = � + � on C1c:(24)

2
nd
STEP : We now know that �0 =2 S holds true. Hence there exists # 2 S

and T = T 1 + : : :+ T r such that we have

# domT �0(25)
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for suitable T � � C�(� = 1; : : : ; r): By means of the Inheritance Lemma 4.5,
we may choose S� � T �(� = 1; : : : ; r) such that for S := S1 + : : : + Sr we
obtain

# domS �0(26)

while, in addition, �1(S1) = : : : = �r(Sr) < �1(R) holds true. Now we choose
R1 � R satisfying

�1(S1) = : : : = �r(Sr) = �1(R1):(27)

Clearly it follows from (24) that we have

# > � + � on S2 + : : :+ Sr

# � � = 0 on R1(28)

as � vanishes on R: On the other hand we observe that we have

�

# > 0 on S1; #(S1) > 0:(29)

Moreover, we know that we may as well assume that

#(S1 + : : :+ Sr) � �1(S1) = : : : = �r(Sr) = �1(R1):(30)

3
rd
STEP :

For small " > 0 consider now the probability

�" := "# + (1� ")�;(31)

from (28) it is immediately inferred that we have

�" > � + "� on S2 + : : :+ Sr

�" � � = 0 on R1:
(32)

For su�ciently small " > 0 we �nd that

�"(R1) = "#(R1) < #(S1);(33)

as the last quantity is positive by (29). Next, in view of (28) we see immedi-
ately that

�"(R1 + S2 + : : :+ Sr) <
< #(S1 + S2 + : : :+ Sr)

� �(R1) = �(S2) = : : : = �(Sr)
= v(R1 + S2 + : : :+ Sr)

(34)
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(compare (27)) holds true. Here the strict inequality provides the clue. For,
we may now choose � > 0 su�ciently small such that

�";� := �� + (1� �)�"(35)

still satis�es

�";�(R1 + S2 + : : :+ Sr) < v(R1 + S2 + : : :+ Sr)(36)

But �";� also yields

�";� > � + (1� �)"� on S2 + : : :+ Sr

�";� > � = 0 on R1;
(37)

this follows from (32) and the fact that � is assumed to be positive on R � R1.

The two equations (36) and (37) show that �";�domR1+S2+:::+Sr� . This con-
tradiction proves the theorem.

qed.

Remark 4.7. In the situation of the Support Theorem, whenever ��(C�) = 1;

then C(�) � C� holds true.

We are now in the position to do a major step towards our main goal: we can
show that the extreme points in S are essentially orthogonal. More precisely,
we have

Theorem 4.8 (The Orthogonality Theorem). Let v =
V
f�1; � � � ; �rg 2

D1 and let S = ConvH f�1; : : : �sg be a convex polyhedral vNM-Stable Set for
v. Pick any two extremals of S, say �� and �� for some �; � 2 f1; : : : ; sg:
If, for some � 2 f1; : : : ; rg; the sets f�� > 0g \ C� and f�� > 0g \ C� have
positive Lebesgue measure, then

�� jC�= �� jC�(38)

holds true.

Proof: For simplicity we assume � = 1; thus the carrier involved happens
to be C1: De�ne the measurable function

 =
_n�

�1; : : : ;
�
�s
o
jC1 ;(39)
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an index set

S = f� 2 f1; : : : ; sg j ��(R) > 0 for some R � C1g;(40)

and another measurable function

' =
^n�

�� j � 2 S
o
jC1 :(41)

We claim that  = '; obviously this implies our present theorem.

By the Support Theorem 4.6 we know that on C1 the functions ' and  as
well as the densities of all �� (� 2 S) have the same carrier. Now, if our
claim is wrong, then �(f' <  g) > 0 and as

f' <  g =
[
�2S

[
�2S

f' = �� < �� =  ; g

one of the sets on the right side has positive measure, w.l.g. we assume that
this is

E := f' = �1 < �s =  g:(42)

Using this (and the Support Theorem 4.6), we know that

�1(E) > 0; �1 � �� (� = 1; : : : s); 0 < �1 < �s on E(43)

holds true. We may now choose small positive constants � > 0; � > 0 as
well as a measurable subset F of E such that the measure �F de�ned by the
density

�
�F :=

�
�1 � �1F + �1F c(44)

is nonnegative and has total mass �F (I) < 1. Note that �F exceeds �1 on the
complement of F and is smaller than �1 only on F: But on F it is true, that
all other �� are at least as large as �1: Now, as �F has total mass smaller
than 1; there is # 2 S dominating it, we write

# domS1+:::+Sr �F(45)

with suitable S = S1 + : : :+ Sr; S� � C�(� = 1; : : : ; r):

Next, if �1(S1\F ) = 0, then we can immediately see that # domS1+:::+Sr �1

holds true, contradicting internal stability. The di�cult case is the one in
which this is not so.
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Consider, therefore, the case that we have �1(S1 \ F ) > 0. Because of our
construction we know that

�

# �
�
�1 on S1 \ F and

�

# �
�
�1 + � on (S1 � F ) + S2 + : : :+ Sr:(46)

By means of equation (45) , # is e�ective for S = S1 + : : :+ Sr, i.e., w.l.g

#(S1 + : : :+ Sr) � �1(S1) = : : : = �r(Sr) = v(S1 + : : :+ Sr) = v(S)(47)

holds true. Take a convex combination, say

� :=
1

2
(# + �1);(48)

then from (46) we obtain a similar version reading

�
� �

�
�1 on S1 \ F and

�
� �

�
�1 +

�

2
on (S1 � F ) + S2 + : : :+ Sr;(49)

while (47) becomes a strict inequality (# exceeds �1 on (S1�F )+S2+: : :+Sr;)
which reads

�(S1 + : : :+ Sr) < �1(S1) = : : : = �r(Sr) = v(S1 + : : :+ Sr) = v(S)(50)

Now recall the role of �s as speci�ed in the de�nition (42) and in (43), and
choose a small " > 0 in order to de�ne

�" := "�s + (1� ")�:(51)

If " is su�ciently small we can still guaranty e�ectiveness, for (50) will ensure

�"(S) < v(S):(52)

Also, for " decreased again if necessary, (49) ensures that

�
�" >

�
�1 on (S1 � F ) + S2 + : : :+ Sr;(53)

while the fact that �s > �1 on S1 \ F � E implies

�
�" >

�
�1 on S1 \ F:(54)

Indeed, equations (52), (53), and (54) show that we have constructed a situa-
tion in which �" domS �1; but both are elements of S which is contradictory.
This �nally proves the Theorem. qed.

We are now in the position to prove one of our main results:
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Theorem 4.9 (The Main Theorem of Characterization). Let v 2 D1

be given by v =
V
f�1; � � � ; �rg and let S be a convex polyhedral vNM-

Stable Set for v: Then there are probabilities �1; : : : �r such that �� is ab-
solutely continuous w.r.t. ��; and d��

d��
� 1 (� = 1; : : : ; r) holds true yielding

S = ConvHf�1; : : : �rg: That is, every convex polyhedral solution is

standard.

Proof: This follows now easily from the Orthogonality Theorem 4.8. In-
deed, any two of the extreme points of S on any carrier C� will either coincide
or one of them will vanish. Non of them will have total mass strictly between
0 and 1 on some C�; for otherwise the normalization on this carrier could
never be blocked. Therefore, we have at most r extreme points in S each of
which has support completely contained in some C�: But less than r such ex-
treme points cannot occur, because this obviously would not satisfy external
stability. qed.

Remark 4.10 (The General Density Property). In passing we note that we
have obtained a property which strengthens the Density Lemma 4.1. Obviously it
follows from the last theorem that the following holds true:

For any element � of a convex polyhedral vNM-Stable Set S and for every

t1 2 C1; : : : ; tr 2 Cr

it follows that

rX

�=1

d�

d��
(t�) � 1(55)

holds true.
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5 Finite Solutions versus Large Solutions

Within this section we discuss the 'injection' or 'embedding'of a �nite game
into the continuum. This way we obtain a game with a continuum of players
within which full intervals corresponding to the weight of �nite players have
the same power as those players in the �nite game. Naturally the question
arises as to whether vNM-Stable Sets are compatible with the embedding
procedure and our result is a�rmative.

At �rst sight, this result may draw limited enthusiasm. For, while it is nice
that all vNM-Stable Sets of �nite games (obeying a natural condition) induce
vNM-Stable Sets of continuous games it also tells us clearly that there is little
hope for 'classifying' all continuous vNM-Stable Sets as this seems to be out
of the question in the �nite case - for the time being.

On second thought there is also good news: it turns out that our description
of all convex polyhedral vNM-Stable Sets surprisingly also induces a descrip-
tion of all convex polyhedral vNM-Stable Sets for �nite games. Clearly, this
has nice consequences for it means that we can o�er a class of solution con-
cepts for �nite general glove games - apart from the fact that no classi�cation
of this type so far has been attempted in the �nite context.

We will come back to these nice conclusions in a subsequent section. At
present we start out to present the 'embedding procedure'.

Let N = f1; ; :::; ng be the set of players in the �nite context and let

�

� = (
�

�1; :::;
�

�n) be an integer vector. For any decomposition

N =
rX

�=1

K�

with disjoint sets K� � N let

�

�� :=
�

� j K�

denote the restriction; we now consider the game

�
v :=

^� �

�1; :::;
�

�r
�

(1)

or rather the pair (N;
�
v):
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In order to 'embed'
�
v into the continuum, let Ii (i 2 N) be disjoint intervals

of length
�

�i, i.e.

�(Ii) =
�

�i (i 2 N):(2)

If we write

C� :=
X
i2K�

I i ; �i := � j Ii ; �
� := � j C�(3)

then we have generated a game on the continuum given by

v =
^

(�1; :::; �r) :(4)

De�nition 5.1. Let
�

� be an integer vector and let
�
v be given by (1). If v is

generated via (2), (3), and (4), then v is said to be the (an) embedding of
�
v into the continuum.

Now we turn to vNM-Stable Sets. Given the above procedure, the generation
of continuous vNM-Stable Sets by means of �nite ones is described as follows.

De�nition 5.2. Suppose v is an embedding of
�
v and let S0 be a vNM-Stable

Set for
�
v. Then the embedding S of

�

S is given by

S := f� j 9 m 2 S
0 : � =

X
i2N

mi

�

�i

�ig:(5)

We are now going to exhibit conditions such that the embedding S of a �nite

vNM-Stable Set for
�
v is a vNM-Stable Set for the embedding v of

�
v:

Theorem 5.3 (The Embedding Theorem). The embedding S of a vNM-

Stable Set
�

S is a vNM-Stable Set if and only if there is no m; x 2
�

S with the
following properties:

There is an r-tupel (i1; :::; ir) 2 K1 � : : :�Kr such that

xi� < mi� (� = 1; :::; r)(6)

rX
�=1

mi�

�

�i�

� 1(7)

holds true.
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Proof:

The �rst two steps deal with internal stability:

1
st
STEP : Suppose there is m; x 2 S0 satisfying (6) and (7). Choose (via

Ljapouno�)

S �
rX

�=1

I i�

such that

0 < �(S \ I i1) = ::: = �(S \ I ir) = v(S)

holds true. Then we have in view of (7):

�(S) =
rX

�=1

mi�

�

�i�

�(S \ I i�)

=

0
@ rX

�=1

mi�

�

�i�

1
A v(S)

� v(S) :

(8)

Also, for any R � S with positive Lebesgue measure we use (6) to check that

�(R) =
rX

�=1

mi�

�

�i�

�(R \ I i�)

>
rX

�=1

xi�
�

�i�

�(R \ I i�)

= �(R)

(9)

Now, (8) and (9) show that � domS � is the case, contradicting the internal
stability of S:

2
nd
STEP : On the other hand, assume that there is some coalition S such

that

� domS �
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holds true. De�ne

J� := fi 2 K�j�(I i \ S) > 0g (� = 1; :::; r)

then it must necessarily follow that

mi > xi (i 2
rX

�=1

J�)(10)

is the case. We may as well assume

�(C1 \ S) =
X
i2J1

� (I i \ S) = :::

=
X
i2Jr

� (I i \ S) = �(Cr \ S)

= v(S)

(11)

- otherwise diminish some C� \ S appropriately.

Now choose, for every � = 1; :::; r some i� 2 J� such that

mi�

�

�i�

= min
i2J�

mi

�

�i

(12)

is satis�ed. Then, in view of � domS � we have

v(S) = �(S)

=
rX

�=1

X
i2J�

mi

�

�i

�(I i \ S)

�
rX

�=1

mi�

�

�i�

X
i2J�

�(I i \ S)

=
rX

�=1

mi�

�

�i�

�(C� \ S)

=

0
@ rX

�=1

mi�

�

�i�

1
A v(S) ;

here we have employed (10) and (12). But then it is clear that

rX
�=1

mi�

�

��

� 1
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holds true, i.e., (7) is satis�ed.

Similarly, as �(R) > �(R) for all R � S follows from � domS �, we may
choose R � I i� with positive Lebesgue measure, obtaining

mi�

�

�i�

�(R \ I i�) = �(R) > �(R)

=
xi�
�

�i�

�(R \ I i�) :

That is, we have

mi�

�

�i�

>
xi�
�

�i�

(� = 1; :::; r) ;

meaning that (6) is satis�ed as well,

3
rd
STEP : Within this last step we deal with external stability, this part is

much easier.

Indeed, assume that
�

S is externally stable. We shall prove external stability
of S: Let � =2 S be an imputation.

If
�
� is constant on each Ii (i 2 N), then we are done.

Otherwise, de�ne an imputation for
�
v by

yi :=
�(Ii)
�

�i

(i 2 N):(13)

.

Also, for i 2 N; de�ne

Fi :=

(
� <

�(Ii)
�

�i

)
\ Ii = f� < yig \ Ii(14)

and

J := fi 2 N j �(Fi) > 0g 6= ;:(15)

Pick small positive constants � and � such that

Ei := f� < yi � �g \ Ii � Fi(16)
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still yields �(Ei) > 0 (i 2 J) and

z := (y � �)1J + (y + �)1N�J(17)

satis�es z(N) <
�
v(N). Then z =2

�

S and, therefore, we �nd x 2
�

S and
�

S � N
with

x dom �

S
z:(18)

Now, for some � > 0 su�ciently small we may �nd Si � Ei (i 2 J) and
Si � Ii (i 2 N � J) such that

�(Si) = ��(Ii) (i 2 N)(19)

holds true. Clearly, by (17) and (18) we may infer the inequalities

xi > yi � � (i 2
�

S \ J)

xi > yi + � (i 2
�

S \ (N � J));
(20)

and hence (16) shows that

� :=
X
i2N

xi
�

�i

�i 2 S

yields

� > � on S :=
X
i2

�

S

Si:(21)

On the other hand it is seen that S in view of (19) satis�es

�(S) = �x(
�

S); v(S) = �
�
v(

�

S);(22)

from which it follows at once that we have also

�(S) � v(S)(23)

in view of (18). Now, equations (21) and (23) show that � domS � holds true,

qed.

The converse is not true in the general case.
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Theorem 5.4. Suppose that the embedding S of a set of imputations
�

S is a

vNM-Stable Set. If
�

� is the uniform distribution (that is,
�

�� = (1; : : : ; 1); (� =

1; : : : ; r)), then
�

S is a vNM-Stable Set.

Proof: Internal stability is rather straightforward. All we have to prove

is external stability. To this end, let x be an imputation for
�
v which is no

element of
�

S. Extend x to some � in the usual fashion, clearly � is no element
of S:

Hence, there is � 2 S , piecewise constant, such that � domS � holds true with
suitable S: Now repeat the procedure o�ered in the 2ndSTEP of the proof

of Theorem 5.3 in order to �nd a suitable coalition
�

S such that m dom�

S
x

holds true. qed.

Remark 5.5. Note that condition (7) is a close relative of the general density
property as discussed in Remark 4.10.
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6 Finite Games versus Large Games

Within this section we are going to combine the results of the previous sec-
tions in order to draw some conclusions regarding the theory of vNM-stable
sets for �nite games. Surprisingly, the characterization of all convex stable
sets as obtained within sections 3 and 4 allows also to characterize stable sets
of �nite games in view of the embedding theorem provided in section 5 and
its converse.

Again, let N = f1; ; :::; ng be the set of players in the �nite context and let

�

� = (
�

�1; :::;
�

�n) = (1; : : : ; 1) be an integer vector representing uniform distri-
bution. For any decomposition

N =
rX

�=1

K�

with disjoint sets K� � N let

�

�� :=
�

� j K�

as previously denote the restriction; we again consider the game

�
v :=

^� �

�1; :::;
�

�r
�

(1)

or the pair (N;
�
v):

Theorem 6.1 (The Theorem of Characterization in the Finite Case).

Let
�
v be given by (1) and assume that

�

� is the uniform distribution. Let
�

S

be the convex hull of r orthogonal imputations, each of which is majorized by

some
�

��: Then
�

S is a vNM-Stable Set ( Of course we call this a standard

solution). On the other hand, let
�

S be a polyhedral vNM-Stable Set for
�
v:

Then, there are imputations m1; : : :mr satisfying m� � �� (� = 1; : : : ; r)

such that
�

S = ConvHfm1; : : :mrg: That is, every polyhedral solution is

standard.

Proof: Consider the embedding S of
�

S. By Theorem 3.2 we know that S

is a vNM-stable Set for the embedding v of
�
v: Therefore, by Theorem 5.4 we

conclude that
�

S is a vNM-Stable Set for
�
v:
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Now to the converse direction: suppose
�

S is a polyhedral vNM-Stable Set for
�
v: By the embedding Theorem 5.3 is it clear that S is a polyhedral vNM-
Stable Set for v. Note that the conditions (6) and (7) are automatically

satis�ed by the internal stability of
�

S and by the fact that we have uniform
distribution at hand. Apply now the Main Theorem of Characterization 4.9
to obtain the result that S is the convex hull of r orthogonal probabilities each
of which is majorized by the Lebesgue measure restricted to the appropriate

C�: Turning back to
�

S; we obtain the desired result. qed.

Finally we would like to present an example which shows that there might be
nonconvex vNM-Stable Sets both, for the continuous and the �nite version
of a game.

Example 6.2. LetN = f1; : : : ; 6g and decomposeN into two setsK1 := f1; 2g

and K2 := f3; 4; 5; 6g: Let
�

� := (1; 1; 1; 1; 1; 1): For 0 � p � 1 de�ne a
vector xp by

xp1 := 2p2

1+p

xp2 := 2p
1+p

xpi := 1�p
2

(2)

for i = 3; 4; 5; 6:

Let
�

S := fxp j 0 � p � 1g ;(3)

we claim that
�

S is a vNM-Stable Set for
�
v which is clearly nonconvex. More-

over, its embedding S is as well a vNM-Stable Set for the embedding v of
�
v

- of course also nonconvex.

Proof: The example is constructed in the spirit of the class given by
Shapley ([SHA59]).

Internal stability follows from the fact that xp1 and xp2 are increasing in p
while the last four coordinates obviously decrease in p:

External stability runs as follows: Pick an imputation x which is no element

of
�

S: De�ne p to be the average of the �rst two coordinates of x: First of all
consider the case that x2 < xp2 holds true, that is, assume x2 <

2p
1+p

:

Now x3 + x4 + x5 + x6 = 2 � 2p, hence all xi (i 2 f3; 4; 5; 6g are equal to
xpi or else one of them is smaller. In the latter case, say if xi < xpi , we see
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immediately that xp domf2;ig x because xp2 + xpi = 2p
1+p

+ 1�p
2

� 1 can be

checked. In the �rst case, if all xi (i 2 f3; 4; 5; 6g) are equal, replace xp by
xp�" for su�ciently small " > 0 and repeat the argument mutatis mutandis.

Similarly, the case that x1 < xp1 is dealt with. So it remains to consider
the case that xj � xpj (j 2 f1; 2g): But by the de�nition of p; this means
xj = xpj (j 2 f1; 2g): Since x 6= xp there is i 2 f3; 4; 5; 6g such that xi < xpi .

Now replace xp by xp+� for su�ciently small � > 0 and repeat the previous
argument mutatis mutandis.

Now to the continuous case. The fact that the embedding S is a vNM-
Stable Set follows from Theorem 5.4 because we are dealing with uniform
distribution. qed.

Remark 6.3. For convex polyhedral solutions of �nite games with uniform distri-
bution involved, we have the 'general density property' which says that, for every
element x of the vNM-Stable Set we have

xi1 + : : :+ xir � 1 (i1; : : : ; ir) 2 K1 � : : : �Kr:(4)

Remark 6.4. For every standard solution
�
S the distribution on the short side of

the market coincides with the corresponding ��; that is, everyone obtains utility
proportional to the one of his initial endowment (equal treatment) in any element

of the standard solution
�
S. This economically appealing property may fail for

nonconvex vNM-Stable Sets, as is shown by the above example.
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