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PETER HERBERT MAIER 

SPATIAL GEOMETRY AND SPATIAL ABILITY - 
HOW TO MAKE SOLID GEOMETRY SOLID? 

 
Abstract:  

The guidelines for geometry teaching demand training in spatial abilities to be a principal aim of geometry teaching. 
Unfortunately, daily teaching very often does not reflect this postulated aim. The major aim of geometry didactics 
must be to diminish this discrepancy. Experimental activities with a modular construction system should be the 
innovative guideline for geometry teaching. 
Therefore, a new modular construction system is being introduced in this article. There is a description of how the 
system can easily be produced and handled by the students. The modular construction system allows the production 
of translucent and aesthetical polyhedra, which are both solid and skeleton models. Finally, there are concrete 
suggestions how the five elements of spatial ability can effectively be taught by means of the polyhedra. 

Spatial ability in maths teaching 
Spatial ability is a human qualification that is relevant to a high degree to our lives. Several studies 
(ETHINGTON & WOLFE 1984; GALLAGHER 1989, TARTRE 1990) and a meta-analysis (KLEIME 1986), 
show, that in school spatial skills can be used in specific ways for many mathematical tasks. Obviously 
spatial abilities are used in a wider range than just for solving geometrical exercises. They are also of 
importance in therapies for dyscalculia (LORENZ 1991) and dyslexia (CRANO & JOHNSON 1991). Even 
in some other subjects, e.g. chemistry (PRIBYL & BODNER 1987), biology (LORD 1990) and physical 
education (MEEKER 1991), success bases fundamentally on spatial abilities. As well as in school we 
also profit from a well developed spatial ability in professional life (STUMPF & FAY 1983). We also 
need it in daily life to make use of the increasing mobility of our modern life.  
Thus, in many countries the development of spatial ability is a major aim in many guidelines for 
geometry teaching (CLEMENTS & BATTISTA 1992). Although they exist, the curricula unfortunately do 
not come up to their own guidelines. The topics to geometrical teaching extraordinarily lag behind 
their own guidelines. 
In many curricula, the specific training of spatial ability is of little importance. The main emphasis is 
put on 2D-geometry, while 3D-geometry rather stays in the background. On the one hand, the teaching 
of 3D-shapes and drawing in 3D-geometry have been neglected for decades. On the other hand, 
stereometrical calculations dominate 3D-geometric acitivties. Spatial-visual skills are frequently and 
extensively avoided, the way that geometrical polyhedra are already projected in oblique parallel 
perspective. For calculation rectangular triangles are often integrated into these drawings. Thus, the 
student has only to copy the formula, fill in the measurements and, if necessary, rearrange the formula 
for calculation. This is a very unsatisfying characteristic of today’s geometrical teaching. So the major 
criticism leads to the following initial thesis: 

Spatial geometry is still not more than learning mathematical vocabulary, arithmetic and 
algebra (ANDELFINGER 1988). Therefore, space geometry education has to be fundamentally 
reformed.  

Elements of spatial ability 

Since 1938, there has been a large number of theories of intelligence, which distinguish between 
different aspects of human intelligence, for example linguistical and reasoning aspects. Many theories 
consider the aspect of spatial ability as one of the most important. GARDNER (1991), for example, who 
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supports a very comprehensive theory of human intelligence, states that in our competitive society 
spatial intelligence is  invaluable.  
Many researchers have proved that spatial ability is very complex. Thus spatial ability is usually 
divided into three elements (THURSTONE 1950; MICHAEL et al 1957; LINN & PETERSEN 1985). But 
detailed knowledge of spatial abilities, also for understanding gender differences, needs a specification 
into more than three elements. So it becomes obvious that some researchers subsume different tasks 
under equally named elements. Therefore there were many evident misunderstandings and seeming 
contradictions (MAIER 1994; 1996a). That is why MAIER in his papers distinguishes five elements of 
spatial intelligence as described below, which are based on several theories of intelligence, meta-
analyses and a number of studies of spatial ability. In the area of maths didactics this differentiating 
approach provides valuable insights when analyzing curricula. It was shown that in many grades most 
of the elements occur hardly or not at all (MAIER 1994). But cultural requirements necessarily demand 
the training of these five elements because in today’s technological world we are faced with varied 
spatial-visual problems. The relevance of spatial ability leads to the following thesis as the approach 
for teaching: 

Based on psychological research findings, all five elements of spatial ability have to be 
specifically trained. The present conception of teaching space geometry does not come up to its 
cultural expectations. 

Description of the elements 
The first element, the so-called spatial perception, must not be mixed up with the identically named 
preliminary stage in the acquisition of spatial abilities. Spatial perception tests require the location of 
the horizontal or the vertical in spite of distracting information. Verticality is measured, for example, 
by the „rod and-frame test“ that asks persons to place a rod vertically while viewing a frame oriented 
at 22 degrees. Here the person’s own spatial position is an essential part of the task. Horizontality is 
measured by „water-level tasks“, that ask persons to draw or identify a horizontal line into a tilted 
glass. In these tasks, the person’s own spatial position is not part of the problem, because the person is 
outside the situation. The tasks described above all require static mental processes. Static mental 
processes mean that the relation of the subject to the objects changes, but the spatial relations between 
the objects themselves do not change. 
Figure 1 (exercise 1) is a typical „water-level task“ The left picture shows a glass half full of water. 
Which of the other four glasses show the correct water level with the same filling? 
The second element, the so called visualisation, comprises the ability to visualise a configuration in 
which there is movement or displacement among (internal) parts of the configuration. For example, 
solids are being intersected by a plane, or drawings in oblique parallel persepective are being 
compared with their nets. These types of tasks require mainly dynamic mental processes, which means 
that spatial relations between the objects are changed. The person’s own spatial position is not part of 
the task. In exercise 2 (figure 1) those nets are to be identified which form the pyramid (regular 
tetrahedron) shown on the left side. 
Another important element,  mental rotation involves the ability to rapidly and accurately rotate a 2D- 
or 3D-figure. Nowadays this ability becomes more and more important, because many people work 
with different graphics software. Just as visualization, these mental processes are mainly dynamic. 
Also the person’s own spatial position is not part of the task. 
Exercise 3 (figure 1) is a typical psychological test (VANDENBERG 1971). Which of the four responses 
are identical with the standard figure on the left? 
Spatial relations means the ability to comprehend the spatial configuration of objects or parts of an 
object and their relation to each other. For example, a person has to recognise the identity of an object 
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that is shown in different positions. In contrast to mental rotation, the mental processes of spatial 
relations are static. Nevertheless, the person’s own spatial position is as well an essential part of the 
problem. 
Exercise 4 (figure 1) shows cubes with a different design on each face. The person has to find out, 
whether the drawings could represent the 
cube of the standard figure or if they 
necessarily represent a cube other than in 
the standard figure. 
Tasks of spatial orientation require a 
person’s own orientation in any particular 
spatial situation. Spatial orientation is the 
ability to orient oneself physically or mentally in space. Therefore, the person’s own spatial position is 

necessarily an essential part of the task. The mental processes are mainly dynamic. 
DE LANGE (1984) gives an example for a task for children of about ten years of age (exercise 5, 
figure 1). The question is: „Which camera displays the picture shown?“ 

 

 
   Figure 1: exercises of the five elements of spatial ability 
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Table 1 is a survey of the elements of spatial ability. Please notice that one cannot distinguish strictly 
between the five elements (MAIER 1994): In reality there are interrelations between these elements 
which is shown in the suggestions for teaching described below. 
 

Table 1: survey of the elements of spatial ability 

Innovative guideline for geometry teaching 
Spatial ability is without a doubt one of the best investigated aspects of human intelligence. During the 
last 15 years international research on spatial ability has increased, also in terms of gender differences. 
Recently, extensive results of great importance for maths didactics have been published. Many studies 
undoubtedly prove that spatial ability of persons of different age can be trained (BAENNINGER & 
NEWCOMBE 1989; BATTISTA, WHEATLEY & TALSMA 1982; BEN-CHAIM, LAPPAN & HOUANG 1985; 
1989; EMBRETSON 1987; and additional studies in MAIER 1994) 
Some earlier studies describe ineffective training methods and therefore do not prove a significant 
improvement of spatial ability (BROWN 1954; MYERS 1958; SEDGWICK 1961; SERPELL & DEREGOWSKI 
1972; THOMAS, JAIMISON & HIUMME 1973; and further studies in MAIER 1994). Nowadays we know, 
for example, that formal proofs should not prevail. Furthermore, training methods with tasks that can 
be solved just by means of logical reasoning are not successful. Neither the mechanical drawing nor 
the mere naming of new geometrical shapes should dominate over the learning of the spatial 
properties. Furthermore, the main emphasis should not be put on numerical measures and operations, 
while the aspects of teaching of 3D-shapes and drawing are neglected. Additionally, the period of time 
for spatial training should be longer than just a few hours, and 2D-geometry must not prevail over 
3D-geometry. 
Not surprisingly, these former methods could not improve the performance in spatial ability. 
Nevertheless, geometry teaching still makes use of these unsuccessful methods! In spite of our didactic 
efforts we are obviously not able to learn from these faults. 
Most training approaches are still relying only on visual models. There are only a few studies of 
training methods that are based on work with physical models to improve spatial skills. But especially 
action oriented training methods that work with real models have always shown good or even very 
good results in the improvement of spatial ability. Hence, experimental activities with solid models are 
extremely successful. In my opinion, the maths education community should fully recognise the 
desirability of such a spatial training. This is exactly the way maths didactics should work to achieve 
the improvement of spatial ability in geometry teaching! Stereometrical calculation must no longer be 
in the centre of teaching. We need a new structure of spatial geometry teaching, a structure that is 
based on recent psychological knowledge. 

Innovative guideline for geometry education: The teaching of 3D-shapes must be in the centre of 
geometry teaching. This is the way genuine geometry problems should be dealt with. 

Activities with 3D-shapes are exclusively preparatory dealt with. They are almost only found in 
primary school didactics. As a consequence, there is an enormous lack of polyhedra in secondary 
school didactics today - in most cases only prisms and pyramids occur. Thus, by this restriction a great 
didactical potential is being wasted.  
One example with a valuable didactic potential are the convex face-regular polyhedra, with regular 
polygons as faces. Best known are the regular polyhedra, also known as Platonic solids. A polyhedron 
is regular if it has only one type of regular polygon as its faces, and if all its vertices are congruent. 
There are only five regular polyhedra: The tetrahedron (4 equilateral triangles), octahedron (8 
equilateral triangles), icosahedron (20 equilateral triangles), cube (6 squares) and the dodecahedron (12 
equilateral pentagons; see figure 2). 
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Modifications of Platonic solids lead to the Archimedean polyhedra. Today thirteen (according to 
definition fourteen or even sixteen) of these semi-regular polyhedra are known (for example figure 3: 
great rhombicosidodecahedron). Their faces are all regular polygons, but they are of two or more 
kinds, and their vertices are identical. Furthermore it has been proved, that apart from the regular and 
semi-regular polyhedra and the regular prisms and anti-prisms, there are 92 convex polyhedra with 
regular faces (ZALGALLER 1969). Among these are the eight convex polyhedra, where faces are all 
equilateral triangles. They are called convex deltahedra; three of the Platonic solids mentioned above 
also belong to this group. Many of these solids are of fascinating beauty and have occupied 
outstanding thinkers through all centuries. 

The Modular Construction System 
We now know that spatial ability can be trained. The training with polyhedra asks for a suitable 
medium that facilitates real spatial visual perceptions and is a basis for the acquisition of spatial 
abilities. One has to be able literally to grasp this medium. Abstract perceptions that are conveyed by 
computer programs, for example, are inappropriate at this early stage of learning. 
For the purpose of a successful realisation of 
psychological insights a modular 
construction system for students has been 
developed. Therefore, the easy system of 
joining polygons with rubber bands to make 
polyhedra (e.g. CAMPBELL 1983) has been 
substantially improved. A polyhedron is 
constructed by laying prepared panels side-
by-side and by placing rubber bands over the 
folds of all adjacent panels (figure 4). 
The work with the old system was 
sometimes very discouraging. Very often the panels, that were produced with effort, were torn too 
easily while working with them and so became unusable. Although they had broad and therefore 
unsightly folds, larger polyhedra were not stable enough. The use of shorter rubber bands for higher 
stability led to deformed edges of the panels and made the whole system useless. 

Figure 2: dodecahedron Figure 3: great rhombicosidodecahedron 

Figure 4: connecting the panels 
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These disadvantages do not occur when using the further developed modular construction system: 
Now the panels are made of a rigid and translucence film instead of cardboard. This film is 
inexpensive and as easily processed as thin cardboard. With this film all polyhedra described above 
can be built without a problem (see examples in figures 2 and 3). The panels can easily be produced 
with the help of the patterns shown in figure 5. The edges of the polygons are 8 cm in length. The 
holes for fastening the rubber bands can easily be punched out of the film using a hand paper punch.  
The following table gives a survey of all steps that are necessary to produce the modular  

 

construction system. (For further information about the production of the modular construction system 
and templates of different patterns - mostly in the form of tessellations - please write to the address 
below). As a film use a rigid-PVC film which is 0.5 mm thick. Rubber bands having a diameter of 
2 cm (or 1 inch) work very well.  

 
 

  

Figure 5: patterns for squares and equilateral triangles 
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Proceeding implementation notes 

preparation • distribute the patterns 
• cut out film strips of about 30 cm  

It can be useful to build templates 
out of the pattern above 

 

marking 

• put film strips on the template 
(blue tack can be useful against slipping) 

• mark the polygons incl. their folds on the film 
(using a OH-pen) 

• mark the centres of the circles 

When using a cutter and a bending 
device (see description below) it is 
sufficient just to mark the broad 
lines of the patterns 

 

cutting 

• cut out the panels (faces incl. their folds) using a cutter or 
scissors 

• punch in the holes where circles are marked: for doing so 
open the hand paper puncher and turn it upside down to see 
the marked centres of the circles 

The more accurately you work, the 
better the faces fit when building a 
solid 

 • bend the panels at their folds (see proceeding a or b) The angle between folds and faces 

 
 
bending 

a) bending with bending-
device: put the fold into 
the slit and bend the 
panel as far as possible 
(use bare hands or ruler) 

 b) bending without bending-
device: put the fold between 
the edge of a table and a ruler 
and bend the panel 

should be about 110° 

cleaning • remove the marks   

Table 1: steps to produce the modular construction system 
 

 
A bending device made out of hardwood  
simplifies and speeds up work. (For the  
measures see figure 6: Please note that the  
slit of the bending-device should be 5 mm  
deep and about 1 mm wide.). For bending  
put the fold into the slit of the bending- 
device and bend the panels over the bevel.  
(You get the angle of 110° between faces  
and their folds because the film is rather  
rigid.) The lateral bevels are useful for  
bending triangles, because this way they do  
not interfere with the top bevel. 
 

Figure 6: bending-device 
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Elements of spatial ability in teaching 
After a short period of practice, the students can put together all 
face-regular polyhedra, especially all Platonic and Archimedean 
polyhedra, by means of the new modular construction system 
without a problem. The translucence of the polyhedra is of great 
didactic advantage. The construction and the geometrical 
characteristics become literally transparent. 
With the help of the system the following proposals for teaching 
become really useful - the students get insights conveyed by their 
senses. Furthermore, the students are proud of their work. The 
aesthetics of the polyhedra is motivating for many and facilitates 
eventually the access to space geometry especially for female 
students. 
We choose the regular octahedron as a representative for the 
various polyhedra for the following lesson proposals. 

 
Spatial perception activities 
We put together an octahedron and examine it in more detail: First 
everything seems to be crooked. And we also notice that the 
octahedron has a tendency to stretch in one direction: Regardless of 
which vertex points to the top, it always seems to be bigger in the 
vertical than in the horizontal direction. 
Eventually we find out the octahedron is regular. It looks best when 
it is put on its vertex (figure 7). In doing so we discover a 
horizontal plane of symmetry. Obviously it is possible to divide the 
octahedron into two congruent pyramids with a square base: 
Consequently the octahedron is a double-pyramid. What is its 
height? Due to the special shape of the vertices of the panels, we 
can work out the height: We just put in a thin stick (e.g. a long 
match for lightning pipes or a skewer) through the octahedron. 

The symmetrical face is a square. How many squares does an 
octahedron have? We discover three such planes in our „world of 
right angles“ and mark those edges with different coloured rubber 
bands (figure 8). 
Now we put the octahedron to one face (figure 9) and find out that 
the opposite planes are parallel. When we look directly from above, 
we see that the top area is just rotated: Thus the octahedron is also a 
regular anti-prism. 
Then we put the octahedron with an edge on the table (figure 10). 
Now the square symmetrical plane is perpendicular from which we 
are able to see its shape very well. 
Finally we imagine our octahedron to be half filled with water. We 
show and describe the position of the surface of the water as we 
view the octahedron from different angles (figures 7-10). 

 

Figure 7: octahedron put on a vertex 

 

Figure 8: squares of the octahedron 

 

Figure 9: octahedron put on a face 

 

Figure 10: octahedron put on an edge 



77

Visualisation activities
What shape does the water surface of a half filled octahedron have? 
We can tell when we use a relatively fine grain such as rice or millet 
and fill up half of the octahedron. (Use longer rubber bands to fasten 
the octahedron, so that the vertices of the model are covered with the 
rubber bands.) Because our octahedron is translucent we are able to 
see a square, a rhombus or a regular hexagon in the three standard 
positions. How long are the edges and of what size are the angles of 
the rhombus? This stereometrical task does indeed require spatial 
ability. We can also explain why the hexagon is regular: This is 
because the curved surface of our anti-prism is regular and all edges 
of the hexagon are the same length, that is half as long as the edges of 
the octahedron. 
Now we ask ourselves how the shape of the (cross-)sections will 
change when we reduce the material inside. For this case we punch 
three semicircular holes with regular distances from each other into 
the folds of the faces (figure 11). In these holes we span a rubber 
band which exemplifies one possible cross-section (figure 12). 
Because our model is translucent it is easily imaginable. Did we also 
stretch the rubber bands so that there is a plane cross-section? If we 
regard the cross-section from all sides the rubber bands should be 
taut. 
In order to learn more about our octahedron, we want to experiment 
and discover various nets. For this reason we just take off one rubber 
band after another of our octahedron. A net is found once most 
rubber bands have been taken off without losing the complex of the 
eight faces. With the help of an overhead projector we are able to 
present the results. How many different nets did the students 
discover? Which of those have an axis of symmetry, which have 
rotational symmetry? 

Mental rotation activities 
Which features of rotational symmetry does the octahedron 
incorporate? The easiest way is a rotation about the line which runs 
through the opposite apexes of the octahedron (figure 13). We see the 
rotational symmetry of order 4, that means after four rotations of the 
same angle, the octahedron is back to its original position. Altogether 
we can discover three such axes of rotational symmetry of order 4. 
We discover further axes of rotation: The connection line between the 
middle of the opposite faces are also possible axes of rotation. There 
are four such axes of rotation, each of order 3 (figure 14). Finally the 
six connecting lines of the opposite edges (connection of the middle 
of each edge) are axes of rotational symmetry of order 2 (figure 15). 
 

 

 
Figure 11: modified template  

 

Figure 12: Spanning a rubber band 

Figure 13: rotational symmetry of order 4 

 

Figure 14: rotational symmetry of order 3 

Figure 15: rotational symmetry of order 2 
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Now we construct a cube and examine its symmetrical characteristics. We are surprised to see that the cube
rotational symmetry as the octahedron. Likewise it has three rotational symmetries of order 4, four times of order 
of order 2. We will refer to this later on. 
 

A further task for exercises with the cube is shown in 
figure 16. Which symbols are to be added to the blank face 
when referring to the drawing left? It is presumed that the 
symbols on the parallel planes of the cube have the same shape. However the same symbol appears 
once filled in and once just outlined. 
First we try to complete the task mentally. After that we check our assumptions with our models, by 
drawing the symbols using a (water soluble) OH-pen. Now we can see that the first and the fourth cube 
have an outlined square and the second and the third a filled in cross (figure 17).  
 
Further additional tasks with increasing difficulty - and also various tasks concerning other elements of spati
provided in MAIER (1996b) for photo copying. Once we are capable of doing these, we can give easier tasks where
can be used instead of a cube. 

Spatial relations activities 
Figure 18 shows four diagrams each representing the same cube. The letters A to F are written on each of the fa
determine which letters are on opposite faces. 

 
 
One explanation of a result may be like this: „Because B in 
picture 1 lies above A and D in picture 2 lies below A, B and D 
must be on opposite faces. Besides C in picture 1 lies to the right of 
A, whereas E in picture 2 lies to the left of A. That is why C and E 
are on opposite faces. A and F are left over and therefore must also 
be parallel to each other“ (figure 19). 
What makes it interesting is the fact that we only needed the first 
two of the four pictures to find a solution. This is no coincidence. 
The task is created in such way that at most 3 pictures are needed to 

 

Figure 16: mental rotation of a cube 

Figure 17: solutions of the mental  
   rotation task 

Figure 18: spatial relations of cubes 
 

 

A opposite F

B opposite D

C opposite E
Figure 19: solutions of the spatial  

    relations task 
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find a solution. 
Let us go back to our octahedron in the shape of a triangular anti-prism. 
Is it also possible to construct a square anti-prism? As we can see in 
figure 20 it is possible and we compare it with the triangular anti-prism. 
Now we can also imagine pentagonal, hexagonal, etc. anti-prisms. 
But are we also able to imagine an anti-prism with no triangular base but 
instead having „biangles“, containing just lines? We try to construct such 
a solid and are amazed to see the result: We are holding a tetrahedron in 
our hands (figure 21). 
Finally we take a cube and an octahedron: Which polyhedra is formed by 
joining the centres of adjacent faces? The result is a socalled „dual 
polyhedron“. Each vertex corresponds to a face of the original, each face 
of the new polyhedron to an original vertex, and the edges match, one for 
one. We see that the cube and the regular octahedron are dual to each 
other (figure 22 and 23) and we now understand why they both have the 
same symmetrical characteristics. 
 
Spatial orientation activities 
Finally we let our imagination go along the edges of a large octahedron. 
In doing so we can look at our model or at a drawing (figure 7) or we do 
not use a model at all: „Starting at the point A (see figure 7) we turn 
right, then go up, then turn left to the back and finally we go forward. 
Where are we now?“ That’s right, we have come back to our starting 
point A. We carry on. Who would like to suggest the next „spatial 
orientation walk“? 
 
 
Teaching experiences 
Teaching experiences in grades 5 to 10 have shown that the students 
definitely like experimental activities with the modular construction system. From grade 7 onwards the 
students consider the production of the system and the building of the polyhedra mostly as „very easy“. 
At least in grade 5 and 6 a short period of experimental handling of the system is recommended for the 
beginning. At this stage the students, as well as older students and university students, like to put their 
solids together to make houses, towers etc. Teachers are often astonished about how creative their 
students work with that material - evidently the system provokes creative working. Qualitative 
analyses confirm these observations: The students appreciate that „phantasy plays a role in maths 
teaching“ and that „one gets beautiful results to be proud of“. 
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