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Abstract 

The project pupils work on problems with a goal which cannot be reached („invisible wall project“) 
analyses problem solving processes of children in grades 3-4 and 8-9. The central idea of the research is 
to use sets of tasks which are all unsolvable which means they have a goal which can not be reached. The 
unsolvability, however, is of a kind which can be understood even by younger children. In our case, the 
tasks are geometrical puzzles which have to be covered with given tiles, and arithmetical tasks (for in-
stance: Find exactly for different numbers out of {1, 2, 3, 4, 5} which have the sum 9). To the unprepared 
problem solver, the unsolvability is like an „invisible wall”, against which he bounces in his attempt to 
tackle the task. 
On the basis of altogether 280 fully transcribed interviews, we analyse the pupils’ reasoning behavior and 
analyse the structures of problem solving processes of primary and lower secondary pupils. 

 
1. Introduction  

In the history of mathematics as well as mathematics teaching, problem solving always has 
played an important role, since all creative mathematical work demands actions of problem 
solving. So, it is not astonishing that problem solving has been analysed from many different 
points of view, and in many different fields. Surveys of the relevant literature can be found in 
Schoenfeld 1983, Orehovec 1991, whereas Lester 1994 gives an overview of the development 
of the field from 1970 to 1994. 

Despite the large number of studies on „problem solving”, and despite a large quantity of 
studies about „heuristics of problem solving” or „heuristic techniques”, there are not so many 
studies which try to describe or analyse individual problem solving processes and their 
mechanisms in full. To give some examples for what is meant here, some studies from Rut-
gers University shall be mentioned (see, e.g., Goldin 1984, Goldin/Landis 1985, 
Maher/Davis/Alston 1991, and Maher/Speiser 1997). Another recent example which shows 
how complex such analyses can become is DeBellis 1996. 

The invisible wall project - which has been running since 1992 - is placed in those less 
crowded areas of research on problem solving. The focus of the research is on  such compo-
nents of problem solving ability which are not subject of mathematics lessons. As a conse-
quence, the project does not deal with word problems and other „classical” problems. 
The central idea of the research is to use sets of tasks which are all unsolvable which means 
they have a goal which can not be reached. The unsolvability, however, is of a kind which can 
be understood even by younger children (e.g.: try to find exactly 4 different numbers out of 
the set {1, 2, 3, 4, 5} which add up to 9). To the unprepared problem solver, the unsolvability 
is like an „invisible wall”, against which he bounces in his attempt to tackle the task. 
Since there is a solution to the task - the insight that it can not be done, and why - in the fol-
lowing text we prefer the wording impossible task to unsolvable task. 

In the first phase of the project, elementary components of problem solving behaviour which 
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are actually used by younger children were identified. The results were described in three pa-
pers: Stein 1995 describes gestalt aspects of problem solving, Stein 1996 describes problem 
solving techniques which are used even by primary students, and Stein 1999 describes aspects 
of reasoning and logical thinking with respect to problem solving. The empirical design of all 
of those studies was qualitative, using transcripts of videotapes to describe the observed phe-
nomena. 

In the present paper we report about some of the results of the second phase of the project 
which was carried out in the years 1996 to 1998. This study used mainly quantitative empiri-
cal methods. It was supported by Deutsche Forschungsgemeinschaft - German Research 
Foundation). We ask: 
(1) What are the problem solving abilities of primary and lower secondary students with 

respect to our tasks? 
(2) Are there differences in the structure of the problem solving processes of primary and 

lower secondary students? 
 
2. Design of the study 

2.1 Tasks 

Figure 1: Small puzzles 
 
We work with puzzles and arithmetical tasks. First we describe the puzzles. We use the word 
puzzle since the tasks remind us of jigsaw-puzzles. The word is not used as in Tower-of-
Hanoi-puzzle or missionary-and-cannibal-puzzle. The idea for using impossible puzzles (in 
our sense) goes back to Jeffery (1978). 
There are two „big puzzles” and two „small puzzles”. 

The puzzles are drawn on cardboard. They shall be covered with tiles which are cut out from 
cardboard. 
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The small puzzles shall be covered exactly with the following tiles (each is given as often as 
shown).  
 
The big puzzles shall be covered exactly with the following tiles (each is given once, the tiles 
have different colours). 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Puzzle tiles big puzzles 

There are three arithmetical tasks. 
Given are round tokens (each only once), bearing the numbers 1, 2, 3, 4 and 5 (task 1) resp. 1, 
2, 3, 4, 5, 6 (task 2). The problem solver gets a pattern which informs him/her how many to-
kens he/she may use. In the first impossible task the pattern shows 4 circles. Consequently, 
the problem solver shall lay down 4 tokens (for each circle one token), which sum up to 9 
(This task will be called sum-9-task).  
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Figure 5: Sum-14-tas
 the sum-5-task, there are three circles in the pattern, and the numbers to choose from are in 
1, 2, 3, 4}. In the sum-14-task, there are five circles in the pattern, and the numbers to choose 
om are in {1, 2, 3, 4, 5, 6}. 

.2 Some notes on task construction 

e have discussed the principles of task construction as well as the reasons for choosing un-
lvable tasks in many other publications (see, e.g., Burchartz & Stein, 1998), so only the 
ost important reason for choosing unsolvable tasks shall be mentioned here: they give many 

ccasions for reasoning. Since the goal of the task can not be reached, pupils see a need to 
ive reasons for their „failure“. Thus, the tasks contain an implicit request to give (good) rea-
ns.  

.3 Subjects and task presentation 

ue to an underlying „teacher variable”, pupils who come out of one class sometimes behave 
uite similar. To make sure that this effect does not spoil the value of the study, we did not 
ake more than 5 interviews in one class. The tasks had to be solved by pairs of pupils. Each 

air of pupils got 4 tasks, the first two of them always were solvable. The pupils either had to 
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work on the arithmetical tasks, or on the puzzles. 

With the puzzles, each pair of pupils got one big and one small puzzle. The order (big puzzle 
first, or big puzzle as second task) was randomly assigned to the pairs of pupils. 
With the arithmetic tasks, each pair of pupils got one big and one small task. „Big” and 
„Small” had different meanings for primary and lower secondary students: in primary classes, 
the number-5-task was the small one, the number-9-task was the big one. In lower secondary 
classes the number-9-task was the „small” one, the number-15-task was the „big” task. The 
order (big task first, or big task second) was randomly assigned to the pairs of pupils. 

The interviews were taken from summer 1996 to winter 1997. 17 primary schools and 12 
lower secondary schools took part (some of them with more than one class). Altogether, in-
terviews taken from 140 groups of students were fully transcribed and analysed in the study 
(this makes 280 transcripts). 

 Puzzles Arithmetical tasks 
Primary schools (grades 3 / 4) 82 50 
Lower secondary schools (grades 7 / 8) 90 58 

Table 1: Numbers of interviews 
 
2.4 Interview schema 

As has been said, all problems are solved by groups of two pupils. The pupils are informed 
that some of the tasks can be solved, other tasks not, and that they have to find out what is the 
case and why. 

Since every question of the interviewer influences the problem solving process, the interview-
ers are restricted to a very limited set of interactions with the pupils. Most of the time, the 
interviewers only watch the pupils work. When the pupils say that the task can not be solved, 
or show some „suspicion” the interviewers ask „and if you try it a different way?” (This is 
interviewer question I1).  
If the pupils refuse to proceed, the interviewer asks them to explain why they think that the 
task can not be done. In most cases, however, pupils resume work. Again, when they say that 
the task can not be solved, or show some „suspicion” the interviewers ask „perhaps there are 
other possibilities?” (This is interviewer question I2). If the pupils refuse to proceed, the in-
terviewer asks them to explain why they think that the task can not be done. 

In most cases, however, the pupils resume work again. The next time they demonstrate that 
they are not willing to proceed, the interviewer asks „So what do you think: can the task be 
solved, or not?”. (This is interviewer question I3). 

I3 is omitted if the pupils by themselves say that they refuse to work on. Anyway, the pupils’ 
answer to I3 always is: „The task cannot be done”.  
So, finally the interviewer says: „This is right. Please explain why you think the task can not 
be done.” (This is interviewer remark I4). 

Only at this end of the interview the interviewers are permitted to talk with the children about 
their understanding of the situation and about the process of solution. This phase of the inter-
view is called explanation phase. 

The interviews are filmed with a video camera. The videos of all interviews were checked by 
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one of the authors. Interviews which did not meet the above described standards of non-
interaction, were eliminated from the study and not analysed. The final number stated above 
is the number of valid interviews. 
 
2.5 Transcription 

The final transcription of the video has the character of a script for a movie which allows to 
replay the interview. Every spoken word and every action with the puzzle pieces respective 
number tokens is protocolled.  

The coding was partly done by student teachers as part of their thesis for the so called states 
exam, partly by paid staff. Since the transcripts of videos are the basis of all following analy-
ses, utmost care was observed to get precise transcripts, using a system of checks and double 
checks. 
 
3. Category systems 

3.1 Geometrical tasks, first category system: grading pupils’ answers 

The interviews starts with the pupils’ answer to interviewer question I3: „The task cannot be 
done”. Interviewer question I4 then is: „This is right. Please explain why you think the task 
can not be done.” 

The following coding system assesses the pupils’ answers to this question. The assessment 
only considers the outspoken words and the final covering of the puzzle. Actions of the pupils 
are not considered, and the process which led to the answers is as well not looked at. 
Students’ answers were classified by three categories. 

I:   Complete proof (for instance: „the 5-unit-tile and the 4-unit-tile have this unique posi-
tion, and then we have no space left for the 3-unit-tile”) 

II:   Demonstration of the way the problem was solved 
  „If you cover it this way, you cannot place the 5-unit-tile”) 
III:   Naming isolated facts (for instance: „This can’t be done since the parts are too long”) 
 
 
 
 
 
 
 
 
 
 

Figure 3: Illustrations for category I (left) and category II (right) 
 
The coding system was developed by B. Burchartz, who also did all the coding. The reliabil-
ity of coding was – after an introduction to the coding method – tested independently by M. 
Stein. A set of 20 randomly chosen answers was coded. There were no differences in both 
coders’ results. 
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Though one might presume that a proof by cases (Puzzle B, puzzle D) is more complicated 
than a linear proof, there is actually no difference at all in the answers in both school levels. 
For reasons of printing space, we only give one example: primary students’ solutions of the 
big puzzles were graded as follows: 

 Category I  :  puzzle A: 2  puzzle B: 3 
Category II : puzzle A: 9  puzzle B: 6 
Category III : puzzle A: 10  puzzle B. 11 

From this point of the study, we therefore chose to put all results of  puzzle A and puzzle B 
(resp. Puzzle C and D) together. In future, we shall only use the notion small puzzles (C and 
D) and big puzzles (A and B). 
 
3.2 Geometrical tasks, second category system: grading answers and problem solving 
process 

The category system of section 3.1 only regards the spoken words of the students. Pupils ac-
tions during the final explanation phase are not considered. Information contained in the 
problem solving gets lost. To overcome this, B. Burchartz developed a second category sys-
tem. Coding with respect to the new category system demands an analysis of the fully tran-
scribed protocols. We have four categories: 

I:  Complete proof (for instance: „the 5-unit-tile has this unique position, and then we do 
not have enough 2-unit-tiles to fill the gap”).  

 For this category, only the final explanation phase is used. 
I*:  The spoken words form an incomplete proof. The non-verbal parts of the communica-

tion, however, fill in the gaps. Considering those non-verbal parts, the proof is com-
plete.  

 For this category, only the final explanation phase is used. 

If the pupils’ answer is neither in category I or I*, the full transcript up to the explanation 
phase is analysed. There are two remaining categories. 
L: Reasoning using tacit assumptions. Pupils in this category refer in their explanation to 

situations they have constructed recently, or perhaps some time earlier, in the problem 
solving process. During the explanation phase, the argumentation itself is not com-
pleted by actions. 

?: Not understandable 

Again, coding was very reliable. The reliability of coding was – after an introduction to the 
coding method – tested independently by M. Stein. A set of 20 randomly chosen answers was 
coded. There was only 1 difference in both coders’ results. 

 

Figure 4: Example for category L 
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Examples 
Example for category  L The situation is as shown in the Figure 7. The pupil says: „Yes, if 
you put it down that way...“... points at the puzzle... „...then this would have to be cut in the 
middle“, and points at the 4-unit-tile. 

Example for category I* (see Figure 8) The pupils start giving their reasons. The situation is 
as shown in picture 1 (By using different symbols on the puzzle pieces (�, �, �) we intend 
to make the positions of the puzzle pieces  easier to detect for the reader). 
 

 
 

Figure 8: Example for category I* 
 

3.3 Coding system for arithmetical tasks 

The category system for the arithmetical tasks is quite similar to the first system of the geo-
metrical tasks. We have four categories: 
I:  Complete proof: the sum of the lowest numbers, or the full set of possible combina-

tions of numbers is given as proof. 
II:  Demonstration of the way the problem was solved. („No combination made 9”; „If I 

put down the numbers this way, then it is too much”) 
III:  Naming isolated facts. („The numbers are too big”; „There is a number missing”) 



 

 

107

IV: Talking round the matter. („It can’t be done because 14 cannot be divided by 5”) 
 
4. Results 

4.1 Geometrical tasks – first coding system 

A comparison of students answers showed for both types of puzzles that students in lower 
secondary give „better“ answers than students in primary schools. The difference is signifi-
cant only for the big puzzles. Statistical analysis used a test by Raatz for grouped ordinal data, 
as shown in Lienert (1973). The level of Significance was 5%.  

 
 
 
 
 
 
 

Table 2   Comparison primary vs. lower secondary students 

The performances of both groups with respect to big vs. small puzzles differ significantly (S: 
Small puzzles; B: Big puzzles): primary students solve the small puzzles significantly better 
than the big ones. Secondary students show no differences in solving small vs. big puzzles. 
 
4.2 Geometrical tasks – second coding system 

The main result of the re-coding using the second category system is that - using the process 
information contained in the transcripts - we get a totally new impression about the pupils’ 
abilities. The following table shows the migration from old categories to new categories. 
Category I is not listed because category I remains untouched. 

  Primary Secondary 
 Category I*: 30 11 

� 
Category      II     Category L :   2 -- 

� 
  Category ?:   1 -- 

 
  Category I*:   2 7 

 � 
Category       III    Category L : 18 25 

 � 
   Category ?:  11   4 

Table 3   Migration from old to new categories 
 
For a statistical analysis, we cannot assume an ordinal ordering from I to I* to L to ?: 

- We can not say that I is „better“ than I*.  
- There is a big step from I* to L since I* uses the final explanation phase of the transcript 

only, whereas L uses the full transcript. 

Small Puzzles  Big Puzzles 
(not sig.) P S  (sig.) P S 
I 13 23  I 5 20 
II 18 5  II 15 6 
III 10 17  III 21 19 
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- We cannot say that L is „better” than ?. „L” means that the coder was able to understand 
the „hidden information” in the transcript, „?” means, the coder was not able to do so. As a 
consequence, the distinction between L and ? may be more a problem of the coder than of 
the problem solver. 

There is, however, a clear distinction between I and I* vs. L and ? since I and I* only use the 
verbal and non-verbal information given during the explanation phase. In the following, we 
test I/I* against L/?. Having the above table in mind, it is not astonishing that there is now far 
less distinction between the groups of primary and secondary students. 
 

Small Puzzles Big Puzzles 
 P SI  P SI 
I / I* 30 (13/17) 34 (23/11) I / I* 20 (5/15) 27 (20/7) 
L / ? 11 (7/4) 11 (11/0) L / ? 21 (13/8) 18 (14/4) 

Table 4   Results for new categories 
 
For the small puzzles, there is no difference at all between groups, for the big puzzles, the 
group of secondary students is a bit „above” the group of primary students, but this differ-
ence is not significant. 

Of special interest is, how big the contrast is for primary students, if we compare „good ex-
planations against the rest” in the old category system (i.e.: category I vs. II/III) with „good 
explanations against the rest” in the new category system (i.e.: categories I/I* vs. L/?), bearing 
in mind that good explanation in the new category system just means that we look at what the 
pupil does while he is giving his final explanation. 
 

Small Puzzles  Big Puzzles 
 Old system New system   Old system New system 
„good” 13 30  „good” 5 20 
„bad” 28 11  „bad” 36 21 

Table 5   Comparison of old and new categorisation system 
 
4.3 Arithmetical tasks 
The differences between primary and secondary students are not very marked. We think that 
the following tables make a statistical analysis obsolete (i.e.: no explanation need be given): 
 

Primary  Secondary 
 Sum-5 Sum-9   Sum-9 Sum-14 

I 6 4  I 8 6 
II 10 10  II 7 7 
III 7 10  III 13 15 
IV 1 --   
n.e. 1 1 

Table 6: Results for arithmetical tasks 
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4.4 Didactical consequences  

The results of sections 4.1 and 4.2 are of special interest for our understanding of problem 
solving and reasoning in primary education. Taking the final verbal argumentation „as it is”, 
the results of the primary students are not too bad but not very impressing. The new coding 
now shows that the potential of primary students is far higher than can be seen in the verbally 
expressed answers. 
In understanding the unsolvability of small resp. big puzzles, primary students’ abilities are 
near to secondary students’ abilities. Primary students 
- have, however, more difficulties to express their insight verbally (this is group I*), 
- or they „loose” their insight during the process of argumentation, or in their argumentation 

they tacitly assume that the interviewer knows all they know (this is category L). 

The result of section 4.3 shows that reasoning about unsolvability is not impossible for 
younger children. Teachers have to take care, however, that the structure of the needed argu-
mentation is not too complex. 
 
5. Process Analysis 
Since the abilities of primary and 
secondary students are such close 
together with regard to the verbal 
explanation of the unsolvability of 
our arithmetical tasks, it is of in-
terest to have a look at the prob-
lem solving processes. (For the 
puzzles, the respective analysis 
will be contained in Bur-
chartz/Stein 2001.). 

To be able to compare the proc-
esses, we developed so called pro-
files. Figure 9 shows one such 
profile.                                                
       Figure 9: Sums laid by the pupils: how they were 
       built and how long they remained laid down.
       Expl.: Explanation phase 

In those profiles, we can now count the number of building-up-sequences. A building-up-
sequence ends when at least two numbers are removed. The process then ends, or a new 
building-up-sequence starts (The profile in Figure 9 has two building-up-sequences).  

We can now compare the number of building-up-sequences for primary and secondary stu-
dents. Secondary students show significantly less such sequences. To simplify the analysis, 
the data are grouped. 
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 Primary Secondary 
„short“:  0-3 building-up-sequences 21 38 

„medium“: 4-6 building-up-sequences 21 15 
„long“: 7 or more building-up-sequences 8 3 

Significant 
Table 7   Numbers of building-up-sequences 

6. Summary 

6. 1 What are the problem solving abilities of primary and lower secondary students with 
respect to our tasks? 

For both types of tasks – the geometrical as well as the arithmetical – our results show that 
even primary students are able to understand the concept of unsolvability. The number-9-task 
shows that both groups are not far away of each other if – once the insight was gained – the 
amount of reasoning is not too high and the structure of the expected answer is not too com-
plex. 

The same holds for the geometrical tasks: for the small puzzles the needed chain of argumen-
tation is not very long, and though there is some difference between the quality of answers in 
the primary group vs. the group of secondary students, it is not significant. 30% of the pri-
mary students give a full explanation for the unsolvability of the task. 

In case of the big puzzles, however, a somewhat longer chain of argumentation is needed. The 
results of the coding using the first category system show that complete correct explanations 
of the unsolvability are nearly out of reach for primary students. 

The second category system now shows that the potential of primary students is far higher 
than can be seen in the verbally expressed answers. In understanding the unsolvability of 
small resp. big puzzles, primary students’ abilities are near to secondary students’ abilities 
(For related results see Anderson et al. 1997 and McCoy 1994). We see 
- that many younger students tend to use actions as part of their reasoning (this is the case 

for those students who migrate to category I*). If we accept those actions as part of the fi-
nal argumentation, we get a complete and logically valid argument. 

- that there is another big group which uses „hidden arguments” for which they possibly 
assume that they are known to the interviewer (this is the case for those students who mi-
grate to category L). 

 
6.2 Are there differences in the structure of the problem solving processes of primary 
and lower secondary students? 

We have seen that for both types of tasks students’ reasoning abilities in primary and secon-
dary education are quite near to each other if we accept actions as part of the argumentation. 
The question now arises whether there are any differences between the way primary vs. sec-
ondary students work on the tasks.  

For the arithmetic tasks we found that younger pupils run through sequences of problem solv-
ing activities which are more complex than those of the older students, in the following mean-
ing: primary students have to run through the same sequences of actions as the secondary stu-
dents do, but more often. There are significantly more building-up-sequences in the group of 
primary students. By this process of building up and then reducing the sums they seem to 
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build up a good „feeling” for the impossibility of the task.  
 
6.3 Consequences for mathematics teaching 

The results which were reported here have some important consequences for primary educa-
tion: 
(1) We underestimate the reasoning abilities if we only regard their verbally formulated re-

sponses to a task. (Though this was not analysed in this research, we are very sure that this 
holds for written answers as well.) Actions can form an important part of a child’s attempt 
to communicate an argumentation.  

(2) When reasoning about their findings, children often use tacit assumptions. To understand 
those assumptions in full, the teacher has to observe the full length of the child’s problem 
solving process. 

(3) Children have to build up a feeling for the structure of the problem by approaching it sev-
eral times. It is important to give them enough time to work on a  problem. 
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