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ARGUMENTATION, PROOF AND THE UNDERSTANDING OF PROOF 
   

Abstract: 
Argumentation and proof play an important role in mathematics. In recent years several empirical studies 
have revealed deficits in students’ abilities in logical argumentation and in their understanding of mathe-
matical proofs. In an empirical survey with upper secondary students we investigated different compo-
nents of both mathematical, and general, competence like declarative knowledge, methodological knowl-
edge, metacognition and spatial abilities in relation to students’ performance for geometrical proof items. 
The results indicate that these components explain a comparatively high proportion of inter-individual 
differences. 
 

1 Theoretical framework  

1.1 Argumentation and proof in the mathematics classroom 

Logical argumentation, reasoning and proof may be regarded as highly important topics in 
mathematics. Despite the fact that mathematics may even be regarded as a proving science the 
role of proof in the school curriculum did not always reflect that importance. In the last few 
years there was a significant change in the teaching of reasoning and proof in the mathematics 
classroom. During the lively discussions of the 70s and 80s as to whether proofs should be 
part of the mathematics curriculum in secondary schools, mathematics educators argued that 
proving in the classroom had developed into a topic that particularly emphasised formal as-
pects but disregarded mathematical understanding (Hanna, 1983). In the 90s the situation 
changed: proof is again regarded as an important topic in the mathematics curriculum 
(NCTM, 2000) and is an essential aspect of mathematical competence. However proof was 
not necessarily used as a synonym for formal proof. Several authors like Hanna and Jahnke 
(1993), Hersh (1993), Moore (1994), Hoyles, (1997), Harel and Sowder (1998) pointed out 
that proving spans a broad range of formal and informal arguments.  

Understanding or generating proofs is a significant component of mathematical competence. 
Moreover, mathematical argumentation has been identified as the essential element of higher 
order mathematical competence in the TIMSS study. Nonetheless not only the TIMSS study 
(cf. Klieme 2000) but also other empirical findings have revealed wide gaps in students’ un-
derstanding of argumentation and proofs (Senk, 1985; Usiskin, 1987; Healy and Hoyles, 
1998). In a systematic investigation with high-attaining grade 10 students in Great Britain, 
Healy and Hoyles (1998) showed that there are deficits in their understanding of proofs, their 
ability to construct proofs, and their views on the role of proof. Even high-attaining students 
were far from proficient in constructing mathematical proofs, and were more likely to rely on 
empirical verification. However, most of them were well aware that once a statement has been 
proved it holds for all cases within its domain of validity. Moreover, they were frequently 
able to recognise a correct proof, though their choices were influenced by factors other than 
correctness, such as perceived teacher preference. 

1.2 Geometrical thinking and geometrical competence 

Geometry is a good starting point to teach and learn mathematical argumentation, to explore 
mathematical concepts, to fill the gap between everyday life and mathematics, and to value 
mathematics as a part of human culture. Accordingly, geometrical competence can be re-
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garded as an important prerequisite of understanding mathematics. In recent years research 
results in the field of cognitive psychology gave new ideas for describing the cognitive proc-
esses and specific knowledge structures needed to solve geometry problems. In particular, 
geometrical reasoning has been investigated in detail by setting various types of test items and 
observing students working on these items. In the model of Greeno (1980), with respect to 
geometrical knowledge, one may distinguish between (a) theorems and rules, (b) visual pat-
terns — such as the image of corresponding angles — and (c) “strategic principles” which, for 
example, govern the construction of proofs. 

Ideas about the proving process of experts are described by Koedinger and Anderson (1990). 
When experts construct geometrical proofs, they do not merely retrieve declarative knowl-
edge like definitions and theorems from the memory and combine these with logical deduc-
tions. On the contrary, they outline their argumentation in broad terms, taking a constructivist 
approach. They use visual models, in which they are able to “see” properties and connections, 
and “pragmatic reasoning schemas” such as set patterns for individual steps in the proving 
process. This indicates that geometrical competence is not merely a question of talent, but of 
specific skills and knowledge (Koedinger, 1998). 

Nevertheless, geometrical competence requires specific knowledge; it is based on general 
psychological mechanisms that are central to other domains of mathematics as well as to 
thinking and problem solving in general. Where geometrical knowledge is concerned, a dis-
tinction must be drawn between declarative knowledge and methodological knowledge (e.g., 
knowledge of construction procedures and the principles of mathematical proof). As a general 
mechanism, on the one hand, metacognition can be identified, i.e., the active steering and con-
trol of one’s own cognitive processes. On the other hand, various components of general intel-
ligence are relevant; according to Clements and Battista (1992), spatial reasoning is of par-
ticular importance for geometrical competence. The last point is also described by Klieme 
(1986), who showed by a meta-analysis that there is a relationship between spatial abilities 
and performance in mathematics. 

1.3 Research questions and hypotheses 

The present study integrates the lines of research described above. The students’ proof per-
formance, geometrical competence and its cognitive prerequisites are investigated by refer-
ence to TIMSS items, with a particular focus on respondents’ understanding of proof, meta-
cognition and spatial abilities. The hypotheses to be addressed in this article are the following: 

(i) The geometrical knowledge of German upper secondary students is comparatively low. 
This does not only apply to declarative knowledge, but also to methodological knowl-
edge. Insofar, the results of the TIMSS study can be confirmed. 

(ii) The understanding of geometrical concepts (we investigated the concept “congruence” as 
an example) is comparatively poor. Basically the students know definitions or symbols. 
The number of correct answers in the case of examples, drawings, applications and con-
nections is rather small. Students with a correct understanding of geometrical concepts 
undertake the geometrical items significantly better. 

(iii) For the students it is easier to evaluate the correctness of proofs than to perform proof 
items. However there is a relationship between the quality of students’ proof and the 
evaluation of the correctness of proofs. 
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(iv) There is a significant correlation between the performance of geometrical items and spa-
tial abilities. 

2. Design of the study 

2.1 Instruments 

The questionnaire the students were presented with consisted of five parts. The first part was a 
test to measure their performance in geometrical problem solving. There were nine TIMSS 
items allocated to two proficiency levels. The six easier items were assigned to the lower level 
which corresponded to proficiency levels I and II in Klieme (2000) while the three more diffi-
cult ones were assigned to the higher level which corresponded to levels III and IV in Klieme 
(2000). The lower level items were answered correctly by more than half of the students in 
the international TIMSS population and the three higher level items by one third or less of the 
students.  

In the second part, declarative geometrical knowledge was measured as a prerequisite of 
geometrical competence. For the evaluation of students’ declarative knowledge we chose the 
concept “congruence”, a central concept of school geometry. Students were asked to give a 
definition, an example, and a visual or graphic portrayal of the word “congruent”, and to 
name a mathematical theorem in which the concept features. The students’ open-ended an-
swers were coded according to a specially developed category system; one point could be 
earned for each of the four aspects.  

Methodological knowledge, in the form of knowledge about the validity of mathematical ar-
guments, was assessed using an item from Healy and Hoyles’ (1998) proof questionnaire. The 
item dealt with the proof problem as to whether or not a given triangle was isosceles. The 
students were presented with one correct formal proof, one correct narrative proof, one solu-
tion with an empirical argument and one circular solution. They were then asked to assess the 
correctness and generality of each of the four arguments. These eight assessments were 
marked either right or wrong. The total mark is then taken as an index of methodical knowl-
edge (understanding of proof).  

To assess an important aspect of metacognition, the students were asked to rate each of the 
items in terms of whether they think the answer they gave was correct or incorrect. These rat-
ings were then compared with the students’ actual performance. The number of items cor-
rectly rated by the students as having been answered correctly or incorrectly is taken as an 
index of metacognitive competence. 

The last part of the test was the so-called Schlauchfiguren-Test (Stumpf & Fay, 1983), an in-
strument which is well known in Germany. Schlauchfiguren presents different views of com-
plex tubular figures, which have to be judged with respect to a specific point of view. Valida-
tion studies have shown that the test calls for both spatial ability and deductive reasoning. It is 
therefore a suitable instrument to capture those aspects of general intellectual ability which 
are cognitive prerequisites of geometrical competence. 

 

2.2 Study Sample and Administration 

The present study was administered in two German Gymnasium schools — the most aca-
demic type of secondary school. The total sample comprised 81 students (48 female), all of 
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them taking mathematics courses in the 13th grade, i.e. the final year of secondary school. Of 
the 81 students who participated in the study, 59 attended a regular mathematics course and 
22 an advanced course. 

The students were first presented with the geometry problems. The items became gradually 
more difficult as the test went on and the closed and open-ended questions were presented in 
two separate sections, each with a time limit. There was no indication that students had too 
little time to complete the test. After the geometry items, the students were presented with the 
supplementary questions (metacognitive assessment, declarative knowledge, understanding of 
proof and spatial reasoning). Some time later, after a preliminary analysis of results, about a 
quarter of the students were asked to attend a face-to-face interview conducted by a member 
of the research team. In these individual interviews, students were presented with a number of 
items taken from the written test, and a further TIMSS item in which a proof was to be con-
structed. The students were asked to work on these items using the think-aloud method, and 
were videotaped as they did so.  

3 Results 

3.1 Descriptive Findings on Geometrical Competence  

Table 1 shows the percentage of students providing correct solutions for each of the nine ge-
ometry items administered in our study, along with the corresponding results for the interna-
tional TIMSS sample and the German national TIMSS sample.  

Items I8 J11 L12 L9 J16a J16b L18 K18 K12 

Study sample 74.1% 76.5% 74.1% 70.4% 93.8% 34.6% 42.0% 16.1% 11.1% 

TIMSS international 78% 72% 69% 68% 56% 51% 35% 24% 10% 

TIMSS Germany 69.4% 73.5% 59.6% 67.6% 77.4% 21.4% 31.0% 18.5% 5.9% 

 

Table 1 Correct answers for the geometry items 

The results show a remarkably high level of correspondence across the three samples, both in 
the average achievement level and in the performance in each of the nine questions (see the 
diagram on the next page). 

Averaged out across the nine items, 53% of the students in our sample provided correct solu-
tions, compared to 51% in the international sample and 47% in the German sample. Across 
the nine items, the correlations between the performance in our sample and in the representa-
tive German and international TIMSS samples amount to .97 and .89 respectively; both of 
these correlations are highly significant. The relative strengths and weaknesses of the German 
students — in comparison to the international TIMSS sample — are thus also reflected in our 
small sample. 
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In terms of international comparison, German students performed relatively well in the multi-
ple-choice question L9, in which the symmetrical properties of a geometrical figure were to 
be evaluated. In contrast, they performed relatively poorly in the open-ended questions K18 
and L18. In these they were asked to construct a geometrical proof in the tradition of classical 
Euclidean geometry (K18) and to determine the length of a line segment and to verbally de-
scribe the process of construction and argumentation (L18). Notable differences in the per-
formance of the students in our sample and the German TIMSS sample only emerged for 
items J16a and J16b. Here the participants were asked to draw the triangle resulting from the 
reflection or rotation of a given triangle in a co-ordinate system.  

Overall, however, the results show a remarkably high level of correspondence across the three 
samples, in both the general level of geometrical competence and the profile of performance 
in each of the nine items. This suggests that the cognitive mechanisms activated by the stu-
dents tackling the geometry items were also of a similar nature, meaning that the results of the 
detailed investigations reported in the present paper can probably be generalised to the entire 
TIMSS population. The structural similarity observed in the patterns of performance in both 
our sample and the TIMSS national sample justifies the approach taken in this study i.e.  car-
rying out detailed cognitive analyses of students’ ways of tackling TIMSS items in a small 
supplementary study, but then claiming validity for a much larger population of students. 

The following results are of particular interest from the didactical viewpoint: 

• Item L12, in which the length of a diagonal is to be determined, is much easier than item 
L18, in which students are also asked to determine the length of a given line in a geomet-
rical drawing. Both items can be solved by constructing specific triangles and applying the 
Pythagorean theorem. However the crucial advantage of item L12 is that students are of-
fered a choice of several alternatives, and that they can use their common sense to weigh 
up these alternatives. Evidently students find it much easier to make such a choice — here 
using their knowledge about the properties of a regular hexagon and the sides of a right-
angled triangle — than to construct and calculate an answer of their own, showing their 
working. It should be emphasised that this by no means calls the validity of multiple-
choice items into question, but it does demonstrate that these questions call for different 
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cognitive subprocesses than open questions, in which students have to give an explicit de-
scription of their approach to the problem. 

• The construction of an explicit proof, as required in K18, is in turn much more difficult 
than determining a precise number value and giving arguments for the specific calcula-
tions performed, as called for in L18. Probably it is the precise result that makes L18 a 
simpler task to perform. Proving a statement seems to be regarded by students as a more 
open-ended activity. 

• The most difficult item by far in all three populations is K14. This item can evidently only 
be solved if the students are able to use visualisation or drawing skills to recognise the ap-
propriate strategy for calculating the length of the string. One can, for example, visualise 
the surface of the rod as a rectangle, with the string representing the diagonal. The length 
of the diagonal can then be calculated simply by applying the Pythagorean theorem. Items 
such as L12 and L18 demonstrate that students have no major difficulties in estimating 
and/or calculating such a length and it is evident that spatial visualisation skills pose the 
decisive obstacle here. Moreover the poor performance indicates that students have diffi-
culties in solving non-routine problems which ask for restructuring the elements involved. 

3.2  Findings on the Understanding of Proof and Views of the Role of Proof 

In view of the observation that very few students (20% and 35% of the representative German 
and international TIMSS samples respectively) were able to construct correct Euclidean    
geometry proofs (see previous section), we also expected the levels of performance to be 
rather unsatisfactory in the questions investigating students’ understanding of proof and their 
views of the role of proof (taken from Healy and Hoyles, 1998). Interestingly, our students 
also found it much easier to judge given proofs than to construct their own proofs (see       
Table 2).  

 

Proof / feature Relative frequency 
(in percent) 

Corrected item-total  
correlation 

Correct formal proof 
/ correct 
/ general 

 
57 
57 

 
.49 
.45 

Correct narrative proof 
/ correct 
/ general 

 
42 
30 

 
.45 
.38 

Empirical argument 
/ incorrect 
/ not generalisable 

 
46 
60 

 
.13 
.26 

Formal, circular argument
/ incorrect 
/ not generalisable 

 
33 
27 

 
.39 
.40 

Table 2 Components of methodological knowledge (understanding proof) 

As shown in Table 2, 57% of our respondents recognised the correct formal proof (using con-
gruence) to be correct, and the same proportion of participants correctly appreciated its gener-
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ality. A similar proportion of respondents recognised a purely exemplary, empirical argument 
to be incorrect: 46% said that the argument was incorrect, and 60% recognised that it was not 
generalisable. However the low item-total correlations of these two answers (see right-hand 
column of Table 2) showed that even students with a low general understanding of proof were 
aware that the purely empirical argument was incorrect and not generalisable. It could be that 
they rejected the argument simply because they intuitively recognised that it did not satisfy 
the formal criteria for proof.  

Further findings indicate that a significant minority of students implicitly assume that only 
formally presented proofs are acceptable. Only 42% recognised the correct narrative proof 
(using a geometrical diagram) to be correct; moreover, only 30% correctly appreciated its 
generality. Conversely, only one third of the respondents recognised that a formally pre-
sented, but circular argument was incorrect, and 27% that it was not generalisable. In other 
words, the students find it just as difficult to accept correct proofs with a non-formal presenta-
tion as to reject incorrect, but formally-presented, proofs. The high item-total correlations 
show that, generally, only high-attaining students were able to evaluate these proofs correctly.  

Thus far, we have considered various aspects of students’ understanding of proof: the ability 
to construct proofs and to recognise the correctness and/or generality of given proofs. In the 
following, we turn to student preferences and views of the role of proof (cf. Table 3).  

 

Proof / feature Relative frequency (in percent) 
Present study    Healy & Hoyles (1998) 

Correct formal proof 
/ useful as explanation 

/ assumed teacher choice 
/ student’s choice 

 
35 
58 
30 

 
 

48 
24 

Correct narrative proof 
/ useful as explanation 

/ assumed teacher choice 
/ student’s choice 

 
48 
12 
25 

 
 

15 
26 

Empirical argument 
/ useful as explanation 

/ assumed teacher choice 
/ student’s choice 

 
33 
4 
10 

 
 

19 
40 

Formal, circular argument 
/ useful as explanation 

/ assumed teacher choice 
/ student’s choice 

 
15 
11 
28 

 
 

18 
13 

Table 3 Preferences for different proofs and arguments 

Apart from evaluating the correctness and/or generality of the proofs, the students were asked 
to judge whether each of the four arguments was appropriate in order to explain the particular 
geometrical content to one of their classmates, to state which answer would be given the best 
mark, and to identify the argument which would be closest to what they would do if asked to 
answer the question. The most interesting finding, in which our results are entirely in line 
with those of Healy and Hoyles (1998), is that a clear majority of students assume that their 
teacher would give the best mark to a correct formal proof, but that the respondents are almost 
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as likely to choose the correct narrative proof as the correct formal proof for their own ap-
proach. In our study, the students even thought that the narrative proof was more appropriate 
to explain the geometrical content to a classmate than the formal proof. Individual preferences 
for one of the two proofs were related to whether or not it was felt the argument was required 
to convince or explain. Those who chose the narrative proof as the best explanation were 
more likely to select it as their own approach, and the same goes for the formal proof.  

We interpret the findings, particularly those on assumed teacher preference, as an indication 
that the majority of students consider a correct (noncircular), formally presented proof to be 
the mathematically accepted norm. However, they have not entirely adopted this norm in their 
own attempts at proof or their understanding of convincing mathematical arguments. The ma-
jority feel that the correct narrative proof is the best way of explaining geometrical content to 
their classmates, while one third of respondents selected the purely empirical argument as the 
best explanation. These figures, particularly the proportion of students selecting the empirical 
argument, are markedly lower than the corresponding British results (probably due to the age 
difference — 13th graders were tested in Germany, 10th graders in England and Wales). Nev-
ertheless, in the German group too, there is a clear discrepancy between the perceived “offi-
cial” norms and the students’ personal preferences for mathematical arguments. In fact, corre-
lation analyses show that it is the students with high levels of geometrical competence and a 
better understanding of proof who tend to select the empirical argument as the best explana-
tion for their classmates. Thus the ability to differentiate between proofs perceived to be the 
mathematical norm and other forms of mathematical argument is possibly an important facet 
of mathematical competence. The fact that 28% of our respondents selected the circular ar-
gument for their own approach is a critical finding. The majority of these students stated that 
their teacher would give the best mark to the correct formal proof, but evidently did not con-
sider circularity to be an obstacle to choosing this argument as their own approach. 

Overall, these results show that the proof-related competencies and views of the German 
Gymnasium students participating in this study were insufficiently developed. Even when 
students recognise the type of mathematical argumentation which is “officially” required — 
by their teacher, for example, as a representative of the discipline — a large proportion of 
them still choose (incorrect) empirical or circular arguments for their own approach. 

3.3 Descriptive Findings on Declarative Knowledge (Comprehension of Geometrical 
Concepts) 

Our findings on the respondents’ declarative knowledge, summarised in Table 4, are also less 
than satisfactory from the standpoint of mathematical didactics.  

Knowledge 
component 

Relative frequency of correct 
answers (in percent) 

Corrected item-total 
correlation 

Definition 
Example 
Diagram 
Theorem 

8.6 
48.1 
81.5 
11.1 

.16 

.37 

.35 

.22 

Table 4 Components of declarative geometrical knowledge, assessed with reference to the 
concept of “congruence” 
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When asked to describe the concept of “congruence”, 82% of respondents were able to illus-
trate the concept in a sketch, most of them drawing congruent triangles. Less than half of the 
respondents were able to give an example of congruence, however. Only about one in ten of 
the students mastered the central mathematical components of the concept, i.e. were able to 
provide a definition of the concept and name a mathematical theorem in which it features (e.g. 
a theorem of triangular congruence). Moreover, the low item-total correlations for these two 
knowledge components indicate that some of these correct answers may well have been lucky 
guesses. Instead of providing a definition of congruence, many students simply gave a “trans-
lation” of the term, stating, for example, that kongruent (a word of Latin origin) means 
deckungsgleich (the German-language equivalent). Such answers were coded as being “incor-
rect”. It is apparent that even students with a vague intuitive understanding of triangular con-
gruence lack exact mathematical knowledge. 

3.4 Explaining Geometrical Competence: Declarative Knowledge, Methodological 
Knowledge, Metacognition and Spatial Reasoning 

Having described each of the components of our study design, we will now explore the rela-
tions between the scales for geometrical competence, methodological knowledge (under-
standing of proof) and declarative knowledge (understanding of geometrical concepts). Table 
5 shows the intercorrelations, calculated as rank-correlation coefficients (Kendall’s tau), on 
which this discussion is based.  

Scale (2) (3) (4) (5) (6) (7) 

(1) Geometrical Competence 

(2) Geometry, level I/II 

(3) Geometry, level III/IV 

(4) Methodological knowledge 

(5) Declarative knowledge 

(6) Metacognition 

(7) Spatial reasoning 

.76** .62*** 

.27** 

.20* 

.10 

.22** 

.24** 

.18* 

.23** 

-.01 

.24** 

.21* 

.21* 

.05 

-.02 

.33*** 

.23** 

.37*** 

.12 

.09 

.09 

Table 5 Intercorrelations of scales (Kendall’s tau – b) 
*) p< .05  **) p< .01  ***) p< .001 

 

In addition to the mathematical dimensions of competence and knowledge, the two general 
psychological predictors — metacognition and spatial reasoning — are also included in the 
table. 

The most important finding is that all four predictors exhibit significant correlations with 
geometrical competence. This lends support to our basic hypothesis that geometrical compe-
tence is dependent on methodological knowledge, declarative knowledge, metacognition and 
spatial reasoning.  The correlation matrix does not actually allow such causal interpretations 
to be made but, interpreting the results in the light of other research on geometrical knowl-
edge, (Reiss & Abel, 1999), makes it plausible to assume that scales (4) to (7) tap the prereq-
uisites, and scales (1) to (3) the results, of development of geometrical competence. 
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As expected, stronger correlations with the predictors emerge at the higher levels of geometri-
cal competence (items on TIMSS proficiency levels III and IV) than at the lower levels of 
geometrical competence (levels I and II). Understanding of proof is a vital ingredient at the 
higher levels of competence, but is irrelevant to performance in the easier TIMSS geometry 
items. This confirms our assumption that the TIMSS proficiency levels really do reflect dif-
ferent standards of (geometrical) competence.  

There is no intercorrelation between the four predictors. These evidently represent different 
prerequisites of geometrical competence, which not only refer to different constructs on the 
theoretical level, but also are separate on the empirical level. A combination of the four vari-
ables can thus be expected to have a much higher predictive efficiency than each of the indi-
vidual predictors. Accordingly, multiple regression analyses were run for both the entire geo-
metrical competence scale and each of its subscales. The three predictors, “spatial reasoning”, 
“declarative knowledge” and “metacognition” yield a multiple correlation coefficient of .61 
and explain 37% of the variance. Thus a comparatively high proportion of inter-individual 
differences in geometrical ability can by explained by these three predictor variables. Spatial 
reasoning, which — as explained above — involves general components of intellectual abil-
ity, including deductive reasoning, has the greatest explanatory power. This is true for solving 
low-level geometrical problems as well as for solving complex geometrical tasks. With re-
spect to complex tasks, spatial reasoning explains a higher proportion of the inter-individual 
differences in problem solving performance. Declarative knowledge, conceptual knowledge 
and metacognition however, also explain highly significant, non-redundant amounts of inter-
individual variance. The regression analyses for the two subscales again show that perform-
ance at the higher proficiency levels calls for different prerequisites than performance at the 
lower levels of proficiency. While success at the lower levels is largely dependent on a basic 
cognitive skill (metacognition), performance in the more complex geometrical tasks of levels 
III and IV has more to do with subject-related conceptual knowledge and methodological 
knowledge (in this case, the understanding of proof). This confirms Klieme’s (2000) analysis 
of geometrical competence, in which it was not only postulated that a greater amount of 
mathematical knowledge must be accessible at higher proficiency levels, but also that more 
complex processes must be invoked.  

4 Discussion 

Our analyses have revealed considerable deficits in declarative knowledge (understanding of 
concepts) and methodological knowledge (understanding of proof). Where declarative knowl-
edge is concerned, it emerged that even students at the end of secondary level often have only 
a vague intuitive understanding of concepts such as “congruence”, that this understanding is 
restricted to examples, and that they have no exact mathematical knowledge of the respective 
definitions and theorems. Similar to the broad representative survey conducted in England 
and Wales by Healy and Hoyles (on whose methods we have drawn), various misconceptions 
and misinterpretations in the students’ methodological knowledge were revealed. Many Ger-
man Gymnasium students who have taken advanced mathematics courses seem to assume 
implicitly that “good” proofs should have a strictly formal presentation. Yet they choose nar-
rative proofs, purely empirical arguments or – in significant numbers – incorrect circular ar-
guments as their own approaches to proofs or in order to explain proofs to their classmates.  
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These findings, revealing the students’ inadequate understanding of proof, can be regarded as 
an important indication of where the problem areas in mathematics instruction lie. Indeed, this 
was the basic approach taken by Healy and Hoyles (1998). In the context of a theory of situ-
ated cognition, however, the discrepancy between abstract knowledge about the correct con-
struction of proofs on the one hand and (at least partly) erroneous personal preferences on the 
other hand is easy to understand and can be positively evaluated. Students — especially the 
more competent ones — bear the context in mind when evaluating differing formulations of 
mathematical arguments. This is precisely the sort of approach encouraged in modern, re-
form-oriented conceptions of mathematics instruction. After all, students should not only ex-
perience mathematics as a set of fixed rules; rather they should be able to construct appropri-
ate mathematical arguments both in school and in applied contexts. Our findings indicate that 
the topic of “proof in mathematics instruction” is particularly well suited as an introduction to 
mathematical argumentation – precisely because of this juxtaposition of views and prefer-
ences. 
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