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Dynamic Geometry Software (DGS) in Teacher Education 

Peter Bender 
University of Paderborn 

At Paderborn University the course in elementary Euclidean geometry for prospective primary 
and lower secondary school teachers has been changed from classical chalk-and-blackboard 
work to a multi-media environment which is based mainly on the use of the DGS Cinderella. 
Encouraged and supported by a research programme initiated by the administration of the 
German state of Nordrhein-Westfalen we started in the year 2000 to investigate the effect of 
this environment on how students learn mathematics, in particular geometry. In this article I 
give an outline of the research design and report on some preliminary results. 

The paper is based on lectures given by the author in 2001 on several occasions, in particular 
at the annual meeting of the GDM 2001 at Ludwigsburg. 

1. Introduction 
Although geometry plays a rather modest role in mathematics education in German 

schools, it is at the same time an unquestionable part of the university curriculum for 
prospective primary and lower secondary school teachers. In Paderborn we offer a course in 
elementary Euclidean geometry of the plane to our first semester student teachers. Our course 
scarcely goes beyond the contents of the secondary school curriculum, but requires a higher 
level of reflection, in particular geometrical reasoning. For a long time, we gave the course in 
the classical pencil-and-paper and chalk-and-blackboard manner. 

When in the mid 1990s new media became more readily available, my colleague Prof. 
Hans-Dieter Rinkens changed the character of our geometry course from manual to electronic 
media.  He presented the geometric situations through Cabri geomètre, the world's first 
dynamic geometry software (DGS; released in 1988; see Laborde 1985), embedded in a 
Power Point presentation. He could do so because the students were not meeting geometry for 
the first time, but had already some experience of it at school, at least with graphite drawings 
on paper. Of course, there was still much chalk-and-blackboard as well as pencil-and-paper 
work and a great amount of verbalization. This ongoing importance of old media is part of the 
concept, not least bearing in mind our students' future profession as school teachers. 

In the winter of 1999, Prof. Rinkens switched over to another DGS, Cinderella (developed 
by Richter-Gebert & Kortenkamp 1999), because this one could already be used on the 
internet at that time. Since then the students have access to the written material via the 
internet, and can make use of the main strength of DGS when working with the material, i.e. 
they themselves can continually change the given geometric situations. 

One year later, in Prof. Rinkens' second run of the course with Cinderella, we started a 
research project on the impact of this kind of multi-media environment on our students' 
learning of geometry. From August 2001, this research has been supported by the competency 
network "Universitätsverbund MultiMedia NRW" (UVM) founded by the administration of 
the German state of Nordrhein-Westfalen (NRW).  This is part of their global research 
programme about the effects of university teaching with multi-media. The main work since 
then has been done by Dorothee Maczey who is writing her doctoral thesis about this subject. 
This report deals mainly with the pilot phase in the winter of 2000/01, the original ideas and 
methods and a few preliminary results. 

We were not only interested in the media aspect, but we also concentrated on the issue of 
didactics of geometry (in a wider sense), and we adjusted our work to the following leading 
questions: 
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— How do the students perceive the use of new media — cognitively, emotionally and 
socially? 

— How does a multi-media environment change the learning of geometry? 
— How will the curricular selection of contents as well as the epistemological character 

of the geometrical concepts change? (This latter question concerns the teachers much more 
than the students and it requires long-term consideration.) 

33 persons attended the course, 31 took part in the test at the end and 24 passed it (but one 
can learn more about the students' performance from the interviews than from the test). We 
interviewed 18 students, most of them in December 2000 when the course was still running, 
and a few in February 2001 after the test. 

Of course, our students are not 13 to16 year old school pupils, the main target group of 
didactics of geometry, but 19 to 22 year old university students, and they were not dealing 
with Euclidean plane geometry for the first time. Still, conclusions can be extrapolated from 
our results to secondary school level as there are rather similar traits in the whole area of 
teaching and learning geometry (notwithstanding the very different social structures). This is 
especially true since, in general, only little substance from the geometry lessons taken at 
school seem to be retained. We also expected to benefit from the higher age of our students 
through their experience, reasonableness, and professional inclination.  They should be better 
able to undertake strenuous interviews, show a wider horizon when answering our questions, 
and produce more serious statements about their own thinking processes. In the end our 
expectations were confirmed. 

The course itself is a normal university course: 16 weeks long, three 45 minute lectures 
per week given by the professor in a "normal" lecture room and based on Cinderella 
drawings. These are downloaded from the internet, via a laptop, and projected at the wall with 
the help of a beamer. There is a lot of chalk-and-blackboard work and, of course, verbal 
instruction including questions and answers from both lecturer and students. Each week the 
students had to do some homework in groups of two or three: they usually had to find and 
work out geometrical constructions and theorems with proofs, either as applications or as 
supplements to the lectures. Very often they had to create Cinderella drawings and then 
manipulate them in order to formulate and work out ideas. They were stored on a diskette and 
handed over together with the written part of the homework to two older students who gave 
written comments and corrections. 

There was another 90 minute "training" lesson per week for discussion of the students' 
solutions and general questions.  It took place in a special room with 11 computers (one for 
the tutor, ten for the students), ordered in a circle with the screens facing out, so that the 
students and the tutor could communicate easily. As at most two students shared one 
computer, the whole group was divided into two subgroups, and the "training" lesson was 
given to each subgroup separately (by Prof. Rinkens' collaborator). All the computers were 
linked in a so-called pedagogical network which could be controlled by the tutor who could 
transfer the contents of one screen to the other screens thus allowing the students to show 
their solutions to the others as the basis for the discussions. This computer room is open all 
day and, when there are no lessons in it, students can work there which is an important option 
for those who have no access to a computer elsewhere. 

The expectation that students can and will work independently and self-reliantly is cited 
as one of the main benefits by the advocates of the use of computers in education. We share 
this belief, but with an accent on didactically-related subject matter and only indirectly on the 
following pedagogical categories:  

The students shall develop the ability to solve and acquire strategies for solving 
geometrical problems independently. DGS seems to be created exactly to support this goal; 
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 When continuously moving and deforming geometrical figures, the students can observe 
greater or lesser striking changes and invariants. By using given procedures ("macros") or 
creating their own, the students realize one of the most important problem-solving strategies, 
namely to divide a problem into smaller ones, to solve these individually and to use them as 
modules for the solution of the global problem (which, unfortunately, is not yet implemented 
in Cinderella, but is, for instance, in Cabri); 

 The students can make exact (in a certain sense), neat and coloured drawings in a 
relatively short period of time. Thus they are freed from technical details and can concentrate 
on higher level activities, namely problem solving. 

2. Method of research 
Obviously, quantitative methods (including the final test of the course) are not suitable for 

pursuing our research questions. (This is true of a lot of educational research, because in most 
of the cases where such methods are applied the samples are not representative, the 
participants are not independent and the questions are not valid.)  Instead, we worked in a 
qualitative manner: we interviewed the students (always two at a time for economic reasons, 
but also with the hope that they would stimulate each other), recorded the interviews on 
video, made transcripts of several scenes which at first glance seemed to be interesting, and 
interpreted these video scenes with the help of the transcript... 

The interviews were based on a detailed questionnaire which included two geometrical 
problems. As I myself was the interviewer, I took the liberty of slightly modifying the 
questions spontaneously, leaving out some questions because of lack of time, or speeding up 
the discourse by intervening now and then. (In the winter of 2002/03 I was the one who gave 
the lectures, and then, of course, I was not involved in the interviews, nor did I take part in the 
interpretation sessions.) 

This kind of (partly) unrestrained interview, as well as the central role of the 
interpretations, are both founded on the 
"existence of generally shared rules of social 
actions, which have a claim of validity on their 
own, and a hidden objective structure 
underlying the interaction" between the 
interviewer and the interviewee, in the sense of 
Oevermann (1986, 22ff). The objective 
character is intensified in that the subject of the 
discourse is part of a strongly rationalized 
domain, namely elementary geometry, as well 
as the thinking and learning processes related 
to it. However the structure of the meaning of 
the discourse is very different from some 
fictitiously objective system of mathematical 
concepts, and at first it really exists only in a 
latent manner. Yet the interviewer claims to be 
an expert in geometry and in the teaching of 
geometry as well as being experienced in 
talking with students. He therefore should be 
able to note the latent structure of meaning 
rudimentarily.  Whether he is right must be judged

Here is, as an example, one of the geometric
the way how J, one of the students, dealt with it, a
Fig. 1 
apparent during the interviews, at least 
 from the interpretations. 
al problems from the interviews, as well as 
nd our interpretation of the scene. 
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Between the two sides  g  and  h of a suitable (I will not discuss here what "suitable" 
means) fixed angle there is a fixed point  A. The students shall construct a right-angled 
isosceles triangle with the right angle at A  and the two other vertices on  g  (say,  B ) and on  
h  (say,  C ).  

 This problem had been discussed in the "official" course as a prototype for a special DGS 
strategy, namely the locus strategy. One puts one vertex, e.g.  C , on its side ( h ) (I will call it  
Ct , as it still can be moved on  h ), and constructs a right-angled isosceles triangle with  A  as 
the right angle vertex and  Ct  as the second vertex, i.e. one has to construct the third vertex  
Bt  (choose one of the two possibilities, e.g. that one where  ABtCt  is oriented counter-
clockwise). Then all constraints of the problem are fulfilled except one, because  Bt  does not 
lie on  g  (see fig. 1). 

This is the well known (n-1) strategy, a notion which comprises the locus strategy but 
stresses a different feature, namely: at first only  n-1  constraints out of  n  have to be fulfilled, 
and then the situation has to be changed so that the nth  constraint will also be fulfilled without 
dropping one of the others (cf. Weth 2002). In DGS one of the main variants is to find and to 
analyse the locus of some point. 

It is now clear that if  Ct  is moved along  h  and the  n-1  constraints are kept fulfilled,  Bt  
changes its position, depending on  Ct , and it is hoped that there will be at least one point  Ct  
whose corresponding point  Bt  lies on  g . In fact, one can see (not logically, but visually) that 
there is such a point, and where it is situated, by moving  Ct  along  h. In Cinderella, as in all 
other DGS, an option is implemented which produces the whole locus of  Bt  at once. There is 
a special button with which one can activate this locus option. In general: If the motion of  Ct  
can be considered as a "sufficiently tame" function  C: (0; 1) → E: t  Ct  from the real 
interval  (0; 1)  into the Euclidean plane  E  with a line  h  as its image, and if  B  is a 
"sufficiently tame" function from  h  into  E , then the composition function  B•C: (0; 1) → E 
→ E: t  Ct  Bt  delivers the induced motion of  Bt  on its domain  d , the locus of  
B which is again a line. The locus option of 
Cinderella requires identification of the point  C , 
its locus  h , and the point  B ; it then produces 
the locus  d  of  B . 

In our case  d  is a straight line, perpendicular 
to the straight line  h. One has only to find the 
section  {Bs}=d∩h  in order to produce the exact 
position of the locus  d  and its section  {B}=d∩g  
(which exists because of the supposed suitability 
of the angle), thus completing the whole 
construction. This is because the right-angled 
isosceles triangle with the vertex  A  (with the 
right angle) and this vertex  B  ( ∈g ) fulfils all 
constraints, in particular  C∈h.  Bs  can be 
constructed easily: Draw a line from  A  
perpendicular to  h , paste a  45° angle  to it with 
vertex  A  (in the right direction), and the section 
of the second side with  h  yields  Bs . 

Fig. 2 

One important question is still unsolved: How does one know that the locus  d  of  Bt  is a 
straight line?  If one knows this, one can do without the fact that it is perpendicular to  h. One 
just takes two different points  Ct1  and  Ct2  on the line  h , constructs their corresponding 
(different) points  Bt1  and  Bt2 , and draws the straight line  d  through them (see fig. 2).  This 
geometrical problem yields the following central didactical problem: The students must, in 
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short, understand that there is still a need for a proof that the locus  d , which looks like a 
straight line, really is a straight line. In my opinion, the curricular solution of this didactical 
question determines whether the attempt to keep geometry at school alive, with the help of 
DGS, will be a success or a failure. 

In transformation geometry the construction of the locus  d  of  B  is not very difficult. 
Consider the clockwise rotation about  A  with angle  90° , assigning to each point  Ct  its 
corresponding point  Bt  and to the straight line  h  its image  k , which is also a straight line, 
inclined by  90°  to  h . As all points  Ct  lie on  h , all points  Bt  lie on  k. It is also clear that 
for each point  B  on  k  there exists a point  C  on  h , whose image under the rotation it is 
(some more considerations are actually needed, because, in fact  h  and  k  are both only half 
lines and one actually has to prove that they really meet. However this is not the crucial 
question here). So  d=k , and  k∩h  is the section in question. 

In our course this problem was given rather early, before transformation geometry had 
been developed, and the straightness of the locus  d  had to be concluded, with no little effort, 
on the basis of the theorems of congruency. However the arguments of transformation 
geometry are not really easier, as they make use of the fact that the images of straight lines 
under congruent transformations are again straight lines. In the didactics of classical 
transformation geometry (up to the 1970s) the epistemological role of this fact was one of the 
main issues: Either it was given as an axiom, or, if the theory was built on axioms of 
congruency, it had to be proved or at least be identified as having to be proved. A lot of 
supporters of transformation geometry in schools did not recognize the didactical question 
(whether the pupils should develop insight into the essence of this fact or indeed even prove 
it), let alone tackle it (cf. Bender 1982, Schwartze 1990). 

In the actual discussion about DGS in schools there seems to be much more awareness of 
didactical questions of that kind, at least in published papers. There it is clear that every 
important fact, which can be observed visually when dragging drawings or producing loci, 
has to be proved mathematically or at least be made plausible on some, maybe very low, level 
of formalization and exactness. 

One essential didactical task is to support students in developing the conviction that 
important facts which are given visually have to be proved as a matter of principle, even if 
there seems to be no doubt about them. According to this fundamental goal of geometry 
teaching our students differ considerably from 15-year old pupils. During the lecture course 
the necessity of proof was articulated on many occasions.  A lot of proofs were given by the 
professor or had to be done by the students, and in the interviews they all expressed their 
insight into the importance of proofs in geometry.  We tried to find out whether this insight 
really was part of their cognition or whether it was a mere repetition of the professor's words. 

Now I come to J’s way of tackling the problem of the right-angled isosceles triangle and 
our interpretation of her actions.   J  started with the construction on the base of two points  
Ct1  and  Ct2  and their corresponding points  Bt1  and  Bt2 , but I influenced her to work with 
the locus button because this was what we wanted to see. After the locus  d  of  B  had been 
produced in the correct way and the point  C  had been dragged to the position  Ct0  so that the 
corresponding point  Bt0  lay on  g , I asked  J  whether this was a construction in the sense of 
what she had learned in the course.  J said no to this question with the following arguments 
(translation by me): " If I did this by hand, that is, with only pencil and ruler and compass, it 
would not work because I produced the locus even though I had only one point at my 
disposal, and one cannot do this, if one ... uses the ruler and the compass. That is, I would 
need two points. For that reason I had the idea that one needs two triangles. Then one has two 
points, and one can construct the locus through these points. If one works with a ruler, for 
example, one can connect these two points." Even though J was one of the better students, we 
refused to take it for granted immediately that for her, on the one hand, the drawing of the 
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locus by the computer based on one point, and, on the other hand, the classical construction of 
the locus with pencil and paper based on two points, really meant two different principles of 
reasoning in the logical, mathematical and epistemological mode. Instead we first discussed 
the option that for her the difference could lie mainly in the mode of media used. However 
when  J  continued her work on the problem using the two-point construction she had started 
with and emphasized that the locus, which had been drawn with the help of the locus button 
and was still shown on the screen, could be wiped out without interfering with her 
construction, we finally conceded that she had had insight into the different status of the two 
ways of producing the locus in every mode (although she managed only to produce the 
construction, not the proof of its correctness). 

As already mentioned, our method of interpretation follows the system of "objective 
hermeneutics" in the sense of Oevermann. The analysis of the interviews requires a lot of time 
and for economic reasons only a few scenes (out of twenty hours of video material) can be 
interpreted in a sufficiently painstaking manner. We believe that the objects of the 
communication, with their subject matter structure (geometry) as well as with their didactical 
structure (learning of geometry), have an essential influence on the structure of meaning in 
the social situation (interview). It plays no role, if the meanings of the objects are constituted 
by, and agreed between, the participants (at some time, in a special context, in a learning 
process under more, or less, control etc.).  Possibly Oevermann himself, and some advocates 
of the pure theory which only admits sociological categories for the interpretations, would not 
join in our didactical definition. However why should one be restricted to sociological 
categories when one finds obvious, relevant non-sociological structures. Hölzl (e.g. 1994), 
vom Hofe (e.g. 1998) and Friedrich (2001) in his doctoral thesis overcame these restrictions 
advantageously. 

3. Some students' reactions 
I will first give a summary of the answers to the questionnaire, and then I will outline the 

second geometrical problem discussed in the interviews and how the students dealt with it in 
more detail (having already introduced the first problem in the second chapter). 

Today, nearly all students have already worked with computers when they come to 
university, usually through word processing programs or computer games.  For a few 
computer science had been an (optional) subject at school and one person had even met the 
computer in geometry teaching. They all had had geometry lessons at school and had met 
some of the same content as in our course, but, in contrast to it, largely without formal proofs 
or informal argumentations (as far as they could remember). 

The students express considerable satisfaction with how the computer is integrated into 
the course. Their relations, and communication, with the professor, the tutor and each other 
are not affected by working with the computer. On the other hand, nobody wants the use of 
the computer to be intensified or even to dispense with the professor's presence in the lessons. 
Their views can be summarized as: "We want to be addressed by a human being." I am 
convinced that this would still have been the case if they had been a group of 500 (instead of 
33) as then all individuality is lost. 

There are people who predict that within the next ten years the majority of university 
courses for the majority of the students will take place without the presence of the professor 
and his collaborators. I have severe doubts that the principle of teaching at universities will 
develop in this direction, and, what is more, I think that this would be detrimental to the 
students' interests and welfare.  My idea of good teaching includes the students being 
addressed personally. This holds more for students who aspire to a profession where they will 
have to work with (young) people. (Indeed, even this latter argument is disputed by some 
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people claiming that in schools teachers can, should or will be replaced by machines. All 
well-meaning members of the educational system should stand up against such a 
development.) 

The students approve of working with computers at school, but only in an appropriate 
manner. In particular, they think that the ability to work with ruler and compass is still 
important and they envisage the computers being installed in a separate room instead of being 
available to the pupils in their classroom all the time (in Germany it is the teacher who 
changes room to work with the next class, whereas the pupils in general stay in the same 
room during the whole morning). This vision of a separate computer room probably indicates 
that the students' statements are not always based on sound didactical reasoning (which no-
one had claimed), but possibly on 
reminiscences of their own time at school. 

I also asked about the benefits and 
shortcomings of DGS, the students' views of 
geometry with and without DGS, the 
ontological status of points, figures, loci and 
figures in motion and corresponding heuristic 
strategies with and without DGS.  I will now 
concentrate on the question: "Why do you 
drag?" (What is the drag mode good for?) 

The students mentioned, in a rather hesitant 
manner, "to see what happens", "to get hints for 
the solution", "to create special cases", "to test 
conjectures", "to observe the invariants and the 
changes". They cited a few examples from the 
course, like the Pythagorean Theorem, the 
Euler line, similar triangles and proportion and 
the problem of the biggest visual angle, but in 
the end almost nobody was able to demonstrate 
the essence of the named didactical functions 
with a geometrical example in a passably 
convincing manner.  We know from many oral 
examinations of the widespread inability 
among older students to substantiate such 
catchwords, never mind first year students.  
Perhaps (from a university didactical point of 
view) the professor did not concede enough 
autonomy to the students through his teaching 
style. Maybe (and in fact, this is my opinion) 
he was too cautious and over-estimated the 
students' competence to develop such insights by working autonomously or by following his 
actions during the lessons without always making his ideas and strategies explicit. 

Fig. 3 

Fig. 4 

Consequently the students knew little about angles inscribed in a circle and the 
corresponding proofs, although this had been a subject of the course. Given: a fixed circle 
with centre  M , two different fixed points on the circle  A  and  B , one of the two open arcs 
of the circle determined by  A  and  B  named  d , and a (semi-) variable point  Ct  on  d . Then 
for all points  Ct  on  d  the angles  ACtB  have the same size. This follows from the fact that 
all such angles  ACtB  have half the size of the central angle  AMB  (see fig. 3). 

When I gave the course two years later, I embedded this theorem in a more general 
situation (see fig. 4). At first, I did not draw the circle at all, only the two different fixed 
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points  A  and  B , and let the domain of the third point  Ct  be the whole plane (without  A  
and  B ). We then conjectured that the lines, on which measurement of the angles  ACtB  does 
not change, are circular arcs from  A  to  B  (a concept similar to contour lines in geography, 
isobars and isotherms in meteorology or lines of constant cost in economics). Here we have a 
prototype of functional thinking at its best; maybe the students develop the feeling (and even 
a sense of urgency) that a proof has to be given. The theorem is now much more general, and 
one immediately obtains the converse of the theorem about inscribed angles as it is often used 
in geometrical applications. 

In fact, because of lack of time, one generally starts with the situation where a circle is 
already drawn. When I gave this geometry course in the 1980s, I also did it this way. I 
remember that at some point I always had to check my notes to see how the proof continued. I 
can therefore sympathise with the students who were unable to reproduce even a basic version 
of this proof unless given a lot of help. During several phases of the proof I urged them to 
drag the point  Ct  along its arc so that they would meet special cases. They could then 
determine whether they had found all cases, or perhaps be inspired to transfer the treatment of 
one case to another. The issue here is the role of continuous movements and deformations as a 
means of structuring the body of a proof (cf. Bender 1989). 

In the course, the starting point consisted of a circle with  M  not on the segment  AB , 
and  the arc  d  for  Ct  being the longer one of 
both arcs between  A  and  B  (as in fig. 3). At 
first the special case of  A ,  M  and  Ct  being 
collinear was taken into consideration (fig. 5). 
There the (central) angle  BMA  is the exterior 
angle of the triangle  CtMB  in the vertex  M  
and has the same size as the two interior angles 
in the vertices  Ct  and  B  added together. As 
the sides of the triangle  MB  and  MCt  are 
radii of the original circle, they have the same 
length and consequently the angles  MBCt  and  
BCtM  have the same size, that is, in particular 
the angle  BCtM  on the arc  d  has half the size 
of the central angle  BMA . 

Several cognitive obstacles exist however:  
The students must know the properties of 

exterior angles and be able to apply them 
flexibly;  

Fig. 5 

They have to consider a triangle ( CtMB ) that is different from the one they started with 
( ABM ), as well as a different angle ( BCtM  instead of  BCtA );  

They then must see the correspondence between the exterior and the interior angles which 
is impeded by the occurrence of the chord  AB  (which in fact could be omitted) as well by 
the free side  MA cutting the exterior angle  BMA  (because one is used to such a side being 
infinitely long). By the way, if one could actually draw this line longer, namely as an 
infinitely long half line from  Ct  through  M , one would be in a stronger position to 
appreciate the next step i.e. leaving the special, collinear case and entering the general case 
when  A  no longer lies on this half straight line. However in the special case there is no 
reason to draw this line. 

In visual mode the structure of the general case is completely different from that of the 
special case: there is no longer a triangle and an exterior angle. On the basis of the students' 
actions in the interviews, we had intensive discussions about the question as to whether one 
could expect the students to come up with the idea of drawing this very helpful half line from  
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Ct  through  M.  This is  because of the following two strong arguments: (i) So far, no use had 
been made of the fact that  Ct  lies on a circle through  A  and  B  and therefore the segment  
CtM  is as long as the segments  AM  and  BM . Just draw  CtM  (as part of the strategy: 
"draw any special line which may be relevant and see what happens") and thus get two 
triangles of the type as seen in the special case. (ii) Then try to transfer the application of the 
properties of the exterior angles from the special to the general case (as part of the special 
case strategy). In the end however we decided that one has to know the proof already before 
one is really in a position to apply such strategies. This is the crucial point with the whole 
field of problem solving: All those nice strategies are appropriate for structuring problem- 
solving processes subsequently, but even if the most experienced experts apply them 
systematically, there is no guarantee that they can find the solution of a really new, non-trivial 
problem in a straightforward way. Even the DGS does not help in our situation, although one 
could drag the point  Ct  a little bit to the left and to the right, thus leaving the special case, 
and one could observe what happens. Mentally, the special case does not easily transform into 
the general case, and the additional half line does not readily appear. 

There is another special case which 
possibly is more suggestive: If one draws  Ct  
exactly in the middle between  A  and  B , the 
whole diagram is symmetric with respect to the 
axis through  Ct  and  M , and it is hoped that 
the students "see" and then draw the axis of 
symmetry, thus producing two triangles with 
their interior and exterior angles (fig. 6). These 
two parts can now be treated separately, each 
like the special case. Of course, once again the 
properties of exterior angles must be at one's 
disposal. By subsequently dragging the point  
Ct  it can be seen that the argumentation 
remains valid when symmetry is eliminated. In 
fact, the symmetry is completely irrelevant; it 
only helps to "see" the axis of symmetry, 
which, however, is not used as such but for 
some quite different purpose.  One can regard 
the role of this axis as an inadequate crib (as well as the drawing of the radius  CtM , on 
principle), but using cribs is an important mega-strategy in the field of heuristics, in particular 
geometry. 

Fig. 6 

In fact, it turned out that the best approach for all concerned was for the proof of the 
theorem to be given by the interviewer and then summarized by the participants with the help 
of the drag mode. This had been the starting point for this part of the interviews. It was not 
important that the students should work out the proof, and so I completed the special and the 
"normal" general case (with acute inscribed angle and addition of the two parts) myself. After 
the dissection into two triangles the students should only inspect all cases by moving  Ct  
around the whole circle (including the second arcs). They took into account the case with the 
obtuse angles only after prompting from me, but they did not recognise the existence of the 
case where the two angles have to be subtracted.  They moved the point  Ct  much too fast and 
only slowed down when I urged them to do so; the subtraction case then appeared right before 
their eyes yet still they did not become aware of it. 

Usually I am sceptical about teachers' reports on what "the" students are able or not able 
to do, because in the ordinary classroom situation they can only know about the performance 
of a few of their students.  Even then they have to rely on some transitory and vague remarks, 
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and written tests also only disclose a rather narrow section of the students' conceptions, 
abilities etc. Compared with this, our observations are based on much more exhaustive 
research (although throughout we had two students per interview and I did not manage to talk 
with all of them about angles inscribed in a circle. However it can be assumed that in general 
the mathematically stronger ones were those who took the lead roles in the interviews). 

4. Some preliminary findings 
4.1 In general, students do not show enough patience and perseverance to change 

geometrical situations deliberately and purposefully and to observe the resulting striking 
phenomena. Of course this is due to the interview situation but I can also identify the so-
called bully effect (i.e. the human user feels provoked by the computer to perform some 
action regardless of its goal or sense). In my opinion this effect is reinforced by some traits of 
modern pedagogy which overestimate students' autonomous behaviour. Instead students must 
be educated and trained to cope with learning subjects sensibly, systematically and 
persistently, together with some flair for contemplation.  They require extensive assistance as 
well as careful guidance at least at the beginning of the learning process. Obviously our 
students are at the beginning of their work with DGS.  Dragging and observing has not yet 
become second nature, even if the professor has demonstrated it and had made them practise 
it intensively. We, often incorrectly, assume this to be trivial.  

4.2 When looking for suitable problems for the interviews, we noticed that a classification 
system related to DGS and a corresponding overview is still missing. There are attempts to 
rectify this (e.g. Schumann 2001), but they need to be extended and refined. 

As Hölzl (2000) remarked, arguments from transformation geometry are often suitable for 
proving conjectures which were discovered when applying the drag mode to some geometric 
situation. This induces the danger that a special kind of gap in the proofs is just shifted from 
the drag mode to the corpus of transformation geometry.  A lot of people are aware of the 
problem of whether the locus of a specific point, produced with the help of the locus button, is 
a straight line, but at the same time they tend to assume that the image of a straight line under 
congruent transformations is also straight. However this gap can be closed in transformation 
geometry once and for all, and then this fact can be used when dealing with DGS, as for 
example in the problem with the right-angled isosceles triangle where there is no need of an 
extensive argumentation based directly on axioms of congruency. 

4.3 In general, our students knew that a conjecture, found visually with the help of DGS 
(as well as the correctness of a construction), has to be substantiated in some more or less 
formal way if it is to be turned into an assertion.  They seemingly had no conceptual problems 
with the existence of two such antagonistic cultures within the domain of geometry learning 
and with the requirement to harmonize them. Compared to the students, this harmonization is 
much more fractious for 15-year old pupils, and in general they withstand it, as Hölzl (1994) 
and others observed. It seems that the problem of motivating pupils for proving and 
reasoning, one didactical core of geometry teaching, will be aggravated by working with 
DGS, at least in school geometry. 

4.4 Because of the different ontological status of the objects, the mentioned antagonism is 
even deeper than many members of the DGS community suppose it to be. Whereas 
transformation geometry and the point set interpretation of Euclidean geometry have always 
been inseparably connected, and congruence geometry can also be treated as being consistent 
with the universal mathematical idea of static sets, the objects of DGS now are movable. 
Their mathematical formalization requires a higher conceptual effort because now, in the 
language of sets and functions, one has to deal with continuous functions from a real interval  
I  into the Euclidean plane  E , and, more generally, with respect to figures  F  with 
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continuous functions  IxF → E  which, restricted to   F , preserve lengths, angles or areas or 
... By the notion of a movable point  C'  (or similar) is meant the function  C  and its values  Ct  
( =C(t) ) with  C0=C  (!)  respectively etc. 

This problem cannot be reduced to mathematical formalism, instead it is an 
epistemological one essentially involving "basic imagery and understanding" for geometrical 
concepts (cf. Bender 1998). Maybe one can avoid it in geometry teaching for a long time or 
even forever, but I think that it has to be a constituent part of the geometry curriculum,  and 
should be discussed with the students, regardless of whether it emerges by itself or not. 

4.5 Schumann (1991, 119f) and others always stressed the great influence of mental tools 
on the formation of concepts. They claimed that even small differences, as between two 
DGSs, could yield different geometrical concepts.  I tended to play down such effects in the 
interplay of all influencing variables but in our investigations we may have found a 
remarkable effect of such a small difference: A lot of our students exercised a strange restraint 
towards drag mode even in those cases where its uses were obvious. We identified the 
following possible cause:- The DGS Cinderella is not equipped the trace mode (whereas 
Cabri, for example, has it). In the trace mode the locus of a point  B  is produced (according to 
the motion of another point  A  on which  B  depends by a geometrical construction) in real 
time.  While  A  moves and visits one point after the other in its domain,  B  moves in its 
corresponding domain (its locus) creating a trace. A change in A's  velocity yields a 
corresponding change of  B's  velocity, etc. In Cabri the trace is even shown as a discrete 
(which here means finite) sequence of points. This gradual coming into being of the trace, 
point by point, seems to be helpful for students to better understand the conceptual basis of 
the locus strategy. However that may be, Cinderella only has the option of producing the 
locus of  B  globally all at once (in Cabri this option is also available), and the local 
connection between the motion of the point  A  and the emergence of the locus of the 
corresponding point  B  does not grab one’s attention as in Cabri. On the other hand, it must 
be admitted that several students brought about this local effect by applying the drag mode to  
A  after they had produced the locus of  B  with the locus button, thus visualizing the two 
corresponding motions in their respective domains simultaneously. 
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