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DIAGRAMS AS MEANS AND OBJECTS OF MATHEMATICAL REASONING 
 

Willi  Dörfler 
Universität Klagenfurt, Austria 
<willi.doerfler@uni-klu.ac.at> 

According to Peirce a great part of mathematical thinking consists in observing or imagining 
the outcomes and regularities of manipulations of all sorts of diagrams. This tenet is explained 
and substantiated by expounding the notion of diagram and by analyzing several specific cases 
from different parts of mathematics. 

INTRODUCTION 
Ch. S. Peirce (3.363 in Collected Papers) has made, among others, the following comment 

on a basic feature of mathematics: 
It has long been a puzzle how, on the one hand, mathematics is purely deductive in its na-

ture, and draws its conclusions apodictically, while, on the other hand, it presents as rich and 
apparently unending a series of surprising discoveries as any observational science.  There 
have been various attempts to solve the paradox by breaking down one or other of these asser-
tions, but without success. The truth, however, appears to be that all deductive reasoning, 
even simple syllogism, involves an element of observation. Deduction thus consists of: con-
structing an icon or diagram the relationships of whose parts shall present a complete analogy 
with those of the parts of the object of reasoning; experimenting upon this image in the 
imagination, and observing the result so as to discover unnoticed and hidden relationships 
among the parts. The very idea of the art of algebra is that it presents formulae which can be 
manipulated and that by observing the effects of such manipulation we find properties not to 
be otherwise discerned. In such manipulation, we are guided by previous discoveries, which 
are embodied in general formulae. These are patterns, which we have the right to imitate in 
our procedure, and are the icons par excellence of algebra. 

The term diagrammatic reasoning (henceforth d.r.) is commonly used to describe this way 
of thinking. By analyzing various examples from different mathematical areas the potential of 
d.r. is investigated, thereby, to some extent, substantiating the Peircean tenet. This, therefore, 
is an epistemological and theoretical analysis which yet is taken to suggest implications for all 
kinds of actual mathematical activity. It will then be the purpose of another paper to point out 
inherent limitations to d.r. I only indicate that there are cases where in principle the mathe-
matical notion is not amenable to diagrammatic methods and one has to stick to a kind of 
conceptual reasoning based on linguistically or metaphorically prescribed properties. 

I have chosen to stick to the term "diagram" as it has been used by Peirce and others 
though being aware that this term might cause some misunderstandings and arouse inadequate 
expectations. First of all, the reader should dismiss all narrower geometric connotations. This 
can be seen already from the above reference to Peirce who includes formulae of all kinds 
into his notion of diagram (or icon). What is important is the spatial structure of a diagram, 
the spatial relationships of its parts to one another and the operations and transformations of, 
and with, diagrams. The constituent parts of a diagram can be any kind of inscription like let-
ters, numerals, special signs or geometric figures. This will be elaborated in more detail be-
low. 

Mathematical thinking and reasoning was, and is, often considered to be a purely mental 
activity which is completely separated from any empirical investigations. The "remoteness 
from sense experiences" is emphasized by Gödel (1964) or for instance by Poincaré (1905) 
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who speaks about the aesthetic character of mathematics "despite the senses not taking part in 
it at all ". The symbols and diagrams (in our sense) are considered rather as a crutch or as a 
means of expressing genuine mathematical ideas and notions. An extreme position in this re-
gard had been taken by Brouwer in his conception of intuitionism. For him, mathematics is 
completely independent of any representational means and in particular language. These rep-
resentational means only serve to communicate mathematical content and do not have any 
influence on the language. Symbols thus play only an auxiliary role and can in principle be 
dispensed with, at least by the individual mathematician in his/her creative process, see for 
instance Brouwer (1907, 1912). In a Platonistic framework, diagrams, like geometric figures, 
are just instances of general and abstract ideas which may be investigated by manipulating the 
representing diagrams. Yet there are positions which emphasize the role of symbols and dia-
grams in their own right in a similar way to how it is done here or by Peirce. An example is 
the so-called formal arithmetic which was developed by E. Heine and J. K. Thomae, cf. Epple 
(1994). Here the meaning of arithmetic is considered to reside in its operation or calculation 
rules rather than in its reference to the cardinalities of finite sets. The formalistic stance as 
developed by Hilbert takes a similar position: mathematics studies symbolic structures based 
on axiom systems defining the respective terms, operation and inference rules. However it 
should become clear from the examples given below that the stance taken here is much 
broader than classical formalism by comprising also what for Hilbert was the essential 
mathematics, especially finite and discrete mathematics before and outside of any axiomatiza-
tion. There is also a tradition of considering (part of) mathematics in analogy to rule-based 
games like chess. This view was then extended by the later Wittgenstein in his concept of 
"language games" (see the exposition in Epple (1994)). It is interesting that in all these dis-
cussions the viewpoint taken by Peirce is not taken into account at all. In any case, the topic 
treated here was in one way or another always of interest to mathematicians and philosophers 
though the mainstream position was rather to confer only an auxiliary role to symbols and 
diagrams. In contrast to that, in this paper, symbolic and diagrammatic structures are genuine 
objects of mathematical, i.e. diagrammatic reasoning which result in theorems expressing 
general properties and relationships of those structures, i.e. diagrams in the sense used here. 
For a related position see Detlefsen and Luker (1980) who stress the empirical character of 
any kind of computation which as they say (p. 813/814) "is always an experiment … operat-
ing on symbols and not on the things for which the symbols may be taken to stand". 

DIAGRAMS 
Despite the fact that in this paper the stance taken is that mathematical development to a 

great part consists in the design and intelligent manipulation of diagrams, no general defini-
tion of the notion of diagram is given but rather several examples and descriptive features are 
presented. Generally speaking, diagrams are kinds of inscriptions of some permanence in any 
kind of medium (paper, sand, screen, etc). These inscriptions are mostly planar but some are 
3-dimensional like the models of geometric solids or the manipulatives in school mathemat-
ics. Mathematics at all levels abounds with such inscriptions: Number line, Venn diagrams, 
geometric figures, Cartesian graphs, point-line graphs, arrow diagrams (mappings), arrows in 
the Gaussian plane or as vectors or commutative diagrams (category theory). However there 
are also inscriptions with a less geometric flavour: arithmetic or algebraic terms, function 
terms, fractions, decimal fractions, algebraic formulas, polynomials, matrices, systems of lin-
ear equations, continued fractions and many more. There are common features to some of 
these inscriptions which contribute to their diagrammatic quality as understood here. Never-
theless I emphasize that not all kinds of inscriptions which occur in mathematical reasoning, 
learning and teaching have a diagrammatic quality. Quite a few of what are taken as visuali-
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zations or representations of mathematical notions and ideas do not qualify as diagrams since 
they lack some of the essential features. Mostly this is the precise operative structure which 
for genuine (Peircean) diagrams permits and invites their investigation and exploration as 
mathematical objects. On the other hand, diagrams are of such a wide variety that a generic 
definition appears both impossible and impractical. Accordingly, the various kinds of dia-
grams in a Wittgensteinean sense are connected by family resemblances and by the ways we 
use them. Some widely shared qualities of diagrams are proposed in the following: 

• Diagrammatic inscriptions have a structure consisting in a specific spatial arrange-
ment of, and spatial relationships among, their parts and elements. This structure is of-
ten of a conventional character. 

• Based on this diagrammatic structure there are rule-governed operations on and with 
the inscriptions by transforming, composing, decomposing and combining them (cal-
culations in arithmetic and algebra, constructions in geometry, derivations in formal 
logic). These operations and transformations could be called the internal meaning of 
the respective diagram. 

• Another type of conventionalized rule governs the application and interpretation of 
the diagram within and outside mathematics, i.e. what the diagram can be taken to de-
note or model. These rules could be termed the external or referential meaning (alge-
braic terms standing for calculations with numbers, a graph depicting a network or a 
social structure). The two meanings closely inform, and depend upon, each other. 

• Diagrammatic inscriptions (can be viewed to) express relationships by their very 
structure from which those relationships must be inferred based on the given operation 
rules. Diagrams are not to be understood in a figurative but in a relational sense (like a 
circle expressing the relation of its peripheral points to the midpoint). 

• Diagrammatic inscriptions have a generic aspect which permits construction of arbi-
trary instances of the same type of diagram. This leads to, among others, consideration 
of the totality of all diagrams of a given type (like all triangles, all decimal numbers). 

• There is a type-token relationship between the individual and specific material in-
scription and the diagram of which it is an instance (as between a written letter and the 
letter as such). 

• Operations with diagrammatic inscriptions are based on the perceptive activity of the 
individual (like pattern recognition) which turns mathematics as d.r. into a perceptive 
and material activity. 

• Diagrammatic reasoning is a rule-based but inventive and constructive manipulation 
of diagrams to investigate their properties and relationships. 

• Diagrammatic reasoning is not mechanistic or purely algorithmic, rather it is imagina-
tive and creative. Analogy: the music by Bach is based on strict rules of counterpoint 
but yet is highly creative and varied. 

• Many steps and arguments of diagrammatic reasoning have no referential meaning nor 
do they need any. 

• In diagrammatic reasoning the focus is on the diagrammatic inscriptions irrespective 
of what their referential meaning might be. The objects of diagrammatic reasoning are 
the diagrams themselves and their already established properties. 

• Diagrammatic inscriptions arise from many sources and for many purposes: as models 
of structures and processes, by deliberate design and construction, by idealization and 
abstraction from experiential reality, etc. Accordingly they are used for many pur-
poses. 

• Efficient and successful diagrammatic reasoning presupposes intensive and extensive 
experience with manipulating diagrams. A widespread "inventory" of diagrams, their 
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properties and relationships supports and occasions the creative and inventive usage 
of diagrams. Analogy: an expert chess-player has command over a great supply of 
chess-diagrams, which guide his or her strategic problem solving. Consequence: 
learning mathematics has to comprise a great variety of diagrammatic knowledge. 

USING DIAGRAMS 
Another dimension for explaining the notions of diagram or of d.r. is through the uses 

made of them in mathematics. Firstly, the most widespread usage is to apply the admissible 
operations and transformations to solve a given task. This comprises calculating a numeric 
value, solving equations, constructing a proof in geometry, finding a derivation (in formal 
logic) and many others. Thereby one operates with the inscriptions by exploiting and observ-
ing their structure and its changes. Thus this is a material and perceptive activity guided by 
the diagrammatic inscriptions. It is as in other material actions: to be successful one has to 
have acquired an intimate experience with the objects one is operating with, which here are 
the inscriptions. This is crucial in comparison to abstract or conceptual knowledge. There are 
algorithmic operations (consider the Gauss algorithm) but much of d.r. is highly creative be-
cause the appropriate operations with the diagrams have first of all to be devised and de-
ployed. 

This first type of use is the only one which I want to subsume as diagrammatic reasoning. 
It is essential that the diagrammatic inscriptions themselves are the objects of the activity 
which produces knowledge about, and experience with, the diagrams. Secondly, I will call the 
other usages of diagrammatic inscriptions representational. The first kind of representational 
use is when a diagrammatic inscription is taken as a model for some other material or virtual 
structure from any science including mathematics itself or from any practice. This is captured 
by terms like application of mathematics or mathematization. It is not the place here to dis-
cuss that any further. I only remark that therein lies an important source for the design of dia-
grams which then become the topic of d.r. within mathematics, see Dörfler (2000). A second 
type of representational use is widespread in mathematics education: to use diagrams as rep-
resentations of abstract objects constructed by the learner. The diagrams are taken as a means 
for mental or cognitive constructions and thus have little interest in themselves. They are then 
more a kind of methodological scaffold, possibly unavoidable but to be dismissed when suc-
cessful. This is diametrically opposed to d.r. where the focus is on the diagrams and opera-
tions themselves as the objects of study and not on their doubtful mediation with virtual ob-
jects. In this representational view mathematics is a predominantly mental activity supported 
by diagrams whereas mathematics as d.r. essentially is a material and perceptual one. This 
does not reduce mathematics to meaningless symbol manipulations since the diagrams have 
meaning through their structure, their operations and transformations and of course via their 
applications. This holds for all diagrams as considered here in a way completely analogous to 
how geometric figures can have meaning. 

DIAGRAMMATIC REASONING: EXAMPLES 
For each of the mathematical topics referred to below, the reader could consult any stan-

dard textbook. Browsing through any book on mathematics reveals an abundance of diagrams 
but it does not show how they are used or exploited. These examples intend to highlight d.r. 
as a specific perspective on diagrams. This perspective takes the view that diagrams of many 
different kinds are the objects of mathematical activities. Those activities consist of exploring 
properties of the diagrams and of various operations with them, see also Dörfler (2001). In the 
sense of Peirce, an important aspect of this kind of mathematical activity is then the observa-
tion of the impact and outcome of empirical activity. The detected regularities give rise to 
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concepts which describe specific properties of the diagrams. Invariant relationships between 
those properties and the respective concepts are formulated as theorems. It should be men-
tioned that there is the (mostly realized) possibility of then arguing with the concepts and the 
already proven theorems without explicit recourse to the underlying diagrams.  

In their famous book "Grundlagen der Mathematik", Hilbert and Bernays analyze opera-
tions with arrays of strokes (or points) the observation of which leads to much of what is 
taken to be properties of natural numbers. The natural numbers are interpreted as types of ar-
rays of strokes, two of which are of the same type if they can be matched one by one. Addi-
tion and multiplication appear as operations with these arrays which clearly show a diagram-
matic character. Properties like evenness and oddness are observable qualities of such dia-
grams in the form of specific arrangements of the strokes. A good example of d.r. is the 
statement that the sum of two odd numbers (diagrams) is even. This results from observing 
the combining of two odd diagrams in an appropriate way. In this kind of d. r. that statement 
is a way of reporting one’s observations (and not a statement about abstract objects): 

 
******** 
******* 

 
plus 

  ********* 
********** 

 
gives 

***************** 
***************** 

 
Here the generic character of the diagrams is an important feature which provides the gen-

erality of the assertions about the diagrams. Similarly d.r., by inspection of the following dia-
gram, 

 
******** 
******** 

 
plus 

***** 
**** 

 
gives 

************* 
************ 

 
implies the rule "even + odd = odd". In the same manner the corresponding rules for multipli-
cation are obtained by d.r. with rectangular (product) arrangements. That any number either is 
prime or divisible by a prime number similarly results from d. r. by using rectangular ar-
rangements of the arrays of strokes. Another kind of d.r. is also possible here using algebraic 
expressions and their properties. For "odd + odd = even" this could be: 
( ) ( ) ( 122221212 )++=++=+++ nmnmnm . Again, this d.r. is a manipulation of diagrams 
and an observation of the outcome by knowing that a diagram of the form  is equivalent 
to evenness. Here we have the very common phenomenon that diagrams of very different 
kinds describe or model each other. This is also termed as "isomorphic representations" in the 
representational view of diagrams. Here this simply means that one can translate between the 
two kinds of diagrams in such a way that the operations and properties of both uniquely 
match each other. 

( )2 …

In this vein, a Ferrer’s graph is a diagram for a partition such as  in the 
form of an array of lines of points:  

532212 +++=

 
** 
** 
*** 
***** 

transposed **** 
**** 
** 
* 
* 
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By inspection, various relations can then be observed and formulated as properties of par-
titions, see Liu (1968).  For instance, one can exchange the lines and columns in a Ferrer’s 
graph which in the example corresponds to 1124412 ++++= . A case of d. r. is then the 
observation that to any partition with at most  parts corresponds one with no part greater 
than  and vice versa. Therefore the number of those two kinds of partitions is the same. 

m
m

The young Gauss is reported to have found the sum of the first 100 positive integers by 
thinking of those numbers being written down in the following way: 
 

1 2 3 4 … 49 50 
100 99 98 97 … 52 51 

 
and adding the two numbers to get 101 in each of the 50 columns. Thus the sum is 50 times 
101 which equals 5050. I consider this as a good example of d.r. since it depends on the struc-
ture of the rectangular array which can be used for every even number 2n in the form: 
 

1 2 3 4 …  1−n  n  
n2  12 −n  22 −n  …  …  2+n  1+n  

 
Here each of the n  columns adds up to 12 +n  and the sum total is ( )12 +nn . This is gleaned 
from the diagram by observing certain regularities and relationships. This type of diagram 
permits, in an analogous way, the summing of the integers from 1+k  up to : nk 2+
 

1+k  2+k  ... nk +  
nk 2+  12 −+ nk  ... 1++ nk  

 
Here each column adds up to kn 212 ++  and thus the sum is ( )knn 212 ++  where 0=k  

corresponds to the original diagram. 
The creative act consists in inventing this diagram and, most likely, results from extensive 

experience with number relations of all kinds. There are other diagrams which can be used in 
this case and also for any number of integers. Consider the following pattern: 

 
( ) ++−++++ mm 1321 …  

( ) ( ) 1221 +++−+−++ …mmm  
 
where each of the  columns adds to m ( )1+m  and thus the sum =++++ m…321  
( ) ( 121 +mm ) . One could say that the above diagram results from the diagram 

 by an appropriate transformation. This might even become more diagram-
matic when imagining the whole process as being carried out with collections of, say, pebbles 
which for  leads to the diagram: 

m++++ …321

6=m
 
 
 
 
 
 * * ** ** *** 
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* 
 
*** 
*** 
 

* 
 
** 
*** 

** 
 
** 
** 

** 
 
* 
** 

*** 
 
* 
* 

*** 
 
* 

 
Combining column-wise gives a union of 6 sets of 7 elements which has twice the number 

of elements one is looking for. The main activity is thereby the experimental investigation of 
diagrams whereby one has to stick to the operational rules (either for finite sets or numerals). 
The latter diagram can also be organized in a well-known pattern with 6 rows of 7 items each:  
 

° 
° 
° 
° 
° 
° 

* 
° 
° 
° 
° 
° 

* 
* 
° 
° 
° 
° 

* 
* 
* 
° 
° 
° 

* 
* 
* 
* 
° 
° 

* 
* 
* 
* 
* 
° 

* 
* 
* 
* 
* 
* 

 
The generic and general quality of all those diagrams which permit consideration of the 

general case in a specific example is very important. Even an inductive argument however 
will use (algebraic) d.r. of a form like: 

 
( ) ( ) ( ) ( ) ( )1121121 +++=+++++ nnnnn… ( ) ( ) ( )( ) ( )( 212/112121 )++=+++= nnnnn  
 
What is, in my opinion, not valued appropriately is the role of perception, of the material 

activity (with the inscriptions) and of pattern recognition. Too much emphasis is laid on the 
"ideas" and on purely mental activity, but I assert that the ideas emerge from the observation 
and manipulation of the diagrams, of course always under a specific perspective. This per-
spective is expressed by the operation and transformation rules which are permitted for ma-
nipulating the inscriptions. In addition, I think one should resist the temptation to view that 
kind of d.r. only as a means of discovering or justifying properties of – in this case – natural 
numbers. I prefer to say that the discourse of natural numbers expresses the observations 
made about the diagrams and that it describes properties of, and relationships among, the lat-
ter. For this a great many diagrams of different kinds are used and investigated. 

Elementary linear algebra offers many striking examples of d.r. Consider the following 
formula ( ) ( )βαβα ',, AA =  where βα ,  are (column-)vectors of nR , A  is an  matrix, nn×

'A  its transpose, and (. , .) is the usual inner product. I present two different kinds of d.r. 
which demonstrate the formula by observing transformations and patterns of diagrams of lin-
ear algebra. The first takes recourse to the components  and  of ia ib α  and β  and the ele-
ments  of ija A . The left side then gives rise to the following diagram:  

 

 inner product with  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+++

+++
+++

nnnnn

nn

nn

aaaaaa

aaaaaa
aaaaaa

…
…………

…
…

2211

2222121

1212111

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

nb

b
b

…
2

1



 46 

 
which according to the rules transforms into: 
 

( ) ++++ 11212111 baaaaaa nn…  
( ) ++++ 22222121 baaaaaa nn…  

… 
( ) nnnnnn baaaaaa +++ …2211 . 

 
This can be transformed according to the rules of elementary algebra or by reading the rec-
tangular schema columnwise into the diagram: 
 

( ) +⋅+++ 11221111 abababa nn…  
 

( ) +⋅+++ 22222112 abababa nn…  
 …  

( ) nnnnnn abababa ⋅+++ …2211  
 
 
which is a pattern resulting from 
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+++

+++
+++

nnnnn

nn

nn

bababa

bababa
bababa

…
…
…
…

2211

2222112

1221111

 inner product with   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

na

a
a

#
2

1

 
The left side is just  and thus β'A ( )βα ', A  is the final result. 
 
It becomes clear from this that the proof of the formula is a sequence of manipulations of 

diagrams which relies heavily on perceiving their structural properties. Nowhere is the (exter-
nal or referential) meaning of the diagrams needed. What is needed however is experience 
and fluency with manipulating diagrams and the ability to recognize patterns in them. An-
other kind of d.r. proceeds as follows by exploiting the formula ( ) δγδγ ', =  for (column-
)vectors δγ ,  where the product on the right is matrix multiplication: 

 
( ) ( ) ( ) === βαβαβα ''', AAA ( ) ( )βαβα ''' , AA =  

 
Again, this consists in no more (but also no less) than effective manipulation of diagrams 

(≡ formulae here). We know that this is difficult for students, possibly not because of a lack of 
conceptual understanding but because of a lack of experience in manipulating diagrams. This 
is very much hands-on experience which presupposes concrete and material activity with the 
diagrams by investigating their properties through "calculations". What also transpires from 
these observations is that the reliability and security of mathematical reasoning (partly) re-
sides in the perception of structural properties of diagrams. 
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Many proofs in calculus show a great deal of d.r. The main steps consist in transforma-
tions and combinations of inequalities according to the usual ε-δ-definitions of limits, conti-
nuity, etc. The premises and the conclusion likewise correspond to diagrams with a specific 
interpretation and the idea of the proof is how to transform the former into the latter. This is a 
creative and at least partly perceptual activity. The diagrams which occur in these cases are 
like the following:  
 

( ) ( ) 2/eafxf <−   ( ) ( ) 2/eagxg <−  
and 

( )( ) ( )( ) ( ) ( ) ( ) ( ) <−+−=+−+ agxgafxfagfxgf  
( ) ( ) ( ) ( ) eeeagxgafxf =+<−+−< 2/2/  

 
Here d.r. is the manipulation and combination of what are considered as inequalities and 

this d. r. is known to be dependent on much (empirical) experience with those diagrams. Thus 
d.r. is based on a sort of manipulative skill with diagrams (and possibly less on understanding 
abstract objects). Finding a proof often consists in exploiting diagrammatic relationships 
which is very similar to geometric proofs using auxiliary elements and various transforma-
tions of figures. 

There are mathematical theories like graph theory (see Bondy and Murty, 1976) the ob-
jects of which are (types of) diagrams. Of course, these theories furnish prominent examples 
for d.r. Thus the objects of graph theory are diagrams made up between pairs of points (verti-
ces) and lines (edges) like the following: Choose seven points a,b,c,d,e,f,g  in the plane and 
draw edges (connecting lines not necessarily straight) between the following pairs: a and b, a 
and c, a and e, b and d, c and d, e and f, f and g, g and e, g and a. 

The diagrammatic character might be less evident in the case of polynomials (over some 
ring R ). A polynomial like, say,  can be considered as a diagram with a 
conventional structure. Indeed, the spatial relations of its parts are crucial for its being a poly-
nomial and all the operations with polynomials depend on these structural and diagrammatic 
relations within the polynomial as a diagram. The results of Kirshner (1989) indicate that the 
operations with algebraic terms for many students are based on visual (i.e. diagrammatic) 
characteristics of these terms. 

1825 23 ++− xxx

The proofs of properties of operations with polynomials consist in transformations of the 
polynomial-diagrams according to agreed rules. For instance, that the degree of the product of 
two polynomials is the sum of the two respective degrees results from observing the structure 
of the product polynomial, i.e. from d.r. It is also by skillfully manipulating the polynomial 
diagrams that one realizes: If  then ( ) 0=ap ( )ax −  divides ( )xp , as is visible from the stan-
dard proof in any textbook. This underlines the material, experiential and observational aspect 
of doing mathematics. 

These rules can be changed, for instance by "calculating" modulo a fixed polynomial p . 
This results in a collection of specific diagrams (the polynomials of degree less than ). 
These enjoy many diagrammatic properties, among them a specific kind of product which 
gives rise to a ring structure for these diagrams. If the ring 

pdeg

R  is finite, say , then all 
these diagrams can be listed and their algebraic behaviour can be observed by inspection. 
Thus this is not "abstract" algebra but diagrammatic algebra! Take 

4ZR =

( ) 22 += xxp  (over ), 
then all polynomials  essentially are the constants and all  with a from 
{1,2,3} and  from {0,1,2,3}, i.e. we have 16 diagrams. For instance as a sum and a product 
using  one obtains: ( )

4Z
p modulo bax+

b
222 =−=x ( ) 13232 +=+++ xxx  and ( ) ( ) 23232 +=+∗+ xxx . Again 
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this is merely manipulation of diagrams according to conventional rules and the mathematics 
of it states regularities and invariants of these operations and manipulations. 

As another example consider the theorem that any polynomial ( )xp  irreducible over a 
given field K  has a root in a field KK ⊃1 (see Cigler, 1995). This sounds as being about ab-
stract objects but in fact it is about the possibility of designing diagrams of a specific sort. 
This design runs as follows: designates all diagrams which are polynomials over [ ]xK K . 
Calculating in modulo  amounts to reducing any polynomial  in  by (poly-
nomial) multiples of  (for instance by dividing  by  to get the remainder as the polyno-
mial equivalent to  modulo 

[ ] xK ( )xp h [ ]xK
p h p

 h p - again a diagrammatic operation). When calculating in [ ]xK  
modulo  the polynomials of degree less than  enjoy all the properties of a field 
which we denote by . It contains 

( )xp pdeg

1K K  in the form of polynomials of degree 0. According to 
the rules for  we have, for the diagram,  as an element of  such that  (  is 
simultaneously a polynomial over ). The crucial point is not that there is a symbol  with 

 but that this  belongs to a collection of diagrams with which we can calculate ac-
cording to the rules laid down for a field. The "existence" of a root is the design of a diagram 
with specific properties and as a member of a collection of diagrams (all the polynomial dia-
grams of degree less than ) for which addition and multiplication are realized as dia-
grammatic manipulations and which show all the properties of a field such as the real num-
bers. 

1K x 1K ( ) 0=xp p

1K x
( ) 0=xp x

pdeg

A special case of this construction is of course the complex numbers. Here a more direct 
construction of diagrams is common by introducing the "diagram"  which satisfies , 
i.e. this i  is the  of the general design with 

i 012 =+i
x ( ) 12 += xxp  and RK =  (real numbers). 

Here  modulo [ ]xK ( )12 +x  are just the diagrams (polynomials) iba +   with the 
usual well-known operations which are the operations modulo , i.e. exploiting 

. Thus the essential point is the design of diagrams 

( Rba ∈, )
12 +x

012 =+i iba +  and operations with them 
which satisfy a set of rules, namely mathematics as diagrammatic design (and not as the in-
vention of abstract objects). This design can be carried out also if  and b  are taken from any 
unit ring. In the case of, say,  then all the designs 

a
4Z iba +  can be listed and their properties 

inspected visually. The resulting diagrams (i.e. the complex numbers over ) are the follow-
ing ones: 

4Z
iiiiiiiiiiii 33,23,3,32,22,2,31,21,1,3,2,,3,2,1,0 +++++++++ . Using  or 

 or , one can easily "calculate" which is a form of d.r. For instance: 
. This because we follow the diagram-

matic rules for  and the generally accepted rules from elementary algebra. This resonates 
completely with the statement by Peirce. 

012 =+i
12 −=i 32 =i

( ) ( ) iiiiiii +=++=+++=+∗+ 39523322321 2

4Z

 

CONCLUSION 
Based on these examples a tentative response to Peirce’s statement could be that by d.r. 

mathematicians (and learners of mathematics as well) investigate diagrams designed (in the 
form of inscriptions) as empirical and material objects. This leads to the detection of (some-
times even surprising) properties, relations, regularities and invariants. Some of those proper-
ties and relations (the axioms) are distinguished as characterizing the respective class of dia-
grams and taken as the basis for deductive reasoning. The latter, in this view, is another way 
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of talking about the diagrams by using concepts incorporating their various properties and re-
lations. 

Much more could and should be said about d.r. For instance,  
1. How diagrams are designed to describe certain relations of, or operations with, other kinds 

of diagrams which results in a layered system of d.r.  
2. How mathematics develops a conceptual language to talk about diagrams and how reason-

ing then occurs in this language, and 
3. Which should or could be the consequences for learning and understanding mathematics. 

Does the idea of d.r. point to the necessity of the acquisition of manipulative skills in op-
erating with diagrams, i.e. a kind of material and observational experience as a prerequi-
site for doing mathematics? Will this constitute a new but fundamental role for "calcula-
tions" as a basis for d.r.?  

 
All this will be the topic of further research. 
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