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This report investigates the use of modules/macros with software for dynamic geometry 
(DGS). Modules will be shown in synthetic and analytic use. The explanation concentrates on 
ideas and concepts from cognitive science and mathematics education. It will be shown that 
using modules can be motivated by DGS and, simultaneously, point beyond the borders of 
DGS. Modules support the learner organizing his own thinking quantitatively and 
qualitatively. 

Remarks on modules in cognitive science 
 
Within cognitive science there has been a long lasting and often controversial debate on 

“modularity of mind” (Fodor, 1987; Chomsky, 1988; Samuels, 1998; Gerrans, 2002). Most of 
these researchers see modules as encapsulated, specialized units for handling information. 

Philip Gerrans (Gerrans, p. 261) presents three different views on modules. Modules are 
cognitive devices which define our mind. In this view Gerrans talks of modules as if they are 
some kind of hardware. Firstly modules seem to be like computer circuits, with each module 
built to deal with a special task. “Are modules innate?” is a question often asked in this 
context1. Secondly “modules are like algorithms” makes use of a computer metaphor to 
describe the mind, which then is seen as a computer organized by a large number of 
algorithms. Finally Gerrans offers a more epistemic view on modules namely that they can be 
seen as domain specific bodies of innate knowledge. 

By investigating the connections between the eye and the brain, biology has shown that 
modules control the mind even on a physiological level.  

 
Similar functional specialisation occurs within the neural system on which vision depends. The visual 
cortex contains individual and suites of neurons specialised for detecting orientation, disparity, 
wavelength, velocity, direction and length. (Gerrans, p. 263) 

 
It seems convincing that developments from evolution which support successful activities 

are imitated on the level of thinking. If we can modularize our thinking as well, then we may 
hope it will be similarly successful. In a previous article I expressed some ideas about 
collecting data from the visual sense and their effect on the learning of mathematics (Kadunz, 
2000). For the following considerations I only record the fact that it seems useful to imagine 
that many areas of the mind are organized as modules and that students are capable of 
constructing and using modules. 

                                                 
1 “The conception of modularity first articulated by Noam Chomsky in his explanation of language acquisition 
treats a module as a body of innately specified prepositional knowledge. We all acquire languages so readily, 
despite our linguistic environments, because innate knowledge of some very fundamental grammatical 
principles, such as nouns and verb phrase structure is universal in the human species.” (Gerrans, p. 259) 
“Evolutionary psychologists defend a massively modular conception of mental architecture which views the 
mind, … , as composed largely or perhaps even entirely of innate, special-purpose information-processing 
organs … .” (Samuels, 1998, p.576) 
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Modules in mathematics education 

 
Papers on mathematics education have dealt with the idea of modularity in many different 

ways (Dörfler, 1991; Dubinsky, 1991; Sfard, 1994; Tall, 1999; Kadunz & Sträßer, 2001). 
First I shall concentrate on Dörfler and his view on the use of modules. He focuses his 
deliberations concerning modules on the use of computers in mathematics education.  

In Dörfler’s view the thinking of experts is mainly characterized by the use of structured 
knowledge. A chess champion analyses an arrangement and its relations to other possible 
arrangements as a whole, in the same way as a mathematician argues using theorems from 
mathematics or engineers use well known modules when developing their plans. Such experts 
always use arrangements, theorems or modules. For mathematicians, such arrangements can 
also be, in addition to standard mathematical constructs, algorithms and concepts, in which 
mathematics can be found in condensed form. 

On the one hand such modules can be the means of solving process-like problems, for 
example differentiation rules, the Euclidean algorithm or linear mappings. On the other hand 
we use modules as objects. As mentioned above, in most cases performing a proof needs the 
use of known theorems.  

Both the process and object use of modules can reduce the complexity of a given problem. 
We notice this reduction in complexity literally (materialized) when we observe students 
solving mathematical problems, e.g. the “formula for quadratic equations” transforms a more 
“sophisticated” quadratic equation into two simpler linear equations. On the other hand 
reducing complexity can also be done in the mind alone.  For instance a figure in geometry 
can often be successfully described by applying a theorem from geometry. To apply a module 
does not mean the user needs to know all the knowledge condensed “inside” the module. This 
is similar to the use of modules in computer languages where knowing the module’s 
interfaces and its effect is much more important than knowing the module in detail.  

David Tall (Tall, 1999) describes construction and use of “cognitive units”. He focuses on 
the use of such cognitive units and defines them as “pieces of cognitive structure that can be 
held as the focus of attention all at one time” (Tall, 1999, p.226). He stresses that the use of 
modules in solving mathematical problems gains a kind of “economical” benefit.  

Students doing mathematics in school are acquainted with modules. For instance they 
learn about them when they use software and hardware for doing computer algebra (CAS). 
Differentiating functions, looking for the zeros of polynomial functions or solving systems of 
linear equations are literally encapsulated in a button. Edith Schneider investigates and 
presents a number of CAS examples (Schneider, 2002, p.263) 
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System for dynamic geometry, DGS 
 

Within the literature on mathematics education DGS describes a class of computer 
software. With this software we draw figures in geometry and explore them. During the past 
decade software developers, mathematicians, researchers on the learning of mathematics and 
mathematics teachers have developed a number of products (Cabri, Geometer’s Sketchpad, 
Cinderella, Thales, Geolog, Euklid). When criteria are required for defining such software, 
the literature on mathematics education offers three features to describe a system for dynamic 
geometry namely  

 
• dragmode,  
• locus of points, 
• the ability to define and use macros (modules).  
 

In the following I shall concentrate on macros (modules). (For deliberations concerning 
the dragmode or locus of points see Arzarello, 2002; Hölzl, 1999; Jahn, 2002, Sträßer, 2002, 
Schumann, 1996). 

At first glance, when solving problems in geometry, modules appear well suited to the 
reduction of drawing complexity since manually complex constructions become more 
manageable using modules. Figure 1 shows a tessellation of the Euclidian plane. The left part 
of figure 1 was produced with the aid of modules. The drawing on the right shows all the 
steps of the construction in detail.  

Figure 1. 

Even two quite simple modules, namely “square” and “hexagon” commonly used to 
shorten the construction, show the need for reorganizing mathematics education. The complex 
construction itself does not become the goal but rather the knowledge about the use of 
modules, which become geometric tools.  The use of modules for the easier and more error 
free execution of a geometric construction can be addressed as “synthetic”.  If it is only the 
“mechanical” implementation of a geometric construction that is required then such synthetic 
modules are seen from the viewpoint of quantity. 

The use of modules points beyond this quantitative aspect, when they are used together 
with the dragmode in geometrical tasks, to survey concepts of geometry experimentally. This 
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can be observed during the investigation and use of mathematical mappings. When students 
are examining reflection on a circle (inversion) they can do this step by step, beginning with a 
point and producing an appropriate module with the software, then using this “point module” 
to reflect a line or a given circle. Such modules are available within the software and permit 
observation of the central characteristics of the inversion. With inversion modules curves can 
also be inverted. If someone wants to observe the inversion image of a conic, then a focus of 
the given conic should be selected as centre of the inversion circle. Inverting a hyperbola 
produces a “double point” in which the asymptotes of the hyperbola become tangents to the 
image of the curve. Here the inversion is appropriate for giving meaning to the difficult 
concept of the “point at infinity”. All variations of the original hyperbola can immediately be 
observed on the mapped curve. Together with the dragmode, the modules used here can be 
seen as a source for viewing the construction in a new way. In other words, the construction 
receives a new quality and in this sense the use of synthetic modules can have a qualitative 
aspect.  

A special characteristic distinguishes modules in synthetic use since they are features of 
construction within a DGS. They can be called by name from a menu system, possibly in 
combination with icons. Thus modules are a substantial feature of DGS, which can be used in 
various ways and with which numerous steps of a geometric construction can be combined 
into a single step. This situation appears to be different, if in a complex question, e.g. a non-
trivial theorem, students have to give a proof by finding references to other theorems from 

geometry, as presented in the following example. 

Figure 2. 

Theorem: The centres of the (outside oriented) squares over the sides of a parallelogram 
themselves form a square. 

We can also offer this theorem to students in the following formulation: Draw a 
parallelogram and all the squares beyond its sides, arranged outwards. What can be assumed 
about the centres of these squares? 

If the parallelogram is varied (dragmode) once the construction has been accomplished, 
the four centres E, F, G and H can be seen as corners of a rectangle, which, with each change 
of the parallelogram, always possesses the “Gestalt” of a square (Figure 2). We can say that, 
with such a use of the four centres, these points are used in a certain way. This new figurative 
use is also seen as an example of a geometric module. We can say that with the use of the 
dragmode we see modules “into” a geometric drawing. This will be presented in detail in an 
example in the last section of this article.  

During the realization of variations, i.e. during the execution of experiments with DGS, 
the user, via the dragmode, accesses those relations which exist between the individual parts 
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of the geometric construction. He sees them as a module. One could say that the relational 
aspect of a construction supports the modular view on the construction. 

How can the development of such modules and thus a modular view on geometrical 
constructions be imagined? 

 

Looking for modules 
 

We described briefly how students use modules in analytic use.  A complex construction 
can be reconstructed and divided in its structure by the use of modules. Here the dragmode, 
which supports the execution of experiments, plays a substantial part in the construction and 
the reconstruction, the “re-cognition” of theorems from geometry. As presented above in the 
parallelogram example, by the use of variation a “Gestalt” can be seen in a larger 
configuration. The user reconstructs different known configurations “into” a geometric 
construction, for instance the “configuration of homothecy”, or “the configuration of Thales’ 
theorem”.  

Modules in analytic use, with which students describe a geometrical configuration and 

thus structure this configuration, do not always have a direct correspondence in the software 
however. Modules in synthetic use are called by their names from a constantly growing menu 
system. They look like formulas, since they are defined by an exactly specified number of 
input parameters and an exact quantity of output elements determined by the module’s 
developer. This need not be the case with modules which are used analytically. They remind 
us rather of well-known constructions, which are overlaid on the given construction. Put 
simply one could say that the synthetic use of modules takes place “on the paper”, while the 
analytic use of modules “happens in the head”. If an analytically used module fits2, then the 
module can be used e.g. in an argumentation of a proof. Now the statement of “theorem of the 
circumferential angle” (CFA) or the characteristic of the similarity of triangles is not part of a 

Figure 3. 

                                                 
2One could say that a module fits if the student using this module succeeds in his analysis of the submitted 
problem. 
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menu system of a DGS. In this sense analytic modules do not have to be parts of the software, 
although the software is involved in the construction of the subjective understanding of such 
modules. Let us look at the following example.  

The CFA can be explored by use of the dragmode. Its statement is used in different 
elementary geometrical questions, as well as in construction tasks and in proofs. If one 
observes the invariance of the angles measured during the movement of the angle vertex, the 
student can see different geometrical features in the surrounding geometrical configuration. 
For instance there are the points on the circle which specify the angle field, the circle and the 
sides of the angle. If one focuses in this configuration on the statement of the CFA, then 
geometrical configuration, having far fewer design features than the more varied construction 
picture, comes into play. Subsequently this “poorer” representation needs no labelling and can 
in the end be seen as one “whole”, i.e. as a module. The movement of the vertex (C) has 
resolved the moved elements (vertices and sides) and all other elements (circle and points on 
the circle) having determined them directly from the original figure, and now justifying their 
condensation into a configuration. This condensed configuration can be addressed as a “figure 
of the theorem of the circumferential angle” (see Figure 3). It thereby receives a name and is 
in this sense a module which could be stored as a DGS module but this is not appropriate. 
Furthermore such modules can be used primarily to describe geometrical constructions, rather 
than to do these constructions. The naming connected with the forming of the module 
enriches the students’ “geometrical language” similar to the use of synthetic modules. As a 
consequence they can build up3 modules for analytic use. We should offer students such a 
stock in two modes: as “geometric construction” with points, lines and circles and in 
linguistic (written) form. One puts at their disposal two representations for geometrical 
circumstances. Students can access both representations and use each of them in specific 
situations. The geometrical representation can serve to recognize the module in a geometrical 
construction, and linguistic representation can be used to formulate the geometrical relations. 
The use of such modules which can possess a complex genesis with which the student need 
not be familiar, leads to the next orientation in the description of learning geometry, as 
mentioned above. From the student’s view the geometrical construction which is varied in the 
experiment changes its quality. Changing the quality of the view means reconstructing 
modules using the dragmode, for instance describing the configuration with the names and 
characteristics of these modules and seeing a simpler geometric construction. This means that 
during this process of change a student arranges their thinking in a new way.  

                                                 
3 H. Kautschitsch uses the term “optical encyclopaedia” (Kautschitsch, 1987, p. 223). 
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An image of the orthocentre 
 
An example from elementary geometry is given, in which the orthocentre of a triangle is 

reflected at the sides of the triangle. The images of the orthocentre lie on the circumscribed 
circle of the triangle. In school this is usually handled by means of linear algebra. Figure 4 
shows the orthocentre H and the points Ha, Hb and Hc on the circumscribed circle. That at 
least is how the DGS picture appears. If one varies the triangle, this feature can be noted in all 
configurations. How can this observation be introduced into a geometrical context? Because 
the orthocentre is reflected in the same way on all three sides, it is sufficient to consider and 

discuss only one of these reflected points, for instance Ha.  In doing so, the configuration 
gains in clarity so that the points H, Ha and C can be seen as vertices of a triangle. However, 
one does not know whether Ha lies on the circumscribed circle. In this situation the student 
can construct intersection points of the circumscribed circle with the height ha. How can we 
be sure that one of these points is the reflection point of H, reflected on the side of the triangle 
BC? If we intersect the altitude through A with a circumscribed circle, then the two points are 
A and Ha’, which must therefore lie on the circumscribed circle. If we can demonstrate that 
the points Ha’ and Ha are the same, then the claim is proved. The first geometrical figure of 
assistance to the student is the triangle HHa’C. Is this triangle an isosceles triangle?  In an 
isosceles triangle angles at the base are of equal magnitude. In order to gain an idea of how to 
examine the triangle’s angles, the triangle can again be varied using the dragmode. The 
triangle HHa’C is expressly observed (Figure 5). If the vertex B is moved, then Ha’ remains 
on the circumscribed circle and, more precisely, Ha’ remains on an arc of this circle. A 
geometrical figure connecting angle and arc is the figure of the theorem of the circumferential 
angle, which students can access like a formula from their construction store (see footnote 2). 
If one views Figure 6, then we see the vertex B together with point Ha’ on the arc over AC. 
By the theorem of the circumferential angle ABC = AHa’C follows. To prove that the angles 
CHFa and ABC are equal we can use right triangles, which can be seen by using the altitudes 
of the construction. Thus the statement is proven.  

Figure 4. 
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Figure 5. 

The interplay between dragmode and module use is what characterises the treatment of 
this example. The variation of the construction produces situations which can remind students 

Figure 6. 
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of special theorems from geometry. Ha’CH reminds them of an isosceles triangle, while 
moving Ha’ on the circumscribed circle together with the vertices A and C reminds them of 
the theorem of the circumferential angle. The description of the construction is directed by the 
use of these theorems and a proof is carried out. The complexity of the configuration is 
reduced by the use of theorems from geometry, while the dragmode makes the figure so 
mobile that further geometrical theorems can be seen. Students consider the construction from 
new points of view.  They emphasize relations when they recognize theorems from geometry, 
and they vary the construction, when they are looking for a theorem as a module. These 
changing perspectives are also characteristic of a specific view of visualization (Kadunz, 
2000). 

Summary 
In the discussion above the significance of modules in the use of DGS was presented. 

From the use of modules, criteria for the description of modules for the learning of geometry 
can be established. On the one hand geometrical constructions can be implemented more 
economically with modules (synthetic use of modules). On the other hand in a complex 
geometrical construction a geometrical fact still unknown to the learner can be discovered 
through module use. Thus we see both a quantitative use and a qualitative use of DGS 
modules. 

The significance of modules in proofs is a separate issue. It was argued that in this case 
students must leave the DGS to do a proof. We can also offer students these theorems in 
special forms (optical encyclopaedia, stock of modules). This was described as the analytic 
use of modules. Both uses of modules, the synthetic and the analytic, are indispensable for 
learning geometry. 
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