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Expert problem solving may be regarded as a process of understanding and modelling real 
world phenomena. Inductive thinking, empirical observations and deductive reasoning are 
crucial parts of this process. Experts and students differ in this respect, but they often show 
similarities in their problem-solving behaviour. Our research aims at identifying similarities 
and differences between experts and students in their mathematical problem solving with 
respect to argumentation and proof at the upper secondary level. Moreover, we will argue that 
adequate, as well as inadequate scientific models guiding the students' argumentation are 
influenced by the practices in the mathematics classroom. 

Proof and Scientific Reasoning 
In the last few years there has been an intense discussion in mathematics education research 
on students’ concepts of argumentation and proof. Both aspects are regarded as important for 
the understanding and application of mathematics. This positive attitude towards 
argumentation and proof is the result of an important debate among mathematics educators. It 
was Freudenthal who argued against geometrical proofs, particularly those in the form of 
classical Euclidean proofs. Accordingly, for many years proofs were regarded as superfluous 
in the mathematics classroom. It was conjectured that Euclidean proofs were far from 
providing any kind of mathematical insight, but were a means of initiation into a highly 
standardised and schematised type of argumentation cultivated only in school mathematics. 
Since that time, Hanna and other authors (Hanna, 1990; Hanna & Jahnke, 1993; Hersh, 1993; 
Moore, 1994; Hoyles, 1997; Harel & Sowder, 1998) have rehabilitated mathematical 
justification and proof (including Euclidean proofs) in the classroom, pointing out that in 
mathematical research as well as in school instruction, “proving” spans a broad range of 
formal and informal arguments and that being able to understand or generate such proofs is an 
essential component of mathematical competence. In constructivist mathematics instruction in 
particular, the critical exchange of arguments and elements of proof has achieved new 
significance. 

The Principles and Standards for School Mathematics (National Council of Teachers of 
Mathematics, 2000) call for a “focus on learning to reason and construct proofs as part of 
understanding mathematics so that all students 

• recognize reasoning and proof as essential and powerful parts of mathematics; 
• make and investigate mathematical conjectures; 
• develop and evaluate mathematical arguments and proofs; 
• select and use types of reasoning and methods of proof as appropriate.” 

These goals are applied to all stages of education from pre-school to grade 12. In the early 
years informal inductive elements are emphasized whereas the formal deductive elements 
become more important for older students. 

In recent research on mathematical proof there is a broad range of approaches to this topic 
in order to better understand students’ ideas of argumentation and proof. In particular there is 
a considerable number of empirical studies on students’ proving abilities (e.g. Senk, 1985; 

 



 108 

Usiskin, 1987; Healy & Hoyles, 1998; Lin, 2000; Reiss, Hellmich & Thomas, 2002), which 
have mostly revealed wide gaps in respondents’ understanding of proofs. Healy and Hoyles 
(1998) made a significant contribution to the field with their recent systematic investigation 
of students’ understanding of proofs, their ability to construct proofs, and their views on the 
role of proof. Their empirical study was conducted in various types of schools spread across 
England and Wales. Almost 2,500 tenth grade students, nearly all of them high-attaining 
students in mathematics, participated in the study. The results show that even these high-
attaining students had great difficulties in generating proofs. The students were far from pro-
ficient in constructing mathematical proofs and were more likely to rely on empirical 
verification. However, most of them were well aware that once a statement has been proved it 
holds for all cases within its domain of validity. Moreover, they were frequently able to 
recognize a correct proof, though their choices were influenced by factors other than 
correctness, such as perceived teacher preference. Students considered that their teachers 
would be more likely to accept formally presented proofs, though they were personally more 
likely to construct proofs which they assumed to have an explanatory character. In all 
domains, students with higher levels of mathematical competence outperformed less able 
students. Reiss, Klieme and Heinze (2001) were able to identify aspects of geometrical 
competence. Based on empirical data from upper secondary schools, they found that high-
level geometrical competence is specifically influenced by spatial ability, declarative 
knowledge, and methodological knowledge. Moreover, these research results suggest that 
students are often able to remember mathematical facts but are not able to combine these facts 
in a concise mathematical argument or even a mathematical proof. Reiss, Hellmich, and 
Thomas (2002) confirmed this result for students at the lower secondary level. In addition, 
they discussed aspects which influence students’ performance in argumentation and proof at 
that level. As a result they provide a proficiency scale of mathematical proving, which 
comprises three levels of underlying competencies.  

Greeno’s taxonomy (1980) describes the knowledge of facts as an important part of an 
individual’s knowledge structure. He distinguishes between propositions and rules, visual 
patterns and strategic principles. Obviously, propositions and rules are basic elements of 
mathematics and students often regard them as the most important aspect of the subject. 
Mathematical rules seem to be the kernel of the discipline, but mathematics educators and 
mathematicians emphasize that facts and rules must be applied in order to demonstrate 
mathematical understanding. Visual patterns or, more generally, the ability to visualize, 
support the understanding of mathematics. In particular, the role of visualization in 
mathematical performance has been identified in a number of studies. Jöckel and Reiss 
(1999), Reiss and Heinze (2000), and Reiss, Klieme and Heinze (2001) gave empirical 
evidence that spatial abilities and mathematical problem-solving performance are 
significantly correlated. This supports the hypothesis that mathematical performance is 
influenced by the ability to visualize mathematical ideas. Strategic principles comprise not 
only heuristic knowledge or the knowledge of strategies for the solution of a problem but also 
general ideas about the characteristic properties and the use of mathematics. These three 
aspects of the knowledge structure play an important role in mathematical proving and 
performing a proof requires knowledge of the facts and rules. It is supported by adequate 
visualizations of the problem, and it relies on specific methods, which can be regarded as 
strategic principles.  

Proof is a central aspect of mathematics as a scientific discipline, and mathematics is 
regarded as a proving science (Heintz, 2000). Mathematical results do not rely on empirical 
knowledge but are obtained by deductive reasoning based on axioms and definitions. In this 
respect mathematics is unique and, moreover, different from any other scientific discipline. 
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This uniqueness causes specific difficulties with respect to the mathematical understanding of 
students. 

It is not easy for children learning to reason and argue in any scientific discipline. In 
particular, with respect to the natural sciences, there is some research which suggests specific 
problems encountered by young students in their learning processes. The scientific basis of 
the natural sciences is characterized by empirical evidence (“the sun can be seen during the 
day and it disappears at night”), which is the starting point for a (not necessarily correct) 
theory (“the sun moves around the earth”). Kuhn, Amsel and O’Loughlin (1988) regard as the 
most important aspect in scientific reasoning the fact that theory and (empirical) evidence 
become separated. Regarding theory and evidence as different aspects of science may lead to 
new models and will provide the possibility of casting doubts about a theory. This principle 
holds for the scientific knowledge of adults as well as for that of children, but children’s and 
students’ argumentation and thinking processes are characterized by certain constraints 
(Tschirigi, 1980; Kuhn, 1989; Bullock & Ziegler, 1994; Thomas, 1997). Some of these 
constraints may even survive at the adult level. 

• Students (even at the secondary level) may not be able to generate evidence which 
contradicts their own assumptions; accordingly, the falsification of an argument is a 
methodological tool of scientific work which these students are not able to use in their 
problem-solving processes. 

• Empirical observations are rarely used in order to test a theory but rather to illustrate a 
theory. Students do not understand the idea that a negative result of an empirical 
observation may lead to a revised theory. 

• Contradictions between a theory and empirical evidence may cause a student to 
modify the evidence and interpret it in a new way but will not lead to changing the 
theory. 

• Students are hardly able to develop an experimental design which is suitable for 
testing a theory. In particular, it will not be taken into account that variables may be 
confused. 

• Students tend to accept hypotheses very quickly even if the alternatives cannot be 
fully rejected at that time. 

• Students do not accept the idea of a single counter example. They look for more 
empirical evidence which supports their theories, even if a counter example has been 
identified. 

Flavell (1977) argues that this more or less empirical thinking, which is guided by induction, 
is typical for the state of concrete operations in the sense of Piaget:  

The formal operational thinker inspects the problem data, hypothesizes that such and such a theory or 
explanation might be the correct one, deduces from it that so and so empirical phenomena ought 
logically to occur or not occur in reality ... it is also called hypothetico-deductive thinking, and it 
contrasts sharply with the much more nontheoretical and nonspeculative empirico-inductive reasoning 
of concrete-operational thinkers (p. 103f). 

Some research studies suggest that the plausibility of a hypothesis is of principal importance 
for problem-solving processes (Oswald, 1993; Thomas & Schillig, 1996). Problem solvers 
tend to test plausible hypotheses first (Klayman & Ha, 1987). Accordingly, if a problem 
solver finds plausible arguments for a solution he or she will probably accept a solution 
without testing alternatives (McDonald, 1990). Moreover, there are some results which 
suggest that even adults prefer verifying their theories rather than looking for contradicting 
arguments (Klahr, Fay, & Dunbar, 1993; McDonald & Stenger, 1993). 

The scientific understanding of children and its development might be different for 
different sciences though there are similarities between mathematical argumentation 
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processes and reasoning in the natural sciences. Research in mathematics education suggests 
that these constraints may at least partly apply to mathematics as they apply similarly to the 
natural sciences (Reiss & Thomas, 2000). Accordingly our investigation focuses on these 
constraints with respect to students at the upper secondary level. We were interested in how 
their mathematical problem-solving and argumentation processes had developed at the end of 
their secondary school career and only a few months before entering a university. Our 
research is primarily aimed at identifying aspects of implicit scientific theories which might 
hinder students from understanding mathematics as a proving science and which might 
influence their abilities to perform correct and concise mathematical proofs.   

Sample 
The sample consisted of 26 students at the end of their upper secondary education (in 
Germany grade 13, which is the last grade of upper secondary education). These students 
were asked to solve geometrical problems including proofs, which were adopted from the 
TIMS/III study (cf. Baumert, Bos, & Lehmann, 2000). We restricted our investigation to 
geometry problems, because geometry is that part of school mathematics where students 
usually encounter proofs for the first time in their mathematical instruction. All problems 
presented to them required some basic geometrical knowledge (e.g. know the sum of the 
angles of a triangle, know that the base angles in an isosceles triangle are of identical size) 
and also some methodological knowledge with respect to mathematical argumentation (e.g. 
knowing how to build up a logical chain of two or more consecutive arguments). The 
following problem may serve as an example of the type of tasks which were presented to the 
students (see figure below).  

The solution requires geometrical knowledge, which a student is supposed to acquire at 
the lower secondary level. The student has to remember that the angles in a triangle add up to 
180°, that ∠ACB is a right angle, and that the bisectors of the angles intersect in the centre of 
the inner circle of a triangle. Nonetheless, the results of the TIMS study showed that this was 
one of the more difficult items with a difficulty index of 741 (m = 500) and a solution rate of 
24% in the German population. According to Klieme (2000) this item requires the highest 
level of competency as well as abilities of argumentation and higher order problem solving. 

The students solved the problems in individual interviews. They were asked to verbalize 
their problem-solving steps and were again encouraged to do so if they did not speak loudly 
for some time, but the interviewer did not intervene in their problem-solving processes. Only 
after they told the interviewer that they were finished did he ask specific questions concerning 
errors which he had observed during their work on the problem. All sessions were videotaped 
and transcriptions of each session were made.  
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AB  is the diameter of a semicircle k. C is an arbitrary point on the semicircle (other than 
A and B), and M is the centre of the circle inscribed into ∆ABC. Then the measure of 
A. the size of ∠AMB changes as C moves on k. 

B. AMB is the same for all positions of C but cannot be determined without knowing 
the radius.  
∠

C. AMB = 135°   for all C, ∠

D. AMB = 150°   for all C. ∠

Results 
The individual interviews revealed how students perform at the end of the upper secondary 
level (after nearly 13 years of mathematics instruction) especially with respect to their 
scientific thinking and their mathematical argumentation. In the following we will provide 
typical examples of these argumentations. We refer mostly to the problem described above in 
which the size of an angle with respect to the inner circle has to be determined. In our 
argumentation we follow the constraints identified and investigated by Tschirigi (1980), Kuhn 
(1989), Bullock and Ziegler (1994), Ewert, Thomas, and Schumann-Hengsteler (1994), 
Dunbar and Klahr (1995) and Thomas (1997). For a better orientation we will summarize 
these constraints and then we will describe examples of specific student solutions of the 
problem, which illustrate the constraints. 

(1) Students (even at the secondary level) may not be able to generate evidence which 
contradicts their own assumptions; accordingly, the falsification of an argument is a 
methodological tool of scientific work, which these students are not able use in their 
problem-solving processes. 

(2) Contradictions between a theory and empirical evidence may cause the students to 
modify the evidence but not the theory. 

(3) Students do not accept the idea of a single counter example. They look for more 
empirical evidence which supports their theories, even if a counter example has been 
identified. 

These constraints may be illustrated in the problem-solving process of LUCIA. She reads the 
problem and misunderstands it while reading the text for the first time. She presumes that she 
has to find the angle at C, which is obviously a right angle. She argues that the angle which 
she is supposed to identify “must be a 90 degree angle according to Pythagoras”. She adds 
that answer A cannot be correct because the angle remains unchanged if C moves on k. 
During her problem-solving process she is probably aware of the contradiction that the 
multiple choice answers provided in the task and her own solution do not match. In spite of 
that she argues: “Let us take answer B. This is the only possible answer. It is not bad to 
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choose this answer because the angle remains unchanged. It cannot be calculated, but we 
probably know that it is a 90 degree angle.” 

The student is not concerned that her own assumptions and the solutions provided in the 
text of the problem contradict each other. Her statements sound like finding a compromise 
between these conflicting issues. On one hand, she is quite sure about her own solution; on 
the other hand she trusts the validity of the answers provided by the authors of the problem. 
Apparently she has hardly any doubt that both aspects may apply simultaneously. With 
respect to her erroneous understanding of the problem she gives a correct solution, which is 
exclusively based on her declarative knowledge. It may not be regarded as a severe 
mathematical problem that she uses the name of Pythagoras instead of the name of Thales, but 
this supports the evidence that her geometrical knowledge is far from being profound. 
Accordingly, she has more or less tacit or inert knowledge (cf. Whitehead, 1929; Renkl, 
1998), which cannot be used independently of specific situational contexts. 
 
(4) Students are barely able to develop an experimental design which is suitable for 

testing a theory.

For many students, the problem-solving processes may be characterized as trial and error 
activities. There is rarely a systematic analysis of the variables involved and of the methods 
which might be used. The students recognize some elements of a probable solution (for 
example the 90° angle at C) but are not able to use their knowledge in their problem-solving 
processes.   

MERLE is another female student who shows difficulties while solving the problems. She 
tells the interviewer that she does not like mathematical proofs at all and that she does not 
know how to build up a logical chain. In her problem-solving process she identifies separated 
pieces of geometrical knowledge which might be useful in this specific context. She is not 
able to combine even a few of these pieces in consecutive arguments. While making loud 
comments about her problem-solving process, MERLE tells the interviewer that her steps are 
not correctly intertwined. Accordingly, she has a vague idea what mathematical proving is all 
about but she is not able to perform a correct proof on her own.  

KONSTANZE shows an argumentation which is based on her convictions. She tells the 
interviewer that she is sure that the angle may be determined by calculations but that she is 
not able to do these calculations. Apparently she has no idea how to deal with this specific 
problem-solving context. Nonetheless she excludes the probable answers A (“I roll away the 
circle, therefore the angle remains unchanged”) and B (“I am sure that the angle can be 
determined by calculations”). She does not provide any theoretical ideas of how the 
alternatives C and D could be tested. 

 
(5) Students tend to accept hypotheses very quickly even if the alternatives cannot be fully 

rejected at that time. 

LEA reads the text and chooses A as her solution spontaneously. Afterwards she argues that 
B cannot be correct because “everything can be calculated”. Moreover, she states that C is not 
correct because the angle is too large, and D cannot be correct because the angle is even 
larger than in answer C. She does not spend more than two minutes on this task but is 
convinced that she has the correct solution. LEA is an example of a problem solver who sticks 
to an intuitive solution. Moreover, she accepts her first hypothesis without even testing it and 
without testing other alternatives.  

KONSTANZE argues that “most probably, you are able to calculate the angle”. She does 
not give any reason for this statement. LUCIA assumes that the angle has the size of 90°. She 
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argues: “Pythagoras said, it is a 90° angle. You cannot calculate it, but we know most 
probably that it is a 90° angle.”  

Discussion 
Successful problem solvers as well as their low-achieving counterparts are generally unable to 
deal systematically with hypotheses and logical arguments. This result is true for many of 
these grade 13 students, who are in their last year of secondary education. In particular our 
data reveal severe problems with a basic understanding of the principles of mathematical 
reasoning. The students are barely aware that mathematical reasoning is not guided by 
plausibility arguments. Moreover, they are not able to explore the problem-solving situation 
and discuss arguments which might possibly lead to a solution. Mathematical principles are 
mostly not used during problem solving. Reasoning on mathematical problems and their 
solutions, as well as proving mathematical theorems, seem to be activities which have not 
been important aspects in the mathematics classrooms. In particular, the nature of mathe-
matical reasoning seems to be a topic which is hardly known to most of them. 
 Our findings suggest that students’ difficulties with mathematics may have one origin 
in their inadequate model of mathematical argumentation. The nature of mathematics as a 
scientific discipline is quite unfamiliar to students even at the end of their upper secondary 
education. Rules of mathematical argumentation processes are hardly known to these students 
and will not be applied in their mathematical problem solving. Their mathematical 
argumentation processes include empirical arguments as well as the application of intuitive 
thinking.  Therefore, problem-solving processes are not guided by systematic investigations 
but may better be characterized as trial and error processes.  
 Argumentation and proof are regarded as important aspects of the mathematics 
classroom. Obviously it is not easy to reach the goal of fostering students’ understanding of 
the specific nature of mathematics. The TIMS study (Baumert, Bos, & Lehmann, 2000) has 
shown that German students at the upper secondary level perform below average in an 
international comparison. The problems presented in the TIMS study at the upper secondary 
level have been criticised as representing mainly the lower secondary level with respect to 
their mathematical contents. As a consequence it was hypothesised that the students probably 
had forgotten the underlying mathematics. The results of the study presented here contradict 
this assumption. We were able to show evidence for the fact that students’ difficulties with 
mathematical problems cannot be attributed to a lack of basic, declarative knowledge but to a 
lack of methodological knowledge. The constraints of mathematical argumentation and in 
particular mathematical proof are unfamiliar to the students and they obviously feel 
uncomfortable during mathematical problem-solving activities which ask for argumentation 
and proof.  

According to Schoenfeld (1997), there are five aspects of mathematics cognition, 
namely a knowledge base, problem-solving strategies, self-regulation or monitoring, beliefs, 
and practices. At the end of their education, students have built up a (more or less sufficient) 
knowledge base, which mainly consists of probably unrelated mathematical facts. There is a 
severe lack of knowledge of problem-solving strategies. Moreover, self-regulation and 
monitoring is essentially unavailable to the students. With respect to this specific study, their 
beliefs or their scientific reasoning is inadequate for mathematics. The data support findings 
which identified specific problems in German mathematics classrooms. Mathematics 
instruction in Germany is typically concerned with problem solving in small steps thus 
hindering students from developing a holistic view of the problem (e.g. Baumert et al., 1997). 
It is most probable that the deficiencies described above are not deficiencies in individuals but 
rather can be attributed to the specific mathematics classroom. Problem solving has been 
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regarded as a goal of mathematics instruction for decades, but obviously we are not 
succeeding in implementing this goal.   
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