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Even today using Computer Algebra Systems (CAS) extensively in mathematics classrooms is 
still very often seen as a threat to the preservation of the mathematical culture. On the other 
hand, denying new technologies in the teaching of mathematics endangers the cultural 
coherence necessary for the technological development of mathematics and of society in 
general. After explaining briefly the concept of cultural coherence, this paper presents a 
position which argues that a mediating role between these two positions should be given to 
new technologies, and especially to CAS. 

 
 

Cultural coherence 

Cultural coherence is one of the seven tasks which H. W. Heymann considers to be 
essential for (mathematics) classrooms focusing on general education (Heymann 1996, pp. 
65-79; 154-183). Here H. W. Heymann proceeds from a broad, sociological concept of 
culture.  

This concept of culture is primarily descriptive and not normative. It covers everyday 
social manners and skills of any defined group as well as the standards of moral behaviour 
and the achievements of art and science. This includes any errors which may have become 
established. In contrast to the common usage of this concept, such an understanding of it does 
not include denying the culture of a particular group or making one culture stand out against 
another.  

For H. W. Heymann, a special culture always means making a specific selection from the 
whole range of human possibilities; and this choice (which at the same time is the dividing 
line from other cultures) gives a society its specific identity. 

Only from the view of those who feel they belong to a particular cultural group does the 
concept of culture also take on a normative character. A special value is assigned to the 
specific cultural features established in one’s own cultural group and the individual, as well as 
society, has to orient themselves to this value. This gives cultural identity to the individual. A 
reflected cultural identity should show itself in the appreciation of, and openness to, other 
cultures and cultural identities without denying the particularities of one’s own culture.  

 
In the view of H. W. Heymann, cultural coherence covers both a disparate and a 

synchronous aspect. With the disparate aspect the time component of a culture’s development 
is assigned i.e. cultural continuity. It is concerned with the preservation and passing on of 
cultural achievements and particularities from one generation to the next, with the acquisition 
and the advancement of established culture by younger people, and with the creation of a 
relationship between former times and today.  

The synchronous aspect focuses on considering different cultures and especially on 
establishing compatibility between different (sub-)cultures, both within their own societies 
and own cultures.  
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In creating cultural coherence we are aiming to fulfil both of these aspects, with emphasis 
being given above all to  

 

- maintaining everyday (mathematical) culture in order to get by in daily situations in 
private life and in day-to-day work. In the case of mathematics (at school) it concerns 
the preservation of that standard of mathematical abilities which are regularly needed 
in everyday private and working life (including its careful adaptation to newer 
developments in society and technology).  

 

- communicating between the generations in the sense of having a common basis for 
being able to communicate about standards, values, views, ideologies, etc. (whereby 
we do not mean harmonising or even solving the generation conflict). The 
introduction of set theory at the end of the 1960s, for example, seriously disrupted this 
form of communication in the field of (school-)mathematics.  

 

- developing one’s reflected cultural identity in the sense of seeing oneself as a part of 
the culture, of recognising linking components in one’s culture and of being able to 
accept the different elements of other cultures as being equal. In the case of (school-
)mathematics it concerns, for example, the task of making it possible to experience the 
relevance of the special characters and universality of mathematics (based on abstract 
objects, symbolic representations, rules without contradictions) for the whole culture. 
The point therefore is the appropriate understanding of the ways of thinking and 
working in mathematics. Fundamental ideas play the central role in this as relations 
overlapping different mathematical concepts from which connections, as well as 
differences, between mathematical and non-mathematical cultures can be clearly 
recognised.  

 

These demands include the passing on, the acquisition of and the reflection upon, the 
delivered knowledge as well as its critical consideration and advancement. 

 

CAS as mediators between the traditional teaching of  
mathematics and technological innovations  

For the majority of people, becoming familiar with mathematics corresponds closely to 
“doing calculations” of various types and of increasing levels of difficulty. One can offer 
various more or less convincing reasons for this dominance of operational activities 
(transformations rule-based). Mathematics educators, however, criticise this dominance of 
operational activities as “blind calculating” (H. Winter, as quoted in Fischer & Malle 1985, p. 
221) or even as “conditioning and training something not understood” (M. Wagenschein, as 
quoted in Vollrath 1987, p. 376). On behalf of a lot of didactics experts, let me quote H.-J. 
Vollrath, who has, in my opinion, expressed some of the essential didactical doubts clearly 
and concisely: 

The great emphasis on exercises has upset the didactic balance. The introductory phases have been 
reduced; reasoning has been given a subordinate role; understanding has been pushed to the 
background; routine counts for more than intuition; being able to do something is worth more than 
knowing how to do it; skills are more important than understanding. (Vollrath 1987, p. 376)  

This remarkable resistance of the teaching of mathematics to the demands and 
requirements of mathematics education can nonetheless be explained by the desire for cultural 
continuity. As teachers we transmit mathematics in a manner such as we ourselves 
experienced it – at school or also at university. With reference to schools this means very 
often the treatment of “plantations of exercises” in which virtually nothing more is required 
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than the transformation, by rules, of mathematical facts represented by symbols. Compared 
with mathematics in schools, mathematics instruction at university focuses more on 
knowledge and understanding than on skills but its goal, however, is educating mathematical 
experts. Much importance is also attached to operative knowledge and skills (nonetheless by 
the way of deductions, proofs). In this way, conserving and passing on the “traditional” (i.e. 
existing for at least one generation – cf. Heymann 1996, p. 72-73) image of mathematics and 
consequently the traditional contents and the traditional focus of mathematics at schools, is 
very often the factor which determines teachers’ decisions when choosing teaching content 
and points for special emphasis. 
 

Parents who (want to) take a more intensive interest in the school affairs of their children 
and especially in their mathematics instruction expect and demand that their children’s 
mathematics lessons should only have developed slightly in comparison to their own 
education in mathematics. They do not want any radical break with the familiar image of 
mathematics from their own school days and their daily life. Any radical changes would mean 
shutting out the parents from their children’s mathematical education, thus affecting the 
existing points of reference that join the older generation with the younger one and thereby 
changing the use of mathematics in everyday life which is familiar to the older generation. 
That could make communication between the generations more difficult, place obstacles in its 
way or even break it off completely.  

Parents are also afraid that any radical changes in the taught image of mathematics will 
mean their children will no longer be learning “real mathematics” or will no longer be 
mastering the “mathematical standards”. They are worried that in some fields differences will 
arise and cause a hiatus with the mathematical culture of everyday life. It could therefore 
become (more) difficult for young people to manage some professional situations in an 
appropriate way thus hindering them in their future careers or, at the very least, making them 
encounter problems in their university studies. 

 
General education, however, should not be restricted only to the conserving of traditional 

knowledge and skills and to their continuity. Rather, it should endeavour to link familiar 
elements with new and unknown ones and so create cultural coherence. With regard to 
cultural coherence, new technologies, and Computer Algebra Systems (CAS) in particular, are 
playing a special, but ambivalent role in mathematics classrooms. CAS are able to operate 
with symbolically-presented mathematical objects in a manner equivalent to rule-based 
operations in mathematics. This is why they have been developed, and in this sense they are a 
(modern) materialisation of operative knowledge and skills. For the moment they can be 
understood as the latest step in trivialising and outsourcing the operations. Up to now CAS 
have been unable to master all the operations known and needed in mathematics, yet they do 
indeed master almost all the operations dealt with in schools. This materialised, operative 
knowledge and the corresponding skills are currently available to anyone at a cost of 
approximately €180. 

 
Through the permanent availability of CAS, rule-based paper and pencil calculations 

(operations) have become less and less required as mathematical tools. The mastering of 
operative activities (rule-based transformations) “manually” has become an obsolete, 
unnecessary skill. Thus, using CAS means a radical break with regard to the image of 
mathematics predominantly delivered in society. What has been seen up to now as 
representative of the mathematics culture and as its central activity by the majority of people, 
loses its relevance and its necessity. The use of CAS therefore is hard to reconcile with the 
demands of cultural continuity and of preserving particular cultural achievements. 
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Turning the argument round, abandoning CAS means denying the technological 

development of mathematics and of society in general. Using new technology actively 
became one of modern society’s cultural techniques a long time ago, and is today an 
established part of our culture. Ignoring this development in the teaching of mathematics 
would be a conscious fading-out of the cultural achievement of modern times and thus a 
radical break with our culture today. There is no convincing argument why young people 
today should obtain the qualities they will need tomorrow using equipment that was old 
yesterday – cf. Peschek 1999a, p. 265. 

 
This ambivalence is almost always present and strongly felt in the didactical discussions 

about using CAS in the teaching of mathematics and it leads to different reactions. For 
example, some didactics experts and many teachers try to meet this threat to traditional 
content and teaching areas in schools mathematics by only allowing their students the use of 
CAS after they have proven, with paper and pencil, that they have obtained the required 
operative knowledge and skills. This is an attempt to try and bridge the break with (school-
mathematical) traditions by developing that operative knowledge and skill which becomes 
obsolete by the (later) use of CAS (cf. for example the “white box/black box principle” in 
Heugl et al 1996, pp. 158). Others attempt to avoid this break by using CAS to simulate hand 
calculations (for example solving equations or systems of equations), or even to practice 
(drill) operating “manually”. 

 
Others orient themselves to a large extent on the technological development of 

mathematics – led by a fascination with the technological possibilities. Above all they attempt 
to contribute to creating cultural coherence by extensively and exhaustively using the 
possibilities offered by technology – without regard to other traditions. In their lessons they 
give preference to teaching content which could hardly be done without computers (such as 
extensive simulations, three-dimensional representations, various numerical procedures 
requiring extensive calculations – cf. e. g. Böhm & Pröpper 1999, Lehmann 1999, Waits & 
Demana 1997).  

 
My view of this matter differs from all the positions mentioned here. I see CAS as a 

mediator between innovation and tradition. In the field of schools mathematics they act, on 
the one hand, as a mediator between the didactical and pedagogical requirements for 
significant reduction of operational activities in the teaching of mathematics. On the other 
hand, they produce the fear that the potential of mathematics for problem solving could be 
lost by the learner. Through using CAS, operative knowledge and skills are being brought 
into the mathematics classroom, and consequently into the discussion and treatment of 
mathematical problems. Operative skills and knowledge are to a great extent available to the 
students under particular preconditions, without them cognitively having to develop the 
knowledge and the skills themselves. In any CAS-supported learning environment 
solve(a*x^2+b*x+c=0,x) is the solution of the equation ax2 + bx + c = 0 – similar to applying the 
formula for solving quadratic equations in any “traditional” (no use of CAS) learning 
environment. In addition d(x^n,x) is the derivative of the general power function f: x -> xn in 
the same way as applying the differentiation rule for power functions, etc. The operative 
activities (skills) being demanded by the students in any CAS-supported learning environment 
concentrate on the appropriate transformations and on the input of a fact given in 
mathematical notation in CAS. In this sense, the ability to use CAS in any adequate 
(appropriate) way could be considered as the modern form of operative mathematical 
knowledge and skills. So CAS offer a promising possibility for mediating between the 

 



 121

different expectations and demands on the teaching of mathematics, such as mediating 
between maintaining traditions and outsourcing operations, between traditional teaching of 
mathematics and the use of technological innovation. Thereby, cultural coherence can be 
reflected upon, promoted, and actively encouraged, thus advancing a new mathematics 
culture in schools. 
 

Outsourcing as characteristic of science and society  
With the principle of outsourcing W. Peschek demands the unrestricted outsourcing of 

operative knowledge and skills wherever this outsourcing seems to make sense didactically 
(cf. Peschek 1999b, p. 407, Peschek & Schneider 2000, 2001, Schneider 2001). 

The outsourcing of knowledge is a fixed part of our everyday life and of science also; thus 
the emancipated handling of such knowledge is of great social importance. This is 
particularly, and in a very specific fashion, valid in mathematics. 
 

One fundamental mathematical way of working and thinking is representing 
(materialising) a non-mathematical situation by mathematical symbols (as is done in the 
example shown in Figure 1(1) and (2)).  

 
(1) A youth hostel has 58 beds in 21 two and four-bed rooms. How many two and how 
 many four-bed rooms does the youth hostel have?  
 
(2)   x + y = 21 
   2x + 4y = 58 
 
(3)   -2x - 2y = -42 
     2x + 4y = 58 
             2y = 16 
 
    y = 8  x = 13 
 
(4) The youth hostel has 13 two-bed and 8 four-bed rooms. 

 
Figure 1. An example for outsourcing 

In this way, it becomes possible to carry out operations at a syntactical level without 
having any correspondence to the reference context and without being bound to it (therefore, 
in a certain sense, “without understanding” – cf. Figure 1(3)). The results calculated within 
the formal system can be interpreted in the original context and result in the solution of the 
investigated problem (cf. Figure 1(4)). Such an approach is based on the outsourcing of a non-
mathematical problem to the formal-operative system of mathematics. Doing so is highly 
economic for thinking – it reduces the complexity of the problem and it allows for solutions 
and methods of solving which otherwise, without the possibility of outsourcing in the formal 
system, would either not be found or not be so simple to find. 

In mathematics, however, we constantly work with the method of outsourcing. This 
occurs not only in elementary procedures such as division algorithms, but also in the more 
complex notions and procedures up to and including proofs. One need not know why the 
division algorithm being applied works in order to get the correct answer when dividing. One 
need not bother with the logical reasoning behind an equivalence transformation when using 
such a transformation to solve an equation and one needs not recognize the basics of set 
theory or the concept of function in order to succeed in calculus when finding a derivative. 
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One uses many of these mathematical concepts and procedures as comprised bits of 
knowledge (modules) within mathematics and one needs to know their effects and 
“interfaces” with external agencies very well in order to be able to apply them correctly. It is 
not necessary, however, to know their internal workings.  

 
Outsourcing is something genuine for mathematics; it is one of the characteristics of 

mathematics and it is an essential basis for its efficiency.  
 
One can immediately establish analogies between these scientific-theoretical 

considerations and considerations on the socio-philosophical level. Using comprised bits of 
knowledge has long become self-evident and an indisputable necessity in our society: “If only 
those people drove a car who completely understand the mechanics and electronics of their 
car, we would not have traffic problems. If only those people stopped at a traffic light who 
understand the functioning of the traffic light from the algorithm to the programming and 
further to the microprocessors’ operating, we would also have no more traffic problems.” 
(Peschek 1999a, p. 268).  

Here mathematics is taking on a special role with increasing social relevance:  
Mathematics is relatively secure, socially accepted, codified knowledge which, notably, allows for a separation 
between understanding and doing ... (it) owes its high social relevance to the fact that, in utilizing outsourcing, it 
even works when the user has no idea anymore as to why. (Peschek 1999b, p. 406) 

(A more detailed discussion on this matter can be found, for example, in Fischer 1991, 
Maaß & Schlöglmann 1988, Peschek 1999a, 1999b, Winkelmann 1992.) 

 
An elaborate image of the subculture that is mathematics, of its characteristics, its ways of 

thinking and working and its socio-cultural relevance will include outsourcing as an important 
(scientific-theoretical and socio-philosophical) aspect. To develop a reflected cultural identity 
it is relevant to experience outsourcing as a fundamental characteristic of mathematics and to 
be able to understand it as a constitutive aspect of the relevance of mathematics for society. 
Reflected handling of outsourcing and of its scientific-theoretical and socio-philosophical 
relevance in the teaching of mathematics can be considered an important contribution to 
creating cultural coherence. CAS are for the moment just the last step in the development of 
creating perfect outsourcing. Hence they can serve as fully demonstrative and obvious 
examples and models for the process of outsourcing. 
 

CAS and communication with experts 
H. W. Heymann perceives the “problem of communication between experts and lay-

persons” (Heymann 1996, p. 113) to be one of the key problems of a highly differentiated and 
structured democracy based upon the division of labour. The functionality of the society is 
based on appropriate and freely available contact with highly specialised experts’ knowledge. 
As mature, responsible citizens we are permanently confronted with statements made by 
experts which we then must assess and judge in order to be able to make (our own) decisions. 
Normally, we will rely on the professional correctness of these experts’ statements. Yet we 
still need to judge their importance for ourselves and for the community. Because we are 
ourselves experts only in a few fields we must be able to ask the experts the right questions, to 
assess their answers and to draw our own conclusions in all those fields in which we are lay 
persons.  

R. Fischer considers a task of those persons who have attended institutes of higher 
learning (high schools and vocational high schools), “the more highly educated” (cf. Fischer 
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n.d., p. 3), to be that of mediating between experts and the “general public”. In particular 
more highly educated persons should be able to explain the experts’ statements in an 
understandable fashion and judge their importance.   

 
Being able to communicate with experts and with the general public requires the 

development of competences other than those which are necessary for being an expert 
oneself. R. Fischer identifies the following three fields of competence as those which are to be 
acquired: 

 

- basic knowledge (notions, concepts, forms of representation) 
 

- operative knowledge and skills (in order to solve problems or to generate new 
knowledge) 

 

- reflection (possibilities, limits and meanings of concepts and methods). 
 

With regard to the ability to communicate with experts (and the general public) R. Fischer 
considers the fields of basic knowledge and of reflection to be particularly important for lay 
persons who have received a general education. Basic knowledge “is a prerequisite for 
communicating with experts”, reflection “is necessary for judging expertise” (Fischer n.d., p. 
5). 

However, in addition to competence in the field of basic knowledge, the activities and 
tasks of experts require above all profound competence in the field of operative knowledge 
and skills. R. Fischer points out that this classification should not be taken as an absolute. 
Neither should the experts be relieved of their responsibility of viewing what they are doing 
in a self-critical manner, nor should doing operations be completely removed from the 
framework of mathematics instruction for lay persons. The focus and profiles for experts and 
lay persons do, however, clearly differ. 
 

Communication with experts includes outsourcing considerable operative knowledge and 
skills to the mathematical expert. Interaction with CAS can be perceived and seen as a 
specific model for such a communication. As in using CAS, in the communication between 
human being and machine, elements can be seen that are also quite significant for 
communication between lay persons and human experts (cf. also Pesckek & Schneider, in 
press). 

A successful and profitable interaction with CAS requires 
 

- broad basic knowledge of mathematics (especially knowledge about important 
mathematical forms of representation)  
For example, for the correct input of (symbolic) CAS-representations it is necessary to 
be able to recognise the structure of the given formula and to be familiar with the 
hierarchy of calculations since the input of (arithmetic, algebraic) formulas must be 
carried out sequentially on most CAS. 
Working with CAS often requires an increased use of functions. Hence the possibility 
offered by CAS to store formulas as modules and to operate with these modules is 
based on the interpretation of these formulas as formulas of a function and requires the 
appropriate knowledge in dealing with functions (also in several variables).  
The interpretation of incorrect graphic representations (such as in points of 
discontinuity) requires significant knowledge and understanding of the given fact and 
of the intended aims of the representation. 
To use adequately each of the (symbolic, graphical, and tabular) representations 
offered particularly by CAS, requires knowledge about the potentials and problems of 
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the different forms of representation in addition to understanding the given situation 
and the goals intended with these representations. 
This list could be continued by numerous other examples referring to required basic 
knowledge.  
  

- very precise conceptions of the fundamental possibilities and limits as well as 
estimations of the local abilities of CAS   
The prerequisites, effects, applicability, conditions of use, and limits of the modules 
offered by the expert CAS must be known and familiar to the user in order to 
guarantee understanding and an efficient use of “CAS-knowledge”. (These features 
can sometimes be determined “experimentally” in the interaction with CAS). 

 

- the willingness and ability to ask the “right” questions, to be precise when 
formulating one’s own questions and considerations and to present them in a form 
which can be interpreted by CAS 

 
Communication with CAS assumes that the problem is formulated precisely and with 
a syntax adequate to the CAS. To achieve this, a degree of exactness is required which 
exceeds even the exactness needed for communication with human experts. CAS react 
only and in the most rigid manner to the questions being asked and to the form in 
which these are formulated. Inputs that have not been exactly understood by CAS 
inevitably lead to a “refusal to answer” in the form of an error message, requiring 
(“forcing”) the user to be more precise. A negotiation process, such as occurs with 
human experts in order to clarify any imprecision, is only possible in a very limited 
form with CAS, either by means of error messages from the systems or of questions 
not being answered adequately. 

 

- a verification as well as an appropriate interpretation and assessment of the answers 
given by CAS 
Even the first steps in using CAS require interpretation abilities (a common 
mathematical notation of a represented formula must be interpreted and recognised 
with regard to its structure in order to be able to transfer the input into a workable 
form for CAS). These abilities are also particularly required for the screen outputs 
produced by CAS. The solutions offered by CAS must not only be recognised as the 
solution of an equation, the integral of a function, the graph of a function, etc., in 
order to be able to interpret them in context. What is also required is an (inner-
mathematical) verification, interpretation and evaluation of the solutions offered: 
• why does this equation not have a real solution?   
• how can it be explained that the integral has a negative value?  
• are all of the essential points of the graph of a function visible on the screen? 
etc. 
If different CAS representations are used, additional interpretation abilities as well as 
extensive “qualifications of translation” (between the different forms of 
representation) will be required. 

 
Whenever CAS users (students) are working in specific forms of interaction, other aspects 

can be observed. These may be the transmission of the answers provided by CAS to other lay 
persons and the discussion of these answers among the lay persons. There may also be 
negotiation processes for the interpretation, the relevance and the justification of these 
answers as well as of any further questions to the expert. All in all, these are essential 
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components of what R. Fischer (n.d., p. 4) describes as communication with the general 
public.  

 
These considerations will neither equate CAS with a mathematical expert nor the 

communication between experts and lay persons with the communication between human 
beings and machines. CAS cannot become a substitute for human experts (and particularly 
not for teachers). They are too limited and rigid in their communication with users; their basic 
knowledge of mathematics, their abilities of representation and of interpretation are too 
insufficient. CAS can sometimes even disappoint us in the operative field. However one can 
find correspondences in both directions for some important aspects (those mentioned above) 
or at least similarities. For these reasons I plead for discussion of the use of CAS as a simple 
model of communication between mathematical experts and lay persons and for reflections 
upon it. 

 

Concluding remarks 
CAS make an important contribution to creating cultural coherence in more than one way 

in mathematics classrooms. Cultural continuity is ensured by the opportunities that CAS offer 
for providing access to operative knowledge in mathematics classrooms. This knowledge is 
available to the students without them cognitively having to develop it themselves. At the 
same time the advancement of delivered knowledge is supported by its adaptation to newer 
developments in technology and society.  

The relevance of mathematics for the whole culture, an understanding of its 
characteristics and its efficiency can be shown and experienced by the example of outsourcing 
operations with the help of CAS. This is, in fact, a “materialised” and highly developed model 
of outsourcing. Hereby a considerable contribution is made to developing reflected cultural 
identity. In addition to this, CAS can be used as a simple model for the communication 
between (mathematical) experts and lay persons which is one of the key problems of our 
culture, and in this sense they also can support and promote the creation of cultural 
coherence.  

 
 
 

References 
Böhm, J., & Pröpper, W. (1999). Einführung des Integralbegriffs mit dem TI-92. Hagenberg: bk teachware. 
Fischer, R. (1991). Mathematik und gesellschaftlicher Wandel. Journal für Mathematik-Didaktik, 4, 323-345. 
Fischer, R. (1996). Perspektiven des Mathematikunterrichts. Zentralblatt für Didaktik der Mathematik, 2, 42-46. 
Fischer, R. (n.d.). Höhere Allgemeinbildung. Unv. Manuskript, Klagenfurt/Wien. 
Fischer, R., & Malle, G. (1985). Mensch und Mathematik. Eine Einführung in didaktisches Denken und 

Handeln. Mannheim-Wien-Zürich: BI Wissenschaftsverlag. 
Heugl, H. et al (1996). Mathematikunterricht mit Computeralgebra-Systemen. Bonn: Addison-Wesley. 
Heymann, H. W. (1996). Allgemeinbildung und Mathematik. Studien zur Schulpädagogik und Didaktik, Band 

13. Weinheim-Basel: Beltz. 
Lehmann, E. (1999). Mathematikunterricht mit einem Computeralgebrasystem - Analyse des Bausteins 

Binobau(a,b,n):=(a+b)n. Der mathematische und naturwissenschaftliche Unterricht, 52 (5), 306-310. 
Maaß, J.,  & Schlöglmann, W. (1988). Die mathematisierte Welt im schwarzen Kasten – die Bedeutung der 

Black Boxes als Transfermedium. In: A. Bammé, P. Baumgartner, W. Berger, & E. Kotzmann (Eds.), 
Technologische Zivilisation und die Transformation des Wissens (pp. 379-398). München: Profil. 

 



 126 

Peschek, W. (1999a). Mathematische Bildung meint auch Verzicht auf Wissen. In: G. Kadunz, G. Ossimitz, W. 
Peschek, E. Schneider, & B. Winkelmann (Eds.), Mathematische Bildung und Neue Technologien (pp. 263-
270). Stuttgart-Leipzig: Teubner. 

Peschek, W. (1999b). Auslagerung als didaktisches Prinzip eines computerunterstützten Mathematikunterrichts. 
In: M. Neubrand (Ed.), Beiträge zum Mathematikunterricht 1999 (pp. 405-408). Hildesheim: Franzbecker. 

Peschek, W., & Schneider, E. (2000). How to identify basic knowledge and basic skills in CAS-supported 
Mathematics education? In: V. Kokol-Voljc et al (Eds.), Exam Questions & Basic Skills in Technology-
Supported Mathematics Teaching (pp. 47-54). Hagenberg: bk teachware. 

Peschek, W., & Schneider, E. (2001). How to identify basic knowledge and basic skills? Features of modern 
general education in Mathematics. The International Journal of Computer Algebra in Mathematics 
Education, 8(1), 7-22. 

Peschek, W., & Schneider, E. (in press). Computer Algebra Systems (CAS) and Mathematical Communication. 
The International Journal for Computer Algebra in Mathematics Education. 

Schneider, E. (2001). Computeralgebrasysteme in einem allgemeinbildenden Mathematikunterricht. Didaktische 
Orientierungen – Praktische Erfahrungen. München-Wien: Profil. 

Vollrath, H.-J. (1987). Störungen des “didaktischen Gleichgewichts” im Mathematikunterricht. Der 
mathematische und naturwissenschaftliche Unterricht, 40(6), 373-378. 

Waits, B. K., & Demana, F. (1997). Connections between algebra and calculus: discrete and continuous models 
of growth. The International Journal of Computer Algebra in Mathematics Education, 4(3), 239-251. 

Winkelmann, B. (1992). Anmerkungen zum Black Box Problem im Mathematikunterricht. Occassional Paper, 
140, 32-39. Universität Bielefeld. 

 


