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Abstract

We examine the bipartite graphs of German corporate boards in 1993, 1999
and 2005, and identify cores of directors who are highly central in the entire
network while being densely connected among themselves. The novel feature
of this paper is the focus on the dynamics of these networks. Germany’s cor-
porate governance has experienced significant changes during this time, and
there is substantial turnover in the identity of core members, yet we observe
the persistent presence of a network core, which is even robust to changes in
the tail distribution of multiple board memberships. Anecdotal evidence sug-
gests that core persistence originates from the board appointment decisions
of largely capitalized corporations.

Introduction

We study the time evolution of German corporate director interlocks between
1993 and 2005, and detect a persistent core of directors who are highly central
in the network while being densely connected among themselves. The statis-
tical properties of the network core show little variation over time in spite of



significant changes in corporate governance and considerable turnover in the
identity of core directors, leading to questions about the mechanisms that
are responsible for the origin of a persistent network core.

Traditional research in organization and management science has inves-
tigated the influence of shared directorships or ownerships on firm perfor-
mance, profitability, and corporate strategy, including acquisition behavior,
choice of financing, the magnitude and direction of political and charitable
contributions, the adoption of poison pill practices, and many more, in fact
generating such an abundance of results to warrant several recent surveys on
different aspects of the subject [12, 13, 18, 31, 4, 19, 26]. Another strand
of research, inspired by the interdisciplinary work of [3]|, has emphasized the
statistical properties of corporate networks [5, 14, 30] and concludes that
director interlocks exhibit the small world effect, whereby the interpersonal
distance between any two directors is several orders of magnitude smaller
than the number of directors in the network. In addition, [17] argue that
director interlocks are also characterized by a high degree of clustering, typ-
ical of the small world networks introduced by [41]." Subsequently, however,
[15] and [33] have shown from different yet complementary viewpoints that
the high degree of clustering is present by construction, and should as such
not be an unexpected feature in director interlocks. Intuitively, the reason
is that directors of the same company are linked by definition to all their
colleagues, while the large majority of directors serves only on a single board
in the network.

Conventional wisdom has it that the small world effect typically stems
from the presence of ‘hubs’, i.e. nodes with a large number of links to other
nodes in the network, and the degree distribution of nodes has been shown to
obey a power law in many complex networks [27, 34|, yet corporate interlocks
do not fall into this category, raising the question where the well-established
small world property of corporate networks comes from then.

Finally, the idea that a core of director interlocks influences the degree
of interest group formation has previously been put forward by [25], and
several authors have suggested procedures to classify or identify a core of
key players in complex networks, both in the social sciences [10, 11| and
in interdisciplinary physics [21]. But the existence of a network core also
has implications beyond pressure group formation, particularly for a class
of diffusion processes sometimes referred to as duplication in walks [9]. An
important illustration of such a process is the diffusion of states (e.g. expec-
tations, tastes, opinions, trading positions, etc.) in a system made up of a
large number of interacting heterogeneous agents. One can show, perhaps

1See [39] for a review of small world networks in the social sciences.



somewhat unexpectedly, that the existence of a core is often sufficient for
the system-wide propagation of fashions and fads in such systems [2, 1]. The
presence of a hierarchical core-periphery structure can oftentimes lead to
system-wide conformity, including the possibility that the social interactions
of core agents lead to coordinated “animal spirits” in a system that is several
orders of magnitude larger than the size of the core. We believe that the
potential implications of our empirical results are best discussed in light of
this latter point.

While [24] show the existence of a network core in a more recent year,
they lack observations on the time evolution of the board and director net-
works. One of the main findings of the present paper is that institutional
ties among the largest German companies are maintained over time in spite
of considerable turnover in the identity of directors. In light of this turnover,
it becomes important to understand the origins of a persistent network core,
and our analysis suggests that both the reconstruction of broken ties among
large corporations, as well as their preference for recruiting experienced di-
rectors with multiple board memberships, are responsible for the time persis-
tence of a network core. To our knowledge this paper is the only one besides
the much earlier study by 23] that analyzes the dynamics of board networks.

Our findings are of particular interest in light of recent claims that the
corporate network (especially in the German case) is in a “state of decline” due
to increased shareholder orientation of companies, the strategic reorientation
of large banks, and the decreasing influence of the state in the infrastructure
sector [20, 6, 16].

In the remainder of this paper we will see that this decline is apparent
in the basic descriptive statistics of the corporate network, yet the selective
hiring mechanism of companies that we detect here manages to preserve a
core network whose influence is, if anything, increasing over time.

After a description of the dataset, we proceed by identifying and com-
paring cores of directors among our subsamples. Hereafter we analyze how
the re-wiring process among companies takes place throughout the years.
We conclude by discussing more general implications of our findings that go
beyond the realm of corporate networks.

The Dataset

Our compilation of board composition data aimed for Germany’s one hun-
dred largest publicly traded companies in 1993, 1999, and 2005. The thirty
largest companies are listed in the German stock index DAX (Deutscher Ak-
tienindez), while the next largest companies are listed in the Mid-Cap-DAX,



or MDAX. The MDAX was founded in 1996, containing the seventy largest
companies that were not included in the DAX, which we also used in the
1993 sample. In 2003, the number of companies in the MDAX was reduced
from seventy to fifty, so we used the survivors among the twenty companies
that left the MDAX in the 2005 sample, or replaced those that no longer
existed with the next largest companies in 2005.

1993 1999 2005

& & & X

Figure 1: Company networks
The network of German director (top panel) and company (bottom panel)
interlocks in 1993, 1999 and 2005. Only a few companies are isolated from
the large connected components, and a casual graphical inspection already
suggests that each network has a core-periphery structure.

For the purpose of our study, corporate boards consist of executive man-
agement ( Vorstand) and supervisory board (Aufsichtsrat). According to the
pertinent German legal code, they have to meet at least four times per year
(§ 94(3) of Aktiengesetz, or AktG). Executives are appointed for a maximum
of five years, and both appointment as well as potential reappointment need
to be approved by the supervisory board (§ 84 AktG). In light of the five-year
limit, we chose equally spaced intervals of six years to increase the likelihood
of observing changes in the composition of corporate boards. We compiled



1993 1999 2005
# of companies (distinct: 176) 97 100 100
# of directors (distinct: 3884) 1744 1711 1593

# of mandates 2143 2044 1833
average board size 229 204 183
average mandates per director 1.23 1.17 1.15
Company links (total) 803 657 375

Company links (unweighted) 597 490 291

Table 1: Corporate mandate statistics

The descriptive statistics of our sample illustrate a slight decrease in the
number of directors and mandates over time, and a highly nonlinear decrease
in the number of links between companies that are formed by multiple board
membership. The non-linearity is caused by the fact that a director with b
mandates creates [(b) = b!/2(b — 2)! links among companies. If, for instance,
a director with b = 6 mandates retires and is replaced by different single-
mandate directors each time, then [(6) = 15 links are removed from the
network.

the data by consulting various archives that keep records of the annual re-
ports of these companies, and by writing to companies for whom we could
not locate annual reports. Three companies in the 1993 sample did not reply
to our inquiry, all three of them with relatively minor market capitalization,
leaving us with 97 companies in that year.

The descriptive statistics of our sample, reported in Table 1, show a
decreasing average board size over time, which is mainly due to M&A activity
among very large corporations,? and also to the fact that 2005 additions had
only about half the sample’s average board size in that year.

Let n be the number of directors in a year, and let ¢ be the number of
companies in that year. Then the incidence matriz M of dimension n X c,
with m;; = 1 if director ¢ is on the board of company j and zero otherwise,
describes the corporate network in each year. The projection onto directors,
D = MM?7, is the weighted adjacency matrix of director interlocks. Its di-
agonal entries equal the total number of board memberships of director i,
while non-zero entries off the diagonal of D represent the weight of a link,
showing on how many boards two directors serve together. Symmetrically
the projection onto boards, B = MTM, yields the weighted adjacency ma-

2Dresdner Bank, for instance, was acquired by Allianz in the financial sector, while
VEBA and VIAG merged to EON in the utilities industry.



trix of company interlocks, its diagonal entries correspond to the board size
of company j, and off-diagonal non-zero elements indicate the number of
directors that two companies have in common. The resulting networks are
displayed in Figure 1 and readily reveal the existence of a core in each period,
but the figure also suggests that the number of core companies and directors
decreases over time. The question is then, as one might perhaps intuitively
expect, whether core directors also become less influential, less central or less
densely connected among themselves.

Analysis of Cores of Directors

Random Benchmark and General Developments

To understand the origins of the small world effect in director interlocks, we
find it instructive to follow the approach of [24].

We first need to identify a core of directors. For this purpose, it is in-
structive to consider the frequency of multiple board memberships, shown in
Figure 2.

We start from the observation that the vast majority of directors serves
on just one board, and conduct a simple thought experiment. Suppose that
the directors in each sample are indistinguishable; then we can determine
the probability of observing multiple board membership as a sequence of k
independent Bernoulli trials, resulting in a binomial distribution for observing
B = b additional board memberships,

Pr(B =b| = (Z)pb (1—p)"",

where p is the probability of success, i.e. of obtaining an additional board
membership. To illustrate the procedure, consider for example the year 1993:
there are 1744 directors in total, and the number of mandates is 2143, yielding
k = 2143 —1744 = 399, and p = 1/1744. Figure 2 illustrates the resulting bi-
nomial distributions and compares them to the empirical relative frequencies
of multiple board membership.

For b > 3, the incidence of multiple board membership is several orders
of magnitude higher than we would expect in a sequence of independent
Bernoulli trials, which suggests that directors with three or more mandates
are probabilistically distinct and thus in some sense special. One would
expect to observe a network core if these directors were connected among
themselves, thus we plot the network structure among directors with B > b
board memberships in Figure 3, which reveals that the resulting sub-graphs,



1E N T T T T T T T T T ]
—~
2 Sia
3 “~ !g,
E e
S 001F N :§F=:t--.. - 3
2 e, -___=.=~====*__
O \:Q. ~~2 ——=.-_.. _.
o N N SWm———— -=:--$___: ________ P
- Ses. 4 —_—
= -4 .\:*\:\
g 107 = =@ = 1993 empirical *.\\~ . E
o ’n\:\
NS
E o ‘\:\\.'x
o === 1993 binomial (RN N
B 105 E \’\"\\’\ B
> SN
= = =@~ = 1999 empirical \.\ 2 N
Q . ~
= \~\xs.’\~
‘s 8L N IO i
g 10 =A== 1999 binomial i m
~ JE
~
g \A\~ ’\~\
> = == = 2005 empirical \,\ “
g m ,
Q \»\
=] === 2005 binomial “
U‘ ~,
e N
S '~
10 1 1 1 1 1 1 1 1 1 A
1 2 3 4 5 6 7 8 9 10

No. of board memberships b

Figure 2: Board membership benchmark
The top curves show the empirical relative frequency of multiple board mem-
bership in each of the three years, while the bottom curves illustrate the bi-
nomial probability of observing multiple board membership in the respective
sequences of independent Bernoulli trials described in the text. The semi-log
scale reveals deviations on increasing orders of magnitude for b > 3.



or b-cores,® are indeed to a very large extent connected. We also observe

that both the number of directors and the fraction of companies that are
connected by the respective core directors decrease over time in our sample,
shown in Figure 4.*

A major contributing factor to this development is certainly the recent
reform of Germany’s corporate governance code (DCGK).® The reform deals
with a number of national and international criticisms that have been lev-
eled against Germany’s traditional corporate governance, mostly concerning
the inadequate focus on shareholder interests, and the inadequate indepen-
dence of supervisory boards, addressed for instance in DCGK paragraphs
5.1.2 (age limit for management board service), 5.4.2 (independence of su-
pervisory board members), and 5.4.4 (deterrence of the hitherto custom that
former chief executives serve as supervisory board chairmen). While the new
code aims at standardizing best practices in corporate governance, it does
not have the status of a formally binding law. Nevertheless, deviations from
DCGK rules have to be explicitly justified and publicized on an annual basis
(§ 161 AktG), and the observed decrease in the average number of board
memberships is not an unexpected feature from this perspective. It is note-
worthy that the code took effect in early 2002, while the pronounced decrease
in average mandates indeed occurs between the 1999 and 2005 samples.

At this point, one can speculate whether the DCGK is the ultimate cause
of these developments or not, yet over the years we do in fact observe a
pronounced decline in executive managers’ supervisory board memberships:®
Table 4 in the appendix shows that in 1993 (1999, 2005), the 569 (441,
457) directors with executive positions additionally served on 228 (164, 83)
supervisory boards of other corporations. The drop in the ratio of supervi-
sory board memberships per executive (228/569 = 0.4 in 1993, 0.3 in 1999
and 0.17 in 2005) illustrates that corporate governance practices have indeed
changed over the investigated time period. This brings us back to the ques-
tion whether shrinking core sizes also implies that core directors become less
influential over time.

3Notice that our b-cores differ from so-called k-cores, which are constructed using a
node’s minimum degree [36].

*Another method for this analysis would be to use a core-periphery model [11]. Since
we only want to show that a set of nodes that we already identified is a core we use a
different approach here.

5See http://www.corporate-governance-code.de/index-e.html.

6Current members of the management board must not simultaneously serve on the
company’s supervisory board (§ 105 AktG), but have routinely been allowed to serve as
supervisory board members at other companies.



1993

1999

2005

Figure 3: Network structure of successive b-cores
Network structures formed by considering directors with an increasing threshold of board memberships B > b.
Notice that there is only one instance of an isolated director with b > 3 mandates in any of the years (Alfred Pfeiffer
in the 1993 b — 7 core). The size of cores and the overall fraction of companies in the respective cores both decrease

over time, shown in more detail in Figure 4.
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Figure 4: Directors and companies of b-cores
The number of directors in the respective b-cores (top panel) decreases over
time, as well as the fraction of companies that are linked by the respective
b-core directors (bottom panel).
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Density and Corporate Reach

Intuitively a network core consists of directors that are highly central in
the network and densely connected among themselves. The density of the
(unweighted) graph D is given by the ratio of the existing number of links,
denoted |L|, to the number of links in a complete graph of the same size,
denoted |N|,

2|1
NOIED) @

which is by construction confined to the interval [0,1]. The left panel of
Figure 5 illustrates that (i) the density of b-core sub-graphs increases with
b, and that (ii) the density of the respective cores remains fairly constant
over time in spite of decreasing core size. In addition, we can assess the
corporate reach per core director by the ratio of distinct core companies to the
number of core directors, the rationale being that a core of densely connected
directors probably yields the more institutional power the fewer individuals
constitute the core, and the more companies they span. It is noteworthy that
this measure of core power, shown in the right panel of Figure 5, actually
increases over time, so the recent decline in the number of board memberships
does not necessarily mean that core directors in Germany’s corporate board
network also become less influential. If anything, the statistics shown in the
bottom panel of Figure 5 suggest the opposite.

density, =

Centrality

A complementary approach to measuring the importance or influence of di-
rectors is to consider their centrality in the overall network of director inter-
locks. Let C' denote the respective adjacency matrices of the large connected
components of D in the respective years, and let V' denote the set of directors
contained in C. A shortest path between two directors u,v € V is known
as a graph geodesic, which is not necessarily unique, and the length of the
geodesic do(u,v) is known as the graph distance between the pair (u,v).

The first centrality measure we consider is closeness centrality, which
measures the distance of a node to all other nodes in the network, and is
typically defined as the reciprocal of the sum of geodesics to all other nodes
in the network,

closeness, = 1/ Z de(u,v). (2)
veV

Since we would like to compare the centrality of directors across years, we
divide by the closeness score of the director with maximal closeness centrality

11



Core density

Core power (distinct companies per director)

The density of b-cores (top panel) remains fairly stable over time, as well
as the ratio of distinct core companies to core directors (bottom panel). If
anything, core density and core power increase despite the decrease in the
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Figure 5: Core companies and core directors

average number of mandates over time.
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in each year in order to normalize the scores. Directors who are more central
in this sense should in principle be better able to reach out into the entire
network or be faster in doing so.”

Another measure of the centrality of node w is degree centrality, con-
structed by summing the number of links that each node has, degree, =
> vev Cuv-  Intuitively, directors who have many links compared to their
peers are in an advantageous position if they are able to influence many of
their peers, or if they have better access to resources through their many
links. But degree centrality only takes immediate ties of directors into ac-
count, and lacks information about the distance to directors that are not
immediate neighbors. Moreover, directors with many board memberships
have a relatively large degree by construction since the board size distribu-
tion has a characteristic scale that is well captured by its mean.

Therefore, we also compute the eigenvector centrality [8] for all nodes in
V. Eigenvector centrality assigns scores of relative importance to directors in
the network, based on the principle that connections to high-scoring directors
contribute more to a director’s score than equal connections to low-scoring
peers. Hence the idea behind eigenvector centrality is that the quality of
links is important, because directors who are connected to many influential
peers can be expected to be important themselves. Suppose the eigenvector
centrality score of node u, denoted e,, is proportional to the centrality score
of its neighbors,

€y = % Z Cuv €y, (3)

veV

where X is a constant. Then we can write the vector of centrality scores in
matrix notation as Ae = C' - e, which shows that e is an eigenvector of C'
with corresponding eigenvalue A. It is convenient to consider the eigenvector
corresponding to the largest eigenvalue of C' since its elements are all non-
negative according to the Perron-Frobenius theorem. Again, we divided all
scores by the maximum score in each year to normalize the data. Figure 6
shows that core directors are not only densely connected among themselves,
but that they are also increasingly central in the entire network, which is an-
other characteristic that one intuitively expects in the definition of a network
core.

"For a discussion of the finding that power and centrality are not equivalent see [7].
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Figure 6: Centrality of directors
Normalized average centrality measures of b-core directors in the respective
years: closeness (top), degree (center) and eigenvector (bottom) centrality
remain fairly stable over time.
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Core Persistence and Individual Turnover

We have argued that the structural characteristics of director interlocks are
stable over time in spite of changes in corporate governance and a decrease
in the average number of mandates. Motivated by the persistence in network
structure, we want to investigate whether or how the core structure depends
on the destinies of particular agents.

Evolution of Company Links

An important aspect here concerns the links in the company network. Their
time evolution over consecutive periods reveals some noteworthy patterns: in
1993 (1999) the company network had 597 (490) unweighted links, 290 (195)
of which were with companies that remained in the sample in the next period
(and had not merged in the meantime), while 141 (95) of these links were
still in place in the following period. In 78 (62) cases, at least one director
was constantly part of both boards. In addition, 24 (10) directors had been
recruited to reinforce existing links, then serving on average on 4.38 (4.04)
boards. Out of these 24 (10) directors, 18 (7) were already serving on at least
one board in the previous period, when they held 2.22 (2.68) appointments
on average.

In the remaining 63 (33) cases, where an existing link was maintained
through the recruitment of new directors, a total of 50 (26) directors was ap-
pointed to the 63 (33) positions, and these directors then served on average
on 4.04 (3.77) boards. Out of these 50 (26) directors, 34 (20) had at least
one mandate in the previous period, when they served on average on 2.68
(2.75) boards. So we observe that about half of the company links are be-
ing maintained between periods, which is consistent with earlier findings by
[35] on the reconstitution of German corporate interlocks.® Keeping in mind
that a substantial number of links in the (initial) company network might
be unintended,’ and given that the sample periods have been chosen suffi-
ciently far apart to warrant board (re)appointment decisions, the observed

8The percentage of reconstructed ties among German companies is four to five times
higher than previously observed in the US [38]. From a network core perspective, it
would be interesting to clarify whether the percentage of reconstituted ties among the
very largest (core) corporations in the US is substantially higher than in the original
Stearns and Mizruchi sample.

9Imagine a director with three mandates and suppose that she is on the board of
company A, which manages to place her on the board of company B for strategic reasons,
e.g. to oversee A’s interests. If she also serves on the board of a third company C, we
consider the link between A and B intentional, while the links AC and BC are unintentional
byproducts.

15



reconstitution of links would certainly seem to indicate planned or strategic
connectivity among German corporations.

Secondly, these figures suggest that companies seem to prefer the ap-
pointment of directors who already serve on several other boards, which is
particularly true for the maintenance of institutional links over time. It
is rather doubtful that these directors were appointed for purely supervisory
purposes since the effort involved in monitoring a handful of DAX companies
is surely considerable, and in all likelihood becomes increasingly prohibitive if
one of the appointments is an executive position. The frequency distribution
of executives’ supervisory board memberships in Table 4 nevertheless shows
that some executives additionally served on up to ten other boards.

Director Survival

Since multiple board memberships seem to be essential for both the exis-
tence and the persistence of a core network, we also investigate the survival
of directors over time. Out of a total of 1517 directors in the 1993 sam-
ple, 518 are still present in 1999, which is a survival rate of 34%. For the
1999-2005 transition, this figure is 32%. During the first (second) transi-
tion period, 12.6% (13.1%) of the surviving directors gained mandates, while
12.4% (11.3%) lost at least one mandate. But these percentages conceal
that directors with multiple memberships have a markedly higher survival
probability than the vast majority of directors with a single mandate: the
survival probability conditional on the number of existing mandates is 31%
(28%) for board members with a single mandate, it increases to 51% (47%)
for directors with two mandates, 69% (76%) for those with three mandates,
and 70% (78%) for those with four or more mandates.'® Tt seems fair to
say that the persistent structure of Germany’s corporate network is driven
by the recruitment decisions of large companies, which are characterized by
a process of “selective replacement” that expresses itself in the figures on
the maintenance of links among companies and the conditional survival of
directors. While the vast majority of directors enters and exits the corpo-
rate network without ever being particularly central in it, a small number
of highly connected key directors warrants a persistent network core over
time. Moreover, fluctuations in the destines of key players are mitigated by
the reconstitution of ties among large corporations, who favor directors with
multiple memberships. To corroborate this claim, we consider the turnover
in the centrality of companies and directors between periods.

10These figures are easily calculated from the transition matrices in Appendix .
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LT

companies directors
1993 — 1999 1999 — 2005 | 1993 — 1999 1999 — 2005
survivors 91 89 1645 1562
dropouts 34 38 1087 1081

out 0.5034 0.4438 0.4950 0.4450
. closeness  in (1) 0.7789 0.7317 0.7014 0.6850
= in (t+1) 0.7521 0.7497 0.6845 0.7082
§ out 0.0023 <0.001 0.0513 <0.001
@ eigenvalue in (1) 0.2766 0.2339 0.1040 0.0926
3 in (t+1) 0.2458 0.3301 0.0866 0.0978
g normalized ™ 0.0250 0.0270 0.0313 0.0207
= degree in (£) 0.3636 0.3121 0.1509 0.1358

in (t41) 0.3295 0.3431 0.1352 0.1857

avg. |A 0.0547 0.0730 0.0521 0.0684
= closeness  avg. A -0.0268 0.0100 -0.0169 0.0233
= benchmark 0.1348 0.1598 0.1057 0.1208
E avg. |A 0.0883 0.1161 0.0513 0.0571
8 eigenvalue avg. A -0.0308 0.0962 -0.0175 0.0052
= benchmark 0.2702 0.2912 0.1174 0.1199
go normalized ™% |A| 0.0953 0.1039 0.0543 0.0855
= degree avg. A -0.0341 0.0310 -0.0157 0.0499
- benchmark 0.2651 0.2838 0.0954 0.1143

Table 2: Turnover activity in company and director networks
The notation for average centrality measures refers to averages for dropouts (“out”), and the centrality of survivors
in the current (“in (¢)”) and next (“in (¢t +1)”) period. The benchmark values for the changes in centrality have been
calculated according to the procedure described in this section.



Turnover in Company and Director Centrality

We start by calculating the change in each of the three centrality measures
for surviving nodes in the connected component. Table 2 illustrates that
about two thirds of the companies but only one third of the directors survive
consecutive periods. The life span of directors is biologically limited while
the same is not (necessarily) true for corporations, thus the fact that about
70% of directors but less than 40% of companies drop out between periods
is by itself not unexpected. In spite of the expected difference, we find that
the mean absolute change in centrality, as a measure of variability among
survivors, has the same level of magnitude for both companies and directors,
and that absolute changes in centrality are rather small in both cases.!!

In order to properly compare the turnover activity between companies
and directors, we need to scale the absolute changes in centrality with a
benchmark measure of persistence in centrality that accounts for the differ-
ent scales of the company and director networks. In our benchmark case, we
assume that each node’s centrality could change to every observed centrality
in next period’s sample with equal probability, corresponding to a uniformly
random rewiring of nodes. Thus the average absolute change in centrality
would be zero in the case of a perfect conservation of the relative position of
nodes, and would be equal to the benchmark value in case of a completely
random rewiring of surviving nodes. For all centrality measures, we observe
that the ratio of the benchmark to the observed value is larger for companies
than for directors (about 3:1 vs 2:1), showing that surviving companies ex-
hibit significantly less churning in their centrality than surviving directors.
Comparing dropouts with survivors, both for companies and directors, we
find that survivors are always substantially more central than dropouts (also
reported in Table 2), and that the normalized degree is about one order of
magnitude higher for survivors than for dropouts. Moreover, the very low av-
erage eigenvector centrality of dropouts further implies that the importance
of the dropouts’ few neighbors is also very low on average. In summary,
both highly central companies as well as directors tend to stay central, while
dropouts are located in more peripheral positions of the network. Company
networks exhibit less turnover activity than director networks both in the
share of surviving nodes but also in the centrality changes among survivors.

11 All three measures of centrality exhibit a slight decrease in average centrality between
1993 to 1999, and an increase between 1999 to 2005, as reported in Table 2. This is in line
with the visual inspection of the network structure in Figure 1, which shows an increasing
number of peripheral nodes in 1999, and denser cores in 2005.
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Identifying Company Groups

Our findings so far strongly suggest that as far as the persistence of a corpo-
rate network core is concerned, idiosyncratic director characteristics are far
less important than the selective recruitment practices of companies. Hence
we would like to identify cliques among the companies in our dataset, and
see if persistent structures also exist in the network of company interlocks.

To identify and visualize connected groups, we essentially use principal
component analysis and combine it with a matching algorithm. The proce-
dure is described in detail in the supplementary information.

Figure 7: Resorted adjacency matrices for 1993, 1999, and 2005
The number and size of identified cliques is decreasing, leading to a sparser
corporate network over time, yet with an intact core network of about a
dozen mega-cap corporations.

Figure 7 shows the resorted adjacency matrices for 1993, 1999, and 2005.
We plot company cliques with descending size from left to right, followed by
firms that do not exhibit specific connection patterns. Hence, every black
dot in row ¢ and column j represents a link between company ¢ and j, while
a white space in position ¢, 7 would indicate that the two companies have no
directors in common.

In 1993 it is still possible to divide the core of our network into overlapping
subgroups, but this structure seems to be fading away over time. The number
of firms that belong to a clique is about 30 in 1993, yet this number as well
as the size of identified cliques is shrinking over time. There are, however,
ten traditional German corporate heavyweights that persistently show up in
the largest cliques: Allianz, Bayer, Commerzbank, Deutsche Bank, Hochtief,
Linde, Lufthansa, Siemens, Thyssen Krupp, and Volkswagen (see Appendix
for details). This visualization confirms our earlier findings that even if the
overall level of connectedness in the corporate network is decreasing, highly
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central firms tend to consolidate their ties and thus remain or become even
more central in the network.

Discussion

What have we essentially accomplished here? We show that the corporate
network exhibits a core that does not become less influential over time in spite
of significant reforms in corporate governance, and substantial churning and
entry-and-exit dynamics among corporate directors. There are strong indi-
cations that selective recruitment decisions of the very largest companies are
responsible for core persistence, and this process appears largely indepen-
dent of idiosyncratic director characteristics and does not require a “mighty
conspirator” who pulls the strings in the background.

In addition, the existence of a core provides an alternative explanation
for the small-world effect in corporate interlocks in the absence of a scale-free
degree distributions among directors or firms. Since in numerous social con-
texts the number of links and nodes exhibits a characteristic scale and does
not span enough orders of magnitude to be a power law, one could specu-
late that core structures are important in other socio-economic contexts as
well, and we will return to an important illustration of this point in financial
markets below.

A remaining issue concerns the validity of our findings beyond Germany’s
one hundred largest publicly traded companies. So can we reasonably expect
our results to be representative of the entire German corporate network?
Judging from the more recent results by [24] for a single year, there is rea-
son for optimism: considering the largest 284 German companies in 2008
(accounting for more than 95% of that year’s market capitalization of Ger-
many’s stock exchange Deutsche Bdérse), they observe very similar magni-
tudes in the maximum number of board memberships, and in the density
and average centrality of successive b-cores. Second, and more importantly
from the viewpoint of the present study, they find that the pronounced core
structure in Germany’s corporate network is clearly formed by mega-cap
companies, thereby justifying our focus on the one hundred largest compa-
nies here. Since they examine the corporate network in a single year, however,
they lack information on the time evolution of the network.

As our dynamical analysis reveals, on the other hand, it is indeed the
largest thirty to forty corporations that are responsible not only for the ex-
istence but also the persistence of a core over time. While the presence and
persistence of a core originate from the appointment decisions of the largest
corporations, our findings leave little room for the relevance of individual
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directors from a macroscopic point of view: the churning and entry-and-
exit dynamics of individual directors in our sample instead emphasize the
(seemingly exclusive) importance of the number of mega-cap mandates that
a director has accumulated at a given point in time.

The self-reinforcing mechanism of selective replacement of board members
has remained in place in spite of the apparent “decline of the corporate net-
work.” To paraphrase Mark Twain, reports of the corporate network’s death
are greatly exaggerated since selective recruitment maintains the small world
characteristics of the corporate network in the absence of a power-law de-
gree distribution among directors or companies, which has traditionally been
invoked to explain the small-world property in other empirically observed
networks.

To be clear, the main contribution of this paper is certainly of a descrip-
tive nature. We have not performed any confirmatory statistical exercises
in the traditional sense, so there is very little (if anything) we can say here
about how or whether a corporate core influences the destinies of individual
firms over time, but these are questions that could surely be addressed in
future research. Nevertheless, we would like to believe that the existence
and persistence of a core is interesting in its own right, and goes well be-
yond concerns regarding pressure group influence, especially when it comes
to issues of a system’s resilience or fragility. It has been shown that the
system-wide coordination of opinions, expectations, or even animal spirits
is enormously facilitated by the existence of a network core, and could very
well make a system more fragile exactly because of that. Think, for instance,
of the large-scale coordination of trading positions in financial markets that
precede every financial crisis. From our perspective, it is rather noteworthy
that financial markets also exhibit a core network structure, at least in the
few instances for which data have been available so far [37], hinting at the
broader importance of core networks in the social sciences.

Finally, if policymakers were to aim for a reduction of pressure group
influence, core characteristics should be at the forefront in the design of
policy and corporate governance, particularly in light of the fact that the
legal restrictions that are already in place, like the number of simultaneous
board appointments or the maximum term of service before potential reap-
pointment, are obviously not sufficient to decrease the influence of the core
network, much less prevent its existence.
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Supplementary Information

Clustering Procedure

There are essentially two streams of literature which deal with the detection
of groups in networks [28]. The traditional approach is called graph partition-
ing and splits the network into a fixed number of subgraphs, e.g. by spectral
decomposition of the so-called Graph Laplacian [40].'? Graph partitioning
algorithms can become very time consuming, but the more serious concern is
conceptual because the number of useful partitions is generally not known.
Community detection therefore has developed algorithmic procedures that
endogenize the number of subgraphs in the partitioning process, for instance
by iterative edge removal based on the calculation of betweenness scores [29].
We employ a mixture of these two approaches here, starting from a princi-
pal component analysis (PCA) and combining it with a scoring algorithm
that creates groups based on the largest components without predefining the
number of subgraphs. A combination of PCA and some matching algorithm
represents a reasonable alternative to community detection algorithms in the
social sciences, because the size of datasets is generally smaller than in the
natural sciences.!?

First we take the adjacency matrix of the firm network and standard-
ize its columns by subtracting the column-wide mean and dividing by the
standard deviation of column entries. This new adjacency matrix is denoted
B. The column entries can now be interpreted as the relative weights of the
companies’ links, while the row entries resemble the relative attention a firm
receives through links from other firms. We measure the correlations of link
patterns by calculating the empirical correlation matrix R = cilflT]AB, allow-
ing us to infer which firms have similar relative weights in their link patterns.
Based on this correlation matrix we compute our new variables, the principal
components F, which are linear combinations of the original variables such
that F = YB. The column vectors in Y carry the weights for each new
variable, and it can be shown that the solution to this problem amounts to
solving for F = VB, where Y = V contains the eigenvectors of the corre-
lation matrix R ordered by descending eigenvalues [22]. The eigenvectors
with the highest eigenvalues account for a large amount of the variance in
the data, while low eigenvalues stand for eigenvectors and components that

12The Laplacian is a special form of the adjacency matrix of the network, where the
trace of the Laplacian corresponds to the number of links between nodes.

13The benefit of this method is that PCA is more parsimonious and transparent than
community detection algorithms, and perhaps also better known among social scientists
than the latter. The foundations of our subsequent analysis can be found in [32].
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contribute very little to the variance and are consequently neglected.

To illustrate the principles that we use to form groups, assume that based
on some decomposition we have approximated the adjacency matrix B by
a dimensionally reduced matrix E, where both matrices would contain ones
for links and zeros otherwise, and B being of lower rank than B due to the
dimensional reduction. To decide whether E is a good representation of the
original network, we essentially have to compare and score by rewarding the
correct matching of links (and non-links) in B and E, and symmetrically by
punishing the matching of links to non-links in either direction. A weighting
scheme will be helpful for the comparison because the adjacency matrices of
our corporate networks are sparse, therefore actual links are more informative
than non-links. These considerations result in a scoring (or error) function
of the form

C [ C Cc
s(E[B, Q. _4) = DD BBy =Y 0> 01 - BBy (4)

i=1 j=1 i=1 j=1

VvV - vV -

links to links non-links to links
C C C C
=Y ) B (1 =By + Y Y Q1 — By)(1 - By)
i=1 j=1 i=1 j=1
' Vv
links to non-links non-links to non-links

where €); 4 represent weighting matrices. It is common to focus on the
matching of links in the reference matrix B by equally weighting the (mis)matching
of original links, Ql,ij = Qgﬂ‘j > Q3,ij = Q4,ij [32]

The algorithmic procedure that we employ here to visualize the groups
in the network follows exactly the principles illustrated above. The only
difference is that instead of comparing two (binary) adjacency matrices, we
compare the adjacency matrix with the principal components (which are not
binary) in column-wise fashion. The groups to which we want to match
firms are given by the largest components resulting from the PCA. Since B
describes links, the components in F describe those links in which companies
differ. If we normalize the column vectors in F and allow for a sign change in
every column, we get a new matrix of link profiles F with dimensions ¢ x 2c,
where each even column contains the entries of the previous (i.e. original,
now odd) column with reversed signs. This sign change is necessary since
the principal components describe only a new axis within the variable space,
but do not inform us of the direction. As detailed below, we will only use
the first few columns of F and calculate a similarity score for each group
(represented by a column in F‘) and each firm (represented by a column
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in B). This results in a matrix S of scores for all firms and groups with
dimension ¢ x 2k, where k is the number of included principal components
(more on k below). Given the sign change, the number of groups will be
G < 2k. The weights of links and non-links can be approximated by the
number of links versus non-links in the original network. Since the graph
density is only about 0.03, we set {23 = )y = 0. Furthermore, we do not
need to differentiate the weight of each single link as it is already contained
in the respective values of the link profile f“, hence €2 = Q9 = 1. Notice,
however, that in contrast to E the link profile F is not a binary matrix (it
contains the relative weights of links), therefore we lastly introduce a matrix
© that translates F' into a binary form such that 0,y = 1if F‘jg > (0 and zero
otherwise:

Sig =Y _04(FjgBji)* =) (8, — 1)(F;,B;:)’ (5)
j=1 j=1
foralli=1,...,cand g =1,...,G. Thus © ensures that we sum over all

positive entries in F in the first sum, and over all negative entries in the
second sum. For every correct match, that means if a firm ¢ has a link to
company j where the link profile would suggest one, we increase the score
that firm ¢ obtains for group g by the squared entry in the link profile.
Symmetrically, if the firm has a link where we do not expect one, we deduct
this score. Each firm is now assigned to the group for which it has the
highest score (by identifying the maxima in each row of S). There are, of
course, quite a few firms that score rather poorly in all of the groups, simply
because they do not belong to any. These firms either have very few links
to begin with, or have a unique link pattern. To filter out such firms, we set
a threshold in our scoring procedure, yet it turns out that the grouping is
quite robust with respect to the exact value of this threshold.!*

A critical point in any PCA analysis concerns the question how many
components k£ to include in the first place. In our context, we find it instruc-
tive to check how many components will create groups containing at least
three firms, representing a rather conservative criterion for defining a group.

141f the best score of a firm is not greater than the mean plus half a standard deviation
of scores within a group, we do not match the firm to the group. The exact tuning of this
threshold is of course arbitrary: choosing a much larger threshold level leads to smaller
but more homogeneous groups (some firms might not be matched at all because of a single
differing link), while a much lower threshold will inflate groups by matching peripheral
firms that only show marginal similarity in the link pattern. Since neither group turns out
to be large compared to the entire set of firms, our quantile-approach is quite robust, and
the exact value of the threshold is not crucial for the overall results. In larger datasets,
this parameter could certainly be endogenized.
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Our algorithm iteratively increases the number of principal components and
stops when the last included component no longer produces an additional
group. It turns out that only a fraction of the firms can be mapped to
groups, with the greatest eigenvalues accounting for roughly 10 percent of
total variance, and the smallest relevant eigenvalues accounting for roughly 3
percent of total variance. We never include more than the five largest eigen-
values to create significant groups, that is to say that the inclusion of more
than the largest five eigenvalues leads to groups of size smaller than three.
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Adjacency Matrices Sorted by Cliques
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Figure 8: Resorted adjacency matrix 1993
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Figure 9: Resorted adjacency matrix 1999
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Figure 10: Resorted adjacency matrix 2005
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Supplementary Information Tables

1 2 3 4 5 6 7 8 9 10
1993 1528 136 36 17 11 & 3 2 3 0
1999 1528 113 34 16 9 5 3 1 0 2
2006 1436 107 31 9 7 2 1 0 0 O

Table 3: Overall frequency distribution of mandates

year executives # of additional mandates
0O 1 2 3 4 5 6 7 8 9
1993 565 456 58 21 12 8 5 2 1 2 0
1999 539 469 29 19 9 5 4 1 1 0 2
2005 456 401 37 11 3 4 0 0 0 0 0
Table 4: Frequency of executives’ supervisory board memberships

# of mandates in 1999

0 1 2 3 456 78 9 10

0 906 911 39 7 4 0 0 0 0 0 0
® 1 920 369 30 10 4 1 1 2 0 0 0
S 2 59 33 14 4 1.0 0 0 0 0 0
2 3 9 8 6 3 1.2 0000 0
£ 4 4 7 2 1 110000 0
25 4 1 2 0 111000 0
6 1 0 0 0 02 2100 1
E7 1 0 1 0100000 0
S8 0 0 0 0 010000 0
9 1 0 0 2 000000 0

0 0 0 0 0 000000 0

Table 5: Transition matrix for board membership during 1993-1999.
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# of mandates in 2005
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Table 6: Transition matrix for board membership during 1999-2005

# of mandates in 2005
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Table 7: Transition matrix for board membership during 1993-2005
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