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Abstract

Structural innovations in multivariate dynamic systems are typically hidden and

often identified by means of a-priori economic reasoning. Under multivariate Gaus-

sian model innovations there is no loss measure available to distinguish alternative

orderings of variables or, put differently, between particular identifying restrictions

and rotations thereof. Based on a non Gaussian framework of independent inno-

vations, a loss statistic is proposed in this paper that allows to discriminate be-

tween alternative identifying assumptions on the basis of nonparametric density es-

timates. The merits of the proposed identification strategy are illustrated by means

of a Monte Carlo study. Real data applications cover bivariate systems compris-

ing US stock prices and total factor productivity, and four couples of international

breakeven inflation rates to investigate monetary autonomy of the Bank of Canada

and the Bank of England.
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1 Introduction

Vector autoregressive (VAR) models have generated a widely adopted and rather flexible

toolkit to in-sample investigate the dynamic relations of socioeconomic time series, and for

out-of-sample forecasting (Lütkepohl 2005). Regarding the former field of theoretical and

applied econometrics, VAR models are descriptive in the sense that they offer a profound

understanding of reduced form features of the data. When it comes to a contemporane-

ous perspective on the linkage of economic variables, structural VAR models (Amisano

and Giannini 1997) have to borrow from economic theory, ad-hoc decompositions of re-

duced form covariance matrices, or simply from (economic) a-priori reasoning. Opposite

to traditional simultaneous equation modeling, structural VAR models are mostly char-

acterized by employing just identifying restrictions. Against this background, imposing

zero restrictions on some instantaneous effects (Sims 1980), or on long-run effects of the

shocks (Blanchard and Quah 1989) have been suggested for identification. More recently,

the imposition of theoretically motivated sign restrictions upon impulse responses has be-

come a popular approach to either fully identify all structural relations or, more agnostic,

to leave some room for a few not directly restricted structural relations (Faust 1998, Uhlig

2005). Fry and Pagan (2011) review empirical studies employing sign restrictions. While

sign restrictions are often considered to be rather mild, identification by means of sign

restrictions also provoked a critical discussion (Fry and Pagan (2007, 2011) and Paustian

(2007)).

Generally, distinct settings of identifying restrictions might compete for the under-

standing of simultaneous economic relationships. For instance, in the multivariate Gaus-

sian framework distinct orderings of the system variables arrive at identical model diag-

nostics, but at distinct implied impulse response functions when using Cholesky factors to

the determine on impact dynamics. Put differently, upper and lower triangular decompo-

sitions of reduced form covariance matrices are observationally equivalent although they

carry markedly distinct implications for the recursive ordering of structural innovations.

Hence, it is a particular shortcoming of the Gaussian model framework that identifying

restrictions cannot be tested against each other, or that there is no loss measure at hand

that ranks such competing assumptions (or alternative variable orderings) according to

data based criteria.
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Introducing additional assumptions on the innovation generating distributions may

offer both, implications for the underlying structural relations, and diagnostic tools that

allow to evaluate if the data are in line with assumptions and respective conclusions.

Along these lines Lanne and Lütkepohl (2010) assume mixed normal distributed model

innovations to identify the structural shocks and impulse responses. Rigobon (2003) and,

similarly, Lanne and Lütkepohl (2008) propose an identification scheme distinguishing

states of lower and higher variance for which the causation structure is assumed identi-

cal. The approach in Lanne and Lütkepohl (2008) has been further generalized towards

a Markov switching model (Lanne, Lütkepohl and Maciejowska 2009) formalizing the dy-

namic pattern (and recurrence) of distinct variance regimes. While accounting for partic-

ular data characteristics offers the extraction of statistically founded structural relations,

however, such approaches are not applicable if the data lack the presumed characteristics

(e.g. mixed normal distribution, covariance shifts).

This work proposes a data based approach to identification that applies under a non-

Gaussian iid setting. Thus, in some sense and in comparison with the Gaussian VAR

literature, the approach is general as it does not rely on additional assumptions on the

data generating process. Rather, it mitigates the common assumption of conditional nor-

mality by excluding exactly this model from the considered space of distributions behind

the empirical data. Henceforth, we refer to the proposed identification scheme as Inde-

pendence Targeted Structural Innovations (ITSI). ITSI proceed under the presumption

that available (vector valued) reduced form residuals are serially uncorrelated, and can be

traced back to structural innovations that are independent and identically distributed (iid)

over the cross equation dimension.1 Hence, ITSI might be seen to provide an assessment of

structural assumptions in a scenario where statistical tools based on distributional time

heterogeneity lack applicability. Similar to the Markov switching approach in Lanne,

Lütkepohl and Maciejowska (2009), ITSI provide statistical loss measures that can be

used to evaluate competing assumptions on the generation of contemporaneous reduced

form correlations. It associates, for instance, distinct losses to alternative recursive pat-

1It is worthwhile to point out that such an assumption is implicit in the widespread use of impulse

response functions if data lack joint normality. In such cases, assuming isolated unit shocks to occur in

single variables is generally not in line with conditional expectations unless structural innovations are

assumed independent.
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terns characterizing the transmission from structural to reduced form model information.

Since ITSI are derived for serially uncorrelated and contemporaneously independent in-

novations, simplest resampling schemes, i.e. iid resampling with replacement or Monte

Carlo sampling, can be adopted to quantify the uncertainty attached to the diagnosis of

a particular direction of instantaneous causality.

To preview some performance features of the proposed identification approach, ITSI

offer discriminatory content in the non Gaussian framework with regard to rival decom-

positions of covariance matrices that are observationally equivalent in the multivariate

Gaussian model. By means of simple resampling techniques the analyst is able to pow-

erfully discriminate among alternative decompositions with well ascribed probabilities of

type I decision errors. In empirical applications ITSI are found to support the view that

TFP shocks bear the properties of news shocks. In Beaudry and Poitier (2006) such an

argument has been put forth on the grounds of a-priori reasoning. Interestingly, in a bi-

variate system of TFP and stock market innovations the rival recursive causation scheme

is powerfully rejected conditional on US data. As a second illustration, large sample

analysis of innovations in international breakeven inflation rates show that the Bank of

England is more capable to pursue an independent monetary policy in comparison with

the Bank of Canada.

In the next Section the independence based approach to structural identification is

outlined. Section 3 provides Monte Carlo evidence on the strength of the ITSI method to

distinguish alternative causal relations in structural models. In Section 4 two empirical

applications consider the contemporaneous interaction of international breakeven inflation

rates in the first place. Secondly, a bivariate system of US stock prices and total factor

productivity (Beaudry and Portier 2006) is subjected to the detection of a data supported

news process. Section 5 concludes.
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2 Independence based identification

Consider for notational convenience the case of a bivariate contemporaneously correlated

but serially uncorrelated process, denoted ut, such that

ut = Dξt, with ξt = (ξ1t, ξ2t)
′, (1)

ξjt
iid∼ F (0, 1), j = 1, 2, F ̸= Φ, and ξ1t, ξ2t independent, t = 1, 2, . . . , T. (2)

In (2) F is short for any distributional model, excluding, however, the Gaussian distri-

bution (Φ). The process ut could be considered as the true or estimated error process

entering or extracted from a VAR model. Likewise, the ut process could be a stacked

residual process gathered from a set of single equation models. In one of the two empiri-

cal applications that are discussed in Section 4, for instance, ut consists of single equation

GARCH implied model innovations. By implication, it follows from (1)

ξt = D−1ut, Cov[ξt] = I2, Cov[ut] = DD′ = Ω. (3)

The typical problem in structural VAR analysis is to determine the matrix D that relates

(latent) structural model innovations ξt with disturbances ut which can be estimated

consistently by means of OLS or ML estimators. For the so-called AB model, set out by

Amisano and Giannini (1997) in the structural VAR framework, we have, for instance,

D = A−1B. While also the matrix Ω can be estimated consistently from the data, the

decomposition in the right hand side of (3) is not unique. Thus, D cannot be determined

without further assumptions. Identifying assumptions might be either made with regard

to the underlying stochastic properties of the data, or implications of economic theory

could be used for the purpose of identification. While the former are often testable, the

latter may leave no room for the data to speak against the imposed identifying relations. A

particular important case arises if innovations ξ1t and ξ2t are jointly Gaussian. Then, any

rotation of ξt and, thus, of ut will be observationally equivalent such that the identification

of D has to rely on a-priori restrictions.

The identification strategy proposed in this work exploits the idea that if ut can be

traced back to cross sectionally independent innovations with mean zero and unit variance,

these innovations can be distinguished from covariance preserving transformations, since

the independence feature is unique for the true innovations. Henceforth, the independence
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condition in (2) is considered as the basis for the identification of structural innovations

and, thus, of D.

The remainder of this section outlines, firstly, the statistical framework applied to

characterize structural innovations, and to attach loss statistics to particular identifying

assumptions. The concept of ITSI will be illustrated for two separate modelling purposes,

the comparison of rival a-priori assumptions on the one hand, and the detection of a

causation scheme that arrives at innovations with ’weakest dependence’ on the other

hand. ITSI will rely on log-quotes of nonparametric density estimates introduced in the

second place. Since the entire approach relies on the assumption of iid residuals, thirdly, a

simple resampling scheme is outlined that supports an analyst to quantify the uncertainty

associated with decisions in favor of particular instantaneous causation schemes.

2.1 Contrasting a-priori assumptions

Without loss of generality assume that one is interested in the simultaneous relations

between standardized reduced form disturbances, such that

Ω =


 1 ρ

ρ 1


 , ρ ̸= 0, |ρ| < 1.

Assume further that the true relation linking structural and reduced form innovations

is given by a lower triangular recursion (Dl), and that prominent alternative scenarios

formalize a symmetric contemporaneous relation (Ds) or an upper triangular (Du) scheme,

i.e.

Dl =


 1 0

ρ
√

1− ρ2


 , Ds = Ω1/2 =

1

2




√
1 + ρ+

√
1− ρ

√
1 + ρ−√

1− ρ
√
1 + ρ−√

1− ρ
√
1 + ρ+

√
1− ρ


(4)

Du =



√
1− ρ2 ρ

0 1


 , with D•D

′

•
= Ω, • ∈ {l, u, s}. (5)

In (4) Ω1/2 = ΓΛ1/2Γ′, where Λ is a diagonal matrix comprising the eigenvalues of Ω and

the columns of Γ are the respective eigenvectors. Since

ut = Dlξt,
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presuming an upper triangular or symmetric contemporaneous causation scheme arrives

at the following implied structural innovations ξ̃
(•)
t

ξ̃
(u)
t = D−1

u ut = D−1
u Dlξt

=



√

1− ρ2 −ρ

ρ
√
1− ρ2


 ξt,

ξ̃
(s)
t = D−1

s ut = D−1
s Dlξt

=
1

2

√
1− ρ2




(
1/
√
1 + ρ+ 1/

√
1− ρ

) (
1/
√
1 + ρ− 1/

√
1− ρ

)

−
(
1/
√
1 + ρ− 1/

√
1− ρ

) (
1/
√
1 + ρ+ 1/

√
1− ρ

)


 ξt.

For both falsely imposed causation schemes the elements of the implied innovation vectors

ξ̃
(•)
t , • ∈ {u, s}, involve both iid components of ξt and, thus, lack independence in general.2

Of course, dependence of elements in ξ̃
(•)
t arises only if ρ ̸= 0.

2.2 Targeting independent innovations

As outlined in (4) and (5) violations of independence show up for falsely recovered struc-

tural innovations. In practice, an analyst might not be willing to assume a particular

causation scheme a-priori. Rather she might be interested in detecting particular tuples

of structural innovations showing weakest dependence patterns.

For such a case consider two innovation tuples whereD refers to some ’initial/benchmark’

matrix linking independent structural and reduced form innovations,

i) ξt = D−1ut and ii) ξ̃t = Rξt = RD−1ut. (6)

In (6) R is a rotation matrix with typical elements rij such that RR′ = I2. Thus, with

rij ̸= 0, the elements in ξ̃t generally read as,

ξ̃1t = r11ξ1t + r12ξ2t, ξ̃2t = r21ξ1t + r22ξ2t. (7)

2The assumption of unit marginal variances of ut largely facilitates to explicitly show the relation

between ξ̃
(•)
t and the underlying true structural innovations ξt. Moreover, considering Dl to comprise

the true contemporaneous relations does not restrict the generality of the arguments. Similar arguments

apply, if an analyst is interested in distinguishing a true upper triangular recursion from falsely supposed

lower triangular or symmetric relations.
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With similar arguments as raised above, therefore, pseudo innovations in ξ̃t have mean

zero and unit covariance but lack independence if ξ1t and ξ2t are independent.

Using the contrast in (6) for identification purposes one may start with a specific

initialization, ξt = D−1
l ut, ξt = D−1

u ut or ξt = D−1
s ut, and rotate these candidates system-

atically. Now, consider the space of systematically rotated innovations,

ξ
(θ)
t = RθD

−1ut = Rθξt =


 cos(θ) − sin(θ)

sin(θ) cos(θ)


 ξt. (8)

If for any rotation indicated with θ0 the vector ξ
(0)
t = Rθ0ξt would comprise indepen-

dent innovations, other rotations Rθ, 0 ≤ θ < π/2, θ ̸= θ0 fail to provide independent

innovations. If the elements of a particular rotated vector ξ
(0)
t are diagnosed independent,

the implied relation between ξ
(0)
t and ut is considered as the impact relation between

structural and reduced form residuals (ut = D0ξ
(0)
t ). The result in (7) shows that the dis-

criminatory content of ITSI comes from the fact that, generally, rotations of independent

innovations result in linearly combined innovations. Noting that both elements ξ̃1t and

ξ̃2t process the same structural information (ξ1t, ξ2t) the elements of these rotations are

dependent. However, the following rotation matrices imply that the elements in Rθξ
(0)
t

are observationally equivalent to those in ξ
(0)
t

Rπ/2 =


 0 −1

1 0


 , Rπ =


 −1 0

0 −1


 and R3π/2 =


 0 1

−1 0


 .

The rotation by means of Rπ amounts to multiplying the columns of D−1
0 , and, thus of

D0, with minus unity. Since in impulse response analysis it is common to trace the impact

of positive structural shocks, one arrives at uniquely identified structural relations by as-

suming the diagonal elements of D0 to be positive. Except for the sign transformation,

the effect of the rotations Rπ/2 and R3π/2 is to exchange the columns of the implied im-

pact matrix D0. Note that, nonuniqueness of the matrix D with regard to interchanging

its columns is already implied by the decomposition of Ω = DD′, and also applies to

other data based idenfication approaches (Lanne and Lütkepohl 2008). Thus, to further

disentangle D0, D0Rπ/2 and D0R3π/2 an analyst has to rely on theoretical economic con-

siderations. In many of such scenarios, for instance, it appears natural to assume that

the loading of structural innovations on reduced form disturbance is stronger (in absolute
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magnitude) for own (diagonal) effects in comparison with cross variable (off diagonal)

effects. Henceforth, to extract data driven impact matrices D0 the space of nontrivial

rotations in (7) corresponds to the support 0 ≤ θ < π/2.

As introduced, the ITSI scheme is purely data driven. Clearly such an approach

deserves a measure of (in)dependence of elements in a sample of some innovation vector

candidates ξt. In the following the identification criterion, or put differently, dependence

assessment is made explicit. As a side note, minimizing the dependence criterion will be

suggested for the determination of the transition scheme D0. Moreover, the dependence

measure might lack uniqueness in the sense that dependence quotes for a set of candidate

innovation vectors can hardly be distinguished by inferential criteria with some deserved

significance. Therefore, bootstrap based diagnostic and inferential tools for identification

are provided subsequently.

2.3 Assessing innovation independence

Irrespective if an analyst wishes to distinguish rival decomposition matrices, Dl, Du or Ds

say, or is in search for some minimal dependent structural innovations ξ
(0)
t , ITSI deserve

a statistical means to assess independence or dependence of the elements of candidate

structural innovation vectors. Let ξt, t = 1, 2, . . . , T , be a sample of such candidate

innovation vectors ξ
(•)
t , • ∈ {l, u, s, 0}. Independence of the elements in ξt implies, for

instance,

f(ξ1t) = f(ξ1t|ξ2t), (9)

where the left (right) hand side term in (9) is the unconditional (conditional) density

of ξ1t. Nonparametric estimates of the unconditional and the conditional density of ξ
(•)
1t

read, respectively, as (see e.g. Rosenblatt 1969)

f̂(ξ1t|ξ2t) =
f̂(ξ1t, ξ2t)

f̂(ξ2t)

=

∑T
τ=1 Kh(ξ1t − ξ1τ )Kh(ξ2t − ξ2τ )∑T

τ=1 Kh(ξ2t − ξ2τ )
and (10)

f̂(ξ1t) =
1

T

T∑

τ=1

Kh(ξ1t − ξ1τ ). (11)
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In (10) and (11) Kh(v) = 1
h
K(v/h) is a kernel function and h > 0 is the bandwidth

parameter.3 Due to estimation errors in finite samples the relation in (9) should hold

approximately f̂(ξ1t) ≈ f̂(ξ1t|ξ2t). As a practical consequence, finite samples ITSI di-

agnostics may suffer from the local biases that are typical for kernel based estimates.

Asymtotically, i.e. with h → 0 as T → ∞, ITSI diagnostics take full advantage of the

consistency of kernel based estimates. The following loss statistic is proposed to indicate

actual dependence of components of ξt:

L(ξ1, ξ2) = L(ξ) =
T∑

t=1

∣∣∣ ln
(

f̂(ξ1t)

f̂(ξ1t|ξ2t)

)∣∣∣ =
T∑

t=1

| ln(f̂(ξ1t)− ln(f̂(ξ1t|ξ2t))|. (12)

Small values of L(ξ) are in favor of independence, while the larger is L(ξ) the less is the

likelihood for having innovation vector candidates that comprise independent elements.

As a practical rule and depending on the purpose of the analysis, one may consider the

innovations implied by min{Ll,Lu,Ls} or ξ
(0)
t to be the true structural model innovations

where

θ0 = argminθL(ξ(θ)t ). (13)

Henceforth, loss measures also indicate to which causation scheme they refer. To be

explicit, Ll,Lu,Ls and L0 are determined on the basis of innovations obtained from trian-

gular decompositions of covariance matrices, the eigenvalue decomposition and from the

minimum dependence measure in (13), respectively.

2.4 Inference

On the one hand, any selection of ξ
(•)
t might be characterized by a lack of independence

even if it minimizes the dependence statistic in (12) among rival a-priori choices, or con-

ditional on systematic evaluations of a space of matrix rotations. On the other hand,

if the elements in ξ
(•)
t are characterized by independent components, it is unclear if not

other choices (e.g. neighboring rotations) differ only ’insignificantly’ from the selected

innovation tuple. Against this background it is of immediate interest to have some infer-

ential tool at hand that helps to uncover if elements in ξ
(•)
t can be reasonably considered

3In this study, the Gaussian kernel defined as K(v) = 1√
2π

exp(− 1
2v

2) is employed throughout. The

bandwidth parameter is set to h = 1.06(T − 1)−0.2, since the variance of innovation estimates is unity by

construction.
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independent. Moreover, a statistical test is desired to highlight if (slight) rotations of ξ
(•)
t

might be considered to consist of independent innovations.

For inferential purposes a simple resampling procedure can be employed. Suppose

under the null hypothesis that the elements in a sample of a particular innovation vector

candidate ξt, t = 1, 2, . . . , T, are independent. In this case one may imagine that elements

ξ2t, say, have been attached to elements ξ1t in a purely randomized manner. As a result

the loss measure L(ξ) = L(ξ1, ξ2) will differ only unsystematically from a loss L(ξ1, ξ∗2),
where the random variables in ξ∗2 are either drawn with replacement from ξ2t or assigned

by means of Monte Carlo techniques. The following resampling scheme is proposed for

testing the null hypothesis of innovation independence:

1. Determine L(ξ1, ξ2) from the data.

2. Draw with replacement a sample from the second elements in ξt denoted ξ∗2t and

obtain L(ξ1, ξ∗2).

3. Repeat step 2 sufficiently often, say R = 1000 times.

4. Reject the null hypothesis of contemporaneous independence with significance level

α, if L(ξ1, ξ2) exceeds the (1 − α)-quantile of the distribution of L(ξ1, ξ∗2), denoted
L∗(ξ1, ξ2).

Henceforth, bootstrap loss statistics are indicated as L∗

•
and the (1 − α)–quantile of the

bootstrap distribution is denoted L∗

•,1−α, • ∈ {l, u, s, 0}.4

3 Monte Carlo study

To illustrate the potential of the proposed identification scheme to detect factual link-

ages between contemporaneously independent structural innovations ξt and reduced form

disturbance vectors ut this Section offers Monte Carlo evidence. First, the data gener-

ating sampling model is briefly introduced and performance criteria are stated. Then,

simulation results are discussed.

4The proof of the asymptotic validity of the bootstrap scheme is straightforward noting that the

distributions of ξ2 and ξ∗2 are identical under the null hypothesis of independence.
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3.1 Data generation and performance evaluation

The following model is used to draw bivariate independent structural innovation processes:

ξt
iid∼ (0, I2), ξjt ∼ t(νj)

√
νj − 2
√
νj

, j = 1, 2, ξ1t, ξ2t independent, t = 1, 2, . . . , T,

where I2 is the two dimensional identity matrix, t(νj) is short for the Student−t distribu-

tion with νj degrees of freedom. In the Monte Carlo study degrees of freedom ν = 4, 8, 16

and ν = 32 are distinguished. While lower degrees of freedom might be thought to rep-

resent strong violations of joint normality of the structural innovations, scenarios where

ν = 32 might be hard to distinguish from observational equivalence of ξt and its rota-

tions that holds under joint normality. With regard to the sample size T = 100, 250 and

T = 500 are distinguished. Since the detection of dependence patterns relies on nonpara-

metric estimates of conditional and unconditional densities, one would expect that with

increasing sample size and with the bandwidth parameter shrinking to zero, the accuracy

of the identification strategy improves in terms of selective strength.

After the generation of structural innovations these are transformed to reduced form

error vectors such that their covariance matrix is

Cov[ut] =


 1 ρ

ρ 1


 , ρ = 0.25, 0.50, 0.75.

Distinct covariance levels govern the linear dependence of reduced form disturbances. For

the transition of structural innovations to reduced form disturbances a recursive causal

structure is employed such that the true transition matrix and its inverse are lower tri-

angular (Ω = DlD
′

l). In the simulation study it is of interest under which conditions an

analyst may distinguish the lower triangular recursive transition scheme from the assump-

tion of a ’symmetric’ transition which is implied by setting Ω = DsD
′

s, or from an upper

triangular recursion, Ω = DuD
′

u. Intuitively one may expect it more difficult to distin-

guish between a recursive and symmetric transitions the smaller is the level of correlation

(ρ). For instance, in the case of weakest correlation considered, ρ = 0.25, Dl, Ds and Du

are rather ’similar’ to each other,

Dl =


 1 0

0.25 0.968


 , Ds =


 0.992 0.126

0.126 0.992


 , Du =


 0.968 0.25

0 1


 .
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After the generation of reduced form disturbances ut the three rival decompositions of

unrestricted estimates Ω̂ = 1/T
∑

t utu
′

t are employed to arrive at implied structural

innovations

ξ
(l)
t = D̂−1

l ut, ξ
(u)
t = D̂−1

u ut and ξ
(s)
t = D̂−1

s ut, t = 1, 2, . . . , T.

Then, all estimated innovation samples are used to determine respective loss statistics

Ll, Lu and Ls.
5 Moreover, the loss statistics are subjected to resampling to test the null

hypothesis of independence. The number of bootstrap replications is 1000. The following

means of indicators I() are used to assess the performance of the proposed identification

scheme:

(i) Mean estimates I(Ll < Ls), I(Ll < Lu),

(ii) Mean estimates I(Ll > L∗

l,1−α), α = 0.10, 0.05,

(iii) Mean estimates I(Ls > L∗

s,1−α), I(Lu > L∗

u,1−α), α = 0.10, 0.05.

While the criterion in (i) mimics the situation where an analyst just looks for a minimal

dependence statistic, the criteria in (ii) correspond to the type one error of a formal test

of the null hypothesis of independence. In case the proposed resampling schemes apply,

one would expect empirical means for these criteria of 10% and 5%. Similarly, the criteria

in (iii) correspond to the power of formal independence tests, since the imposed transition

scheme differs from the true one, such that the extracted innovations ξ(s) and ξ(u) lack

independence.

3.2 Simulation results

Simulation results are documented in Table 1. As one may expect diagnosing the true

lower diagonal recursive structure (Dl) is more frequently successful if one contrasts this

5Opposite to econometric practice the performance of ITSI in ranking rival patterns of contemporane-

ous causation the simulations in this study are performed with ’true’ rather than estimated reduced form

innovations. In this context it is worthwhile to notice that estimated disturbance terms are consistent for

their true counterparts under the weak condition of finite innovation variance. Unreported results show

that in finite samples extracting VAR residuals from the generated disturbance terms ut has only very

minor impacts on the discriminatory strength of the proposed identification scheme.

13



relation against an upper triangular recursion (Du) as it is the case for the symmetric

alternative Ds. Henceforth, the discussion of identification outcomes refers to contrast-

ing Dl against Ds. The detection of the true lower triangular recursion (when testing

against Ds) is facilitated, the stronger is the violation of joint normality, i.e. the smaller

is the degrees of freedom parameter ν, the larger is the sample size T , and the stronger

is the contemporaneous correlation. For instance, conditional on T = 100 and ν = 4

the loss statistic Ll is smaller than Ls in 84.9% and 59.6% of all replications if the level

of contemporaneous correlation is ρ = 0.75 and ρ = 0.25, respectively. Conditional on

T = 100 and the medium correlation level ρ = 0.5, Ll is smaller than Ls in 74.8%, 56.4%

and 51.0% of all Monte Carlo experiments if the degrees of freedom parameter is ν = 4, 8

and ν = 32, respectively. Thus, in the case ν = 32 ITSI can hardly distinguish the stan-

dardized Student−t model from the (nonidentified) Gaussian reference case. Generally

the power properties of the proposed resampling scheme are satisfactory. Conditional

on T = 100, ρ = 0.75 and with 5% significance the null hypothesis of independence of

innovations is rejected in 41.0% and 11.0% of all Monte Carlo replications when testing

against Ds and if the underlying Student−t degrees of freedom parameter is ν = 4 and

ν = 8, respectively. With regard to the empirical size features of the proposed resampling

scheme, it turns out that inference on independence is somewhat conservative in small

samples. For T = 100 and a nominal significance level of α = 0.05 the empirical rejection

frequencies vary between 2.6% and 6.6% depending on the particular data generating

model. To explain the tendency of undersizing of the bootstrap independence test it is

worthwhile to point out that small sample estimation errors for the elements in Ω̂ may

bias the stochastic properties of the elements in ξt towards some ’remaining’ dependence

even if the true causation scheme is used for the extraction of structural innovations.

With increasing sample size the discriminatory content of ITSI identification improves

for almost all scenarios. However, contrasting Dl against Ds, the largest sample size

considered, T = 500, is not sufficient to effectively distinguish independent standardized

Student-t distributions with ν = 32 degrees of freedom from the uninformative bivariate

Gaussian case. For instance, with T = 500, ν = 32 and ρ = 0.75 in only 52.9% of all

Monte Carlo replications loss measures for Dl are smaller in comparison to those attached

to Ds. For the same setting (T = 500, ν = 32, ρ = 0.75), however, the contrasting of
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Dl against Du is more often successful, i.e. in 55.6% of all replications Ll is smaller

than Lu. Depending on the degrees of freedom parameter, the resampling of ITSI loss

statistics L appears to suffer from local biases of Kernel estimates even conditional on the

largest sample size (T = 500). Interestingly and most intuitive, the effects of such local

biases are more severe the less concentrated is the distribution of innovations around zero

(ν = 16, 32).6

4 Empirical applications

To further illustrate the scope of ITSI implied loss statistics two prominent issues of em-

pirical macroeconometrics are considered in this section. Firstly, ITSI loss statistics are

used to uncover potential patterns of monetary autonomy in four systems of international

breakeven inflation rates. Secondly, the ITSI approach is followed to assess competing

notions of news processes in a bivariate system of US stock prices and total factor pro-

ductivity. In Beaudry and Portier (2006) TFP innovations are regarded as news process

largely on the basis of an ad-hoc assumption.

The empirical applications will cover both aspects raised in Section 2. In the first

place, distinct presumptions on the contemporaneous causation scheme will be contrasted

against each other. In the second place, a particular causation scheme is extracted from a

large space of candidate specifications to arrive at structural innovations with minimum

strength of dependence. For practical implementation of the ITSI identification two al-

ternative choices for the matrix D in (6) are considered, namely a lower and an upper

triangular recursion. Then, these two baselines are rotated by means of a grid of rotation

matrices R(θ), θ = 0.0125ω, ω = 1, 2, . . . , 39.

6Unreported simulation based evidence for selected scenarios (e.g. ρ = 0.25, ν = 16) with very large

samples, i.e. T = 2000, confirms both consistency of the identification scheme and asymptotic validity

of the simple resampling approach detailed in Section 2. Detailed results for simulation experiments

with large samples are not provided in this work noticing high computational burdens of resampling

nonparametric density estimates.
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4.1 International linkage of breakeven inflation

4.1.1 Monetary autonomy

A core concern of monetary policy is long term price stability. Since the 1990s infla-

tion targeting has become a widely followed strategy to implement a moderate and pre-

dictable evolution of prices. The essential element in such a framework is to anchor long

run inflation expectations. Hence, the extent to which central banks are able to im-

plement stable, unique and definite beliefs is crucial. In small economies the targeting

of inflation expectations by monetary authorities could be threatened by the neighbor-

hood to or intense trading relationships with leading economies such as the US or the

European Monetary Union (EMU). Particular central banks that might be subjected

to cross market monetary transmission in this respect are the Bank of Canada or the

Bank of England. In this section monetary linkage is empirically assessed in terms of

the degree to which ex-ante inflation rates are determined on international markets com-

prising a subset of the G7, namely Canada, France, the UK and the US. Inflation com-

pensation as implied by the (liquidity adjusted, Shen (2006)) difference between yields

of long term ’Treasury Inflation Protected Securities’ and conventional bonds is con-

sidered to measure future inflation prospects. Daily price quotes cover the time pe-

riod 4/2/2001- 9/30/2008. Breakeven inflation rates analyzed below are available from

the net (http://www.bepress.com/snde/vol13/iss4/art5/, see also Herwartz and Roestel

2009). Liquidity adjusted breakeven inflation rates are displayed in Figure 1. By graph-

ical inspection liquidity adjusted breakeven rates appear consistent in the sense that all

corresponding monetary authorities have been communicating inflation targets around

2% to 3% over the last decade.

4.1.2 Reduced form estimates

Overall, four bivariate systems of innovations governing daily break even inflation rate

changes are considered. Below, these systems are labeled with roman numbers and com-

prise the following combinations of bond markets

I II III IV

CA,US FR,US UK,US UK,FR
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The systems I, III and IV are ordered such that a presumably dominating market is

listed after a dominated market. For the second system one might also a-priori consider

the US bond market to informationally dominate the European counterpart. In light of

respective empirical evidence (Ehrmann and Fratzscher 2004), it is, however, conceivable

that the notion of US dominance (over the Euro Area) has seen some weakening over

more recent time periods.

Modeling first and second order features of the ex-ante inflation expectations, changes

of liquidity adjusted breakeven inflation rates show at most rather weak serial correlation

but instead marked patterns of volatility clustering. Quantifying second order charac-

teristics by means of GARCH(1,1) specifications (Engle 1982, Bollerslev 1986) turns out

to approximate higher order features of the Canadian and UK breakeven rate changes

accurately. With regard to the remaining two series diagnostic results indicate that

GARCH(1,1) implied standardized residuals might show some (mild) remaining condi-

tional heteroskedasticity. An expansion of the empirical model towards a GARCH(2,1)

or GARCH(1,2), however, failed to provide reasonable (i.e. positive) GARCH parameters

and/or to improve the diagnostic features of standardized residuals. Therefore, underlying

market innovations are extracted from breakeven inflation rate changes by means of uni-

variate GARCH(1,1) models. GARCH(1,1) implied standardized residual processes are

stacked to obtain bivariate systems of reduced form bond market innovations. Estimation

and diagnostic results and, moreover, the cross correlation matrix of univariate GARCH

residuals are shown in Table 2. From the theoretical outset of the ITSI approach it is clear

that its identification potential vanishes in case that reduced form residual processes are

jointly Gaussian. It is well established that residuals of volatility models, though being

iid distributed, often fail to exhibit a Gaussian distribution (Bollerslev 1987). For the

considered systems of breakeven inflation innovations explicit tests on joint normality are

not provided in detail. In fact, highly significant Jarque-Bera test statistics (Jarque and

Bera 1980) determined for the four breakeven systems vary between 211.11 (CA/US) and

2589.23 (UK/US).
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4.1.3 Structural analysis

According to the empirical results in Table 2 the correlation estimates obtained in the four

dimensional system vary between 0.16 (UK/US) and 0.44 (CA/US). Noting that almost

2000 time series observations enter the analysis for each system one might expect that if

the true contemporaneous market relation is of a recursive type the ITSI identification

scheme delivers clear cut identification results. In the case that both markets of a system

contribute to reduced form disturbances, the true scheme of instantaneous causality is not

of a recursive structure. A-priori, given that monetary policy in the Euro area and the US

might issue news of similar (international) weight, the second system could be considered

to deliver some mixed evidence on eventual recursive patterns of processing structural

innovations. Consequently, for this system a symmetric square root decomposition of

the reduced form covariance might be convenient according to a-priori considerations.

Empirical ITSI loss measures for systems of (GARCH standardized) breakeven inflation

rates are documented in Table 3. For all bivariate systems the empirical analysis is

performed with regard to full samples and, moreover, distinguishing two (almost) equal

sized subsamples.

For the systems comprising Canadian and French breakeven rates jointly with US

inflation expectations an upper triangular scheme is characterized by smaller loss statistics

as the lower triangular counterpart. Thus, according to these statistics shocks in the US

rate are more likely to impact on the remaining rate in comparison with a recursion where

innovations of the US rate cannot be interpreted as a news process. For both systems

and conditional on full sample information, the (upper triangular) extracted innovations

lack independence with 5% significance, however. For both considered subsamples the

upper triangular recursive scheme is confirmed to result in minimum dependence statistics

among the alternative candidate innovation processes ξ
(l)
t , ξ

(u)
t and ξ

(s)
t . However, only

for the second subsample of the CA/US system the extracted innovations are diagnosed

independent with 5% significance. Regarding the French breakeven rate to represent EMU

inflation expectation the diagnosed upper triangular scheme is at odds with more recent

empirical evidence of a weakened impact of the US market on European interest rates

(Ehrmann and Fratzscher 2004), and more in line with traditional views on interest rate

transmission from the US to the German and smaller European markets (Katsimbris and
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Miller 1993, Hassapis, Pittis and Prodromidis 1999).

Conditional on full sample information the third system comprising standardized in-

novations of US and UK inflation compensation is closest to the notion of symmetric

instantaneous causality, i.e. with regard to inflation expectations particular recursive

transmissions cannot be retrieved from these markets. On the one hand this result might

be surprising in light of the literature available on US dominance. On the other hand,

however, regarding the informational content of breakeven inflation rates, it is noteworthy

that the trading of inflation protected securities has a by far longer tradition in the UK

in comparison with all remaining markets. Against this background one might attribute

specific informational content also to UK inflation expectations. From a statistical per-

spective, moreover, the relatively low level of correlation (0.159, UK/US) between reduced

form information for these two markets might be a reason for the mixed evidence with

regard to potential patterns of instantaneous causation. For innovations ξ
(s)
t and ξ

(l)
t the

hypothesis of independence is rejected with nominal 5% significance but not at the more

conservative 1% level. For innovations ξ
(u)
t the null hypothesis of independence is re-

jected with 1% significance. Conditional on subsample information, ITSI diagnostics are

in favour of distinct recursive patterns supporting US dominance for the first subsample

while a lower triangular scheme delivers smallest independence statistics conditional on

the more recent subsample.

An argument relating to the fact the UK markets for inflation indexed securities are

well established might also be put forth with regard to the last system of breakeven rate

innovations. Considering the UK/FR system the evidence does not reflect a dominance of

French/EMU breakeven rates. In fact, one diagnoses some evidence of a lower triangular

relation characterizing this particular system (full sample and first subsample) or of a

symmetric structural relation (second subsample). While independence of the diagnosed

innovations is confirmed for both subsamples with 5% significance, for the full sample

independence cannot be diagnosed with 5% significance but at the more conservative

level of 1%.

Apart from comparing rival a-priori schemes to link structural and reduced form in-

formation ITSI could be used to detect structural innovations with weakest dependence.

Following these lines we find for almost all subsample systems impact relations such that
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the null hypothesis of independence cannot be rejected at common significance levels.

Conditional on full sample information structural innovations in ξ
(0)
t lack independence

with 10% significance for all subsystems, the elements of ξ
(0)
t are diagnosed dependent

with 5% significance for the FR/US subsystem. In general, however, the actual depen-

dence of elements in ξ
(0)
t appears markedly reduced in comparison with selected a-priori

decompositions D•, • ∈ {l, u, s} for each market. As outlined in Section 2 the selection of

D0 deserves further identifying assumptions, since the independence measure is invariant,

e.g. with particular sign switches and the reordering of the columns of D0. Assuming (i)

that diagonal elements of D0 are positive and (ii) that structural shocks of either variable

have the strongest impact on its own reduced form counterpart obtains the particular D̂0

estimates provided in Table 3. Allowing for such freely estimated feedback relations, it

turns out that elements in D̂0 are numerically close to upper triangular recursions for the

CA/US and FR/US systems. Evidence for a ’symmetric’ relation is the strongest for the

UK/US subsystem, while a D̂0 is closest to a lower triangular scheme for the UK/FR

system. Thus, systematically selecting structural innovations with weakest dependence is

to some extent supportive for US dominance over CA and FR, while the UK breakeven

rate appears to dominate the FR rate on impact. In addition, the system UK/US is still

best described by an ’almost’ symmetric feedback relation.

Summarizing the results on monetary dependence for the two smaller economies con-

sidered, it turns out that in comparison with the Bank of Canada, the Bank of England

is likely better able to target domestic long run inflation.

4.2 Is US total factor productivity a news process ?

4.2.1 Reduced form modeling

Beaudry and Portier (2006) have raised the issue if in a bivariate system comprising a

technology measure (TFP) and stock prices (SP) as an indicator of future expectations

about the business cycle, surprises i.e. news are released in expectations (i.e. stock prices)

or technology. Interestingly, the former case would suggest that technological change is to

some extent ’foreseen’ or processed in stock prices. The quarterly data on US total factor

productivity and stock prices spans the period 1947 to 2000 and can be drawn from the net

(http://www.aeaweb.org/articles.php?doi=10.1257/aer.96.4.1293). To clarify the origin
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of news, Beaudry and Portier (2006) also employ higher dimensional systems comprising

consumption and/or hours worked which is beyond the scope of the ITSI approach as

introduced in this work. For the bivariate system two alternative identification schemes

are applied in Beaudry and Portier (2006) one of which relies on long term identifying

restrictions that allow a non vanishing response of the news shock on total factor produc-

tivity. Alternatively, Beaudry and Portier (2006) use a Cholesky decomposition excluding

on impact dynamics operating from stock prices on total factor productivity. It turns out

that these two identification schemes obtain highly correlated news shocks. The Cholesky

type lower diagonal identification scheme used by Beaudry and Portier (2006) can be

subjected to loss comparison with an alternative upper triangular decomposition scheme.

It is this particular aspect of the relationship between technology and stock prices that

can be subjected to a loss assessment in the ITSI framework.

To investigate the empirical linkage of stock prices and factor productivity four al-

ternative VAR specifications are used to extract reduced form residuals. According to

standard model selection criteria (AIC, BIC, HQ) applied to level data with determin-

istic trend, lag order 2 is broadly supported. Accordingly, the four systems analyzed

are a VAR(2) with trend for level data, a VAR(2) for level data without trend and a

VAR(2) and VAR(1) model for first differences of stock prices and total factor produc-

tivity both excluding a deterministic trend. Reduced form residuals extracted from these

model specifications are throughout rather similar and the empirical residual correlation

in these bivariate systems is around σ̂ ≈ 0.16. VAR estimates are provided in Table 4.

Noting an only weak correlation of reduced form disturbances in the TFP/SP system

and the relatively small time series dimension the discriminatory content of the ITSI loss

statistics is likely limited on the one hand. On the other hand, documented statistics

testing the presumption of joint reduced form normality are significant at any reasonable

level such that ITSI loss statistics naturally apply for a comparison of distinct structural

assumptions.

4.2.2 Structural analysis

ITSI diagnostics for the alternative systems comprising reduced form disturbances of TFP

and stock prices in the US are documented in Table 5. Detecting ’dependence’ minimizing

21



matrices D0 by means of systematically rotating Dl or Du obtains loss statistics and con-

temporaneous causation pattern that are close to the loss statistics attached to the lower

triangular recursive structure. While for most D̂0 matrices some asymmetric feedback

relations are detected, it is worthwhile to point out that the lower left element of these

matrices is throughout larger in absolute magnitude than the upper right element. Dis-

tinguishing alternative loss statistics L•, • ∈ {l, s, u} almost all estimated VAR systems

deliver smallest loss statistics for the lower triangular decomposition (Ll < Lu) implying

that innovations in stock prices have no contemporaneous effect on reduced form innova-

tions characterizing total factor productivity. Thus, total factor productivity is confirmed

to bear the interpretation of a news process. Moreover, with regard to inferential results

it turns out that elements of implied structural innovations ξ
(u)
t lack independence with

5% significance throughout. Thus, while it is difficult to distinguish the dependence level

of structural innovations ξ
(l)
t and ξ

(s)
t , the empirical evidence is markedly at odds with

the presumption that iid news enters the bivariate system through stock prices. Overall,

however, the evidence in favor of symmetric instantaneous causation is weaker as it is for

the most likely (i.e. the lower triangular) recursive scheme. Interestingly, Beaudry and

Portier (2006) rely on this assumed recursion on the basis of a-priori reasoning. Combined

with arguments in Beaudry and Poitier (2006) this also supports the view that the news

shock impacts on TFP in the long run.

5 Conclusions

In this paper a loss functional is introduced that carries informational content to dis-

criminate between competing structural relations in a non iid Gaussian framework. In-

dependence targeted structural innovations (ITSI) can provide a ranking of alternative

just identifying structural data representations. Thus, ITSI assist the analyst in deter-

mining a data supported structural view at the economy, or put differently, highlight to

which extent particular identifying restrictions are not supported by empirical processes.

The ITSI concept fully relies on the notion of data being independent and identically dis-

tributed over the time dimension such that simple resampling and Monte Carlo techniques

are applicable to resolve inferential issues with regard to competing a-priori settings of
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structural data relations. A Monte Carlo study underpins that ITSI may reasonbly used

to contrast rival schemes of recursive causality even if sample sizes are small to moder-

ate. Applied to empirical systems of break even inflation rates, ITSI diagnostics indicate

that the Bank of Canada is more dependent on US monetary policy in comparison with

the Bank of England. For the US system comprising total factor productivity and stock

prices suggesting that news arrives through TFP innovations (Beaudry and Poitier 2006)

is found to be in line with sample information.

For the purpose of simplicity and computational tractability the outline of ITSI in

this paper has addressed the bivariate case exclusively. The generalization towards higher

order systems is straightforward and feasible in principle. The determination of ITSI

in higher dimensional systems is an interesting direction of future research. Moreover,

in the framework of multivariate GARCH models, it has become a common practice to

use the eigenvalue decomposition for the extraction of vector model innovations. Such

innovations are typically found to exhibit remaining leptokurtosis as it has been the case

in this study for the systems of univariate GARCH innovations extracted from breakeven

inflation rates. In consequence, ITSI may also support an analyst to decide upon the most

suitable, data driven decomposition of time varying covariance matrices in the multivariate

GARCH framework. Opening a further direction of future research one might notice from

the empirical analysis of systems of breakeven inflation rates - and in particular of the

UK/FR subsystem - that the assumption of time invariant structural relations might lack

support empirically. In this respect it is of interest in how far the notion of independent

structural innovation could be helpful to uncover time variation in contemporaneous causal

relations.
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Dl vs. Ds Dl vs. Du

Ll < Ll > Ll > Ls > Ls > Ll < Lu > Lu >

T ρ ν Ls L∗

l,.95 L∗

l,.90 L∗

s,.95 L∗

s,.90 Lu L∗

u,.95 L∗

u,.90

100 .25 4 .596 .066 .121 .078 .152 .714 .196 .304

8 .548 .034 .079 .041 .099 .577 .068 .128

16 .511 .029 .078 .029 .073 .533 .033 .083

32 .493 .027 .071 .025 .069 .487 .031 .066

.50 4 .748 .042 .104 .203 .313 .892 .551 .693

8 .564 .033 .066 .041 .103 .671 .118 .226

16 .524 .031 .077 .049 .099 .547 .056 .110

32 .510 .029 .065 .031 .081 .524 .037 .087

.75 4 .849 .060 .118 .410 .541 .909 .695 .790

8 .635 .032 .079 .110 .180 .703 .200 .302

16 .525 .036 .082 .045 .102 .554 .059 .125

32 .539 .026 .066 .040 .083 .540 .041 .082

250 .25 4 .713 .051 .109 .110 .190 .895 .339 .476

8 .579 .036 .083 .050 .103 .664 .083 .161

16 .514 .033 .092 .029 .070 .547 .038 .089

32 .518 .030 .060 .031 .073 .527 .035 .076

.50 4 .887 .063 .120 .365 .510 .978 .917 .950

8 .669 .050 .097 .110 .203 .760 .294 .417

16 .566 .034 .072 .042 .086 .597 .063 .166

32 .531 .034 .077 .044 .086 .518 .049 .103

.75 4 .956 .058 .129 .777 .857 .989 .967 .985

8 .712 .051 .110 .201 .318 .803 .368 .484

16 .581 .034 .070 .054 .115 .622 .096 .188

32 .518 .041 .084 .043 .093 .530 .070 .116

500 .25 4 .824 .063 .134 .165 .283 .956 .604 .735

8 .627 .043 .091 .063 .117 .742 .130 .215

16 .509 .039 .089 .034 .086 .560 .042 .102

32 .496 .039 .074 .034 .076 .505 .034 .080

.50 4 .964 .063 .119 .622 .749 .998 .991 .997

8 .739 .047 .096 .137 .245 .882 .445 .592

16 .582 .037 .077 .053 .108 .656 .103 .190

32 .508 .033 .072 .039 .075 .551 .057 .108

.75 4 .996 .062 .114 .973 .990 1.00 1.00 1.00

8 .836 .047 .100 .314 .429 .903 .597 .729

16 .642 .043 .089 .091 .167 .682 .144 .249

32 .529 .041 .086 .045 .100 .556 .060 .117

Table 1: Simulation results: The table shows empirical frequencies for events indicated

in the top row, i.e., frequencies of minimum loss measures obtained for Ll (columns 4

and 9), size estimates for nominal significance levels 5% and 10% (columns 5 and 6) and

power estimates with respect to these nominal levels (columns 7,8,10,11).
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co. α̂0 α̂1 β̂1 LM1 LM5 corrs (σ̂)

CA 2.95E-06
(1.51)

.030
(3.92)

.968
(120.)

0.040
(0.84)

3.907
(0.56)

CA FR UK

FR 4.84E-06
(2.25)

0.069
(4.24)

0.922
(55.5)

5.387
(0.02)

12.46
(0.03)

.230

UK 1.47E-06
(1.03)

0.024
(3.29)

0.973
(117.)

0.299
(0.58)

2.833
(0.73)

.207 .293

US 2.19E-06
(1.10)

0.047
(2.61)

0.954
(60.1)

5.033
(0.02)

25.70
(0.00)

.440 .214 .159

Table 2: GARCH(1,1) parameter estimates and model diagnostics for changes of

breakeven inflation rates in Canada (CA), France (FR) the UK and the US, denoted

εt. For a particular variance process the conditional variance σ2
t = E[ε2t |Ft−1] character-

izing the time series εt is, σ
2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1. Values in parentheses are either

t-ratios (for parameter estimates) or p−values (for the LM-statistic testing against con-

ditional heteroskedasticity in GARCH implied standardized residuals). The right hand

side panel shows unconditional correlations for the standardized GARCH(1,1) residuals.
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D• D̂ L D̂ L D̂ L
CAUS 1st subs 2nd subs

Du 0.998 0.441 176.9∗∗ 0.999 0.517 110.3∗∗ 0.998 0.361 99.34∗

0 0.899 0 0.843 0 0.949

Dl 0.896 0 252.9∗∗∗ 0.851 0 158.7∗∗∗ 0.933 0 133.7∗∗∗

0.440 1.002 0.523 0.989 0.355 1.015

Ds 0.972 0.226 212.7∗∗∗ 0.961 0.270 141.7∗∗∗ 0.981 0.182 113.2∗∗∗

0.226 0.976 0.270 0.951 0.182 0.999

D0 0.764 0.643 172.02∗ 0.679 0.733 100.50 0.877 0.476 93.75

-0.243 0.972 -0.267 0.952 -0.136 1.006

FRUS 1st subs 2nd subs

Du 1.001 0.213 192.8∗∗∗ 1.028 0.200 106.1∗∗ 0.972 0.228 106.0∗∗

0 0.979 0 0.968 0 0.989

Dl 0.978 0 211.7∗∗∗ 1.007 0 115.1∗∗ 0.947 0 111.7∗∗

0.213 1.002 0.208 0.989 0.218 1.015

Ds 0.995 0.107 197.3∗∗∗ 1.023 0.103 111.1∗∗ 0.965 0.112 106.6∗∗

0.107 0.996 0.103 0.983 0.112 1.009

D0 0.930 0.302 187.26∗∗ 1.009 0.280 104.96∗ 0.900 0.293 97.20

-0.107 1.018 -0.076 0.965 -0.106 1.033

UKUS 1st subs 2nd subs

Du 1.001 0.159 188.1∗∗∗ 0.991 0.220 96.20 1.011 0.097 110.4∗∗

0 0.989 0 0.964 0 1.010

Dl 0.988 0 180.5∗∗ 0.966 0 107.0∗∗ 1.006 0 100.4

0.159 1.002 0.220 0.989 0.097 1.015

Ds 0.997 0.080 176.7∗∗ 0.984 0.111 100.9∗ 1.010 0.049 102.5∗

0.080 0.998 0.111 0.983 0.049 1.014

D0 0.985 0.078 176.5∗ 0.931 0.337 93.94 1.010 -0.031 100.25

0.080 1.011 -0.122 0.981 0.128 1.007

UKFR 1st subs 2nd subs

Du 1.001 0.293 216.5∗∗∗ 0.991 0.408 110.2∗∗ 1.011 0.175 98.87

0 0.957 0 0.944 0 0.956

Dl 0.957 0 181.8∗∗ 0.909 0 103.6∗ 0.994 0 86.73

0.293 1.001 0.393 1.028 0.182 0.972

Ds 0.990 0.148 185.9∗∗∗ 0.969 0.205 104.6∗∗ 1.007 0.090 82.92

0.148 0.990 0.205 1.008 0.090 0.967

D0 0.998 0.070 176.93∗ 0.990 -0.027 103.44 0.991 0.078 82.83

0.225 0.975 0.434 0.932 0.106 0.983

Table 3: ITSI estimates and diagnostics for bivariate systems of breakeven inflation. Ma-

trices Du, (Dl), Ds, and D0 refer to upper (lower) triangular schemes, symmetric impact

relations and impact relations resulting in minimum dependence of structural relations.

Full samples comprises 1956 daily observations. 1st and 2nd subs refer to almost equal

sized subsamples covering 1000 and 956 observations, respectively. Significant bootstrap

based diagnostics against the independence assumption are indicated with ∗∗∗ (1% signif-

icance), ∗∗ (5% significance) and ∗ (10% significance). For further notes see Table 2.
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TFP SP TFP SP ∆ TFP ∆ SP ∆ TFP ∆ SP

TFP(-1) 0.944
(13.7)

0.165
(0.42)

0.945
(13.8)

0.227
(0.57)

−0.036
(−0.51)

0.295
(0.73)

−0.024
(−0.35)

0.217
(0.55)

TFP(-2) 0.040
(0.58)

−0.414
(−1.06)

0.045
(0.66)

−0.225
(−0.57)

0.085
(1.24)

−0.603
(−1.54)

- -

SP(-1) 0.057
(4.66)

1.283
(18.6)

0.058
(4.99)

1.346
(19.8)

0.054
(4.35)

0.367
(5.17)

0.058
(4.87)

0.345
(5.09)

SP(-2) −0.055
(−4.47)

−0.288
(−4.12)

−0.057
(−4.83)

−0.354
(−5.15)

0.007
(0.53)

−0.042
(−0.56)

- -

c 0.021
(1.20)

−0.030
(−0.31)

0.019
(1.14)

−0.072
(−0.73)

0.003
(3.71)

0.008
(1.82)

0.003
(4.33)

0.005
(1.36)

t 2.37E-05
(0.53)

0.001
(3.33)

- - - - - -

LM 10 3.180
(0.53)

2.620
(0.62)

3.512
(0.48)

3.152
(0.53)

JB 95.12 80.03 89.85 90.03

Table 4: VAR parameter estimates for bivariate systems of US total factor productivity

and stock prices (Beaudry and Portier 2006). Model selection criteria (AIC, BIC, HQ,

not documented) are in favor of a VAR order two if the model is specified in levels

and contains a linear trend). VAR parameter estimates are documented with t-ratios in

parentheses. LM is the Lagrange Multiplier test (p-value in parentheses) for multivariate

serial correlation up to lag order 10. JB is the Jarque-Bera statistic on joint normality

of both reduced form residual processes. Under the null hypothesis of normality JB is χ2

distributed with 4 degrees of freedom, p−values are not provided. Dependent variables

are listed in the top row, where ∆ is short for the first difference operator. The left hand

side column lists the conditioning variables from which TFP and SP are either in levels or

in first differences. Moreover, c and t signify a constant and a trend, respectively, entering

the VAR. Estimation and diagnostic results are obtained from Eviews 6.0.
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D• D̂ · 1000 L• D̂ · 1000 L•

levels, with trend levels, no trend

Du 9.241 8.293 83.29∗∗∗ 9.248 8.770 85.31∗∗∗

0 51.50 0 52.95

Dl 9.123 0 21.12 9.123 0 22.81

1.469 52.16 1.511 53.67

Ds 9.156 1.250 22.50 9.157 1.291 21.29

1.250 52.14 1.291 53.66

D0 9.095 0.716 21.10 9.157 1.291 21.29

-2.628 52.11 1.291 53.66

1st diff, VAR(2) 1st diff, VAR(1)

Du 9.344 9.532 92.10∗∗∗ 9.395 8.774 86.76∗∗∗

0 52.51 0 53.08

Dl 9.194 0 23.57 9.270 0 23.86

1.669 53.37 1.532 53.80

Ds 9.235 1.423 23.91 9.304 1.307 24.43

1.423 53.35 1.307 53.78

D0 9.081 -1.438 22.81 9.155 -1.450 22.62

9.997 52.45 9.929 52.90

Table 5: ITSI estimates and diagnostics for the US system comprising reduced form errors

of TFP and stock prices. For further notes see Table 4 and Table 3

.
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Figure 1: Liquidity adjusted breakeven inflation rates for Canada and the US (left

hand side) and France and the UK (right hand side).
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